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Abstract

We study the online allocation problem under a
roommate market model introduced in [Chan et al.,
2016]. Consider a fixed supply of n rooms and a
list of 2n applicants arriving online in random or-
der. The problem is to assign a room to each person
upon her arrival, such that after the algorithm termi-
nates, each room is shared by exactly two people.
We focus on two objectives: (1) maximizing the
social welfare, which is defined as the sum of valu-
ations that applicants have for their rooms, plus the
happiness value between each pair of roommates;
(2) satisfying the stability property that no small
group of people would be willing to switch room-
mates or rooms.
We first show a polynomial-time online algorithm
that achieves a constant competitive ratio for social
welfare maximization. We then extend it to the case
where each room is assigned to c > 2 people, and
achieve a competitive ratio of Ω(1/c2). Finally, we
show both positive and negative results in satisfying
various stability conditions in this online setting.

1 Introduction
Online allocation studies the problem in which input informa-
tion is revealed step by step, and the algorithm is required to
make irrevocable decisions in each step without the knowl-
edge of future input items. Data come in an online fashion
for certain resource allocation problems. For example, in the
Google AdWords problem, keywords arrive sequentially in
real time, and after observing a keyword query, Google needs
to decide immediately and irrevocably what advertisement to
display to maximize its revenue.

In this paper, we study the problem of online resource al-
location in a roommate assignment setting proposed in [Chan
et al., 2016]. The objective in a roommate market problem is
to match rooms to applicants under certain budget constraints.
In public massive housing program, applicants are required to
fill in a form to state their preference over rooms and room-
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mates. The model also applies to applications such as univer-
sity accommodation and conference roommate arrangement.

Formally, in the online roommate market model, there are
n rooms, and also 2n persons that arrive online in random
order (later we will generalize this to a general model with
c-bed rooms). Each person has a valuation for each room and
a happiness valuation of each potential roommate. An alloca-
tion is an assignment of each person to some room, such that
each room contains exactly two persons. The utility of a per-
son is defined as the sum of his/her happiness for roommate
and valuation for the room.

There are several dimensions to measure the quality of an
allocation. From a global perspective, a natural objective is to
maximize the allocation’s social welfare, which is the sum-
mation of utilities of all persons. However, such efficiency
may come at the cost of unfairness, with some individuals al-
located very little resource. In this regard, we focus on the
stability of an allocation. An allocation is stable if no coali-
tion of a small number of people can devise new trades to
make everyone in the coalition better off.

Our goal is to design online algorithms on roommate mar-
ket model that perform well in these two measures. Our main
results are summarized as follows.

(a) We give a polynomial-time online algorithm with a con-
stant competitive ratio with respect to the optimal social
welfare.

(b) For the generalized c-bed model for any c ≥ 2, we extend
our algorithm and obtain a Ω(1/c2) competitive ratio.

(c) We show both positive and negative results on whether
various stability conditions can be achieved in the online
model.

1.1 Related Works
Our model follows the work by Chan et al. [2016] on the
roommate market. In their work, the authors focused on
the offline 2-bed problem and presented constant approxi-
mation algorithms for social welfare maximization. They
also proposed various solution concepts on stability and
envy-freeness, and studied their existence and the computa-
tional complexity of the corresponding search problems. The
biggest difference between our works is that we focus on the
online version of the problem and also generalize the results
to the c-bed setting.



Besides the work of Chan et al. [2016], there are two lines
of work closely related to this paper: table matching and on-
line bipartite matching. The stable matching problem has a
long history dating back to 1960s [Gale and Shapley, 1962].
After decades of development the area grows into a rich the-
ory with a vast body of literature; see surveys [Knuth, 1997;
Iwama and Miyazaki, 2008]. The basic stable matching prob-
lem has been extended in many dimensions. One direction
is to consider general matchings [Irving, 1985; Irving and
Manlove, 2002] and higher dimensional matchings [Ng and
Hirschberg, 1991; Eriksson et al., 2006; Huang, 2007]. Dif-
ferent stability notions have also been proposed, such as ex-
change stable [Cechlárová and Manlove, 2005] and popular
matching [Biró et al., 2010].

The study of online bipartite matching is originated from
the secretary problem, which asks the best strategy to choose
one secretary from n candidates coming in an online fash-
ion with random arriving order. The optimal algorithm is
1
e -competitive in expectation; see [Ferguson, 1989] for his-
torical detail. The matroid generalization was introduced
in the work [Babaioff et al., 2007], and inspired a line of
works [Dimitrov and Plaxton, 2008; Im and Wang, 2011;
Soto, 2013; Gharan and Vondrák, 2013]. The optimal com-
petitive ratio of unweighted online bipartite matching with
adversarial arrival order was proved to be 1 − 1

e
[Karp et

al., 1990]. Later Kessel et al. [2013] extended the idea
to weighted bipartite matching with random arrival order,
and obtained optimal competitive ratio 1

e for this model.
Many variants were proposed and analyzed, such as vertex-
weighted matching [Aggarwal et al., 2011] and online pack-
ing [Kesselheim et al., 2014].

2 Preliminary
We are given a set of 2n agents I = {1, 2, ..., 2n}, a set of n
rooms R = {r1, r2, ..., rn}, a happiness matrix H = {hij |
i, j ∈ I, i 6= j} in which hij denotes the happiness of agent
i when she is assigned to live with agent j, and a valuation
matrix V = {vir | i ∈ I, r ∈ R} in which vir denotes the
valuation of agent i to room j. We assume that all happiness
and valuation values are nonnegative. The outcome of the
roommate market is an allocation A = {(i, j, r)} which con-
sists of n disjoint triple. Triple (i, j, r) means agent i and j
are assigned together to room r. We require that every agent
is assigned to one room and every room is assigned to exactly
2 agents.

The social welfare of an allocation A is defined as
SW (A) =

∑
(i,j,r)∈A(hij + hji + vir + vjr).

We assume an online setting where all agents arrive online
in uniformly random order. When agent i arrives, her valua-
tion vir to every room r, as well as her happiness value hij
to all agents j that have already arrived, are revealed to the
algorithm, and the algorithm needs to assign agent i to some
available room immediately. Note that since there are exactly
2n agents and n rooms, we are not allowed to leave any agent
unassigned. Our goal is to find an allocation A that can maxi-
mize E[SW (A)], where the expectation is taken over both the
randomness of the algorithm and the random arriving order of
the agents.

An online algorithm is said to be c-competitive (or to have
competitive ratio c), if its output allocation has expected so-
cial welfare no less than c · SW (Aopt), where Aopt is the
optimal offline allocation.

3 Online Roommate Market
In this section, we present an online roommate market allo-
cation algorithm that achieves constant competitive ratio.

3.1 Online No-Rejection Bipartite Matching
Our algorithm is built on an online bipartite matching al-
gorithm with a no-rejection condition. Recall that in the
standard online bipartite matching setting, we are given a
weighted complete bipartite graphG = (L,R,E) with |L| =
|R| = n. The vertices inR are given in advance. The vertices
in L arrive online in a random order and the edges incident to
each vertex l ∈ L are revealed when l arrives. An algorithm
should either assign the current vertex to an unmatched ad-
jacent vertex in R immediately, or leave it unassigned. The
objective is usually to maximize the total weight of the result-
ing matching.

This online bipartite matching problem has been stud-
ied extensively in the literature [Aggarwal et al., 2011;
Kalyanasundaram and Pruhs, 1993; Kesselheim et al., 2014].
However, the problem we consider here has an important dif-
ference: we do not allow the algorithm to leave any agent
unassigned. Such no-rejection feature brings new challenges
to the online algorithm design. Next we present our algo-
rithm, which can be viewed as an extension of the online bi-
partite algorithm proposed in [Kesselheim et al., 2013].

Algorithm 1 ONLINEMATCHING(n,R)

1: counter ← 0
2: L← ∅
3: A← ∅
4: for every person v comes do
5: L← L ∪ {v}
6: counter ← counter + 1
7: if counter ≥ n/5 then
8: Mv ← Optimal matching on G[L ∪R]
9: ev ← The matching edge that contains v in Mv

10: if A ∪ ev is a matching then
11: A← A ∪ ev
12: else
13: Randomly choose an available vertex v′.
14: A← A ∪ (v, v′)

15: else
16: Randomly choose an available vertex v′.
17: A← A ∪ (v, v′)

18: return A

Lemma 1. ONLINEMATCHING is a polynomial time and
cb-competitive algorithm for the online no-rejection bipartite
graph matching problem, where cb = ln 5−0.8

5 ≈ 0.1618.

The proof is similar to that of Algorithm 1 in [Kesselheim
et al., 2013] and is omitted here due to space constraint.



3.2 Constant Approximation Algorithm for Online
Roommate Market

We now present our constant competitive ratio algorithm for
the online roommate market problem. It uses the online no-
rejection bipartite matching algorithm as a key ingredient.
The high level idea is that we first apply Algorithm ONLINE-
MATCHING on the first n people arrived. After this stage,
each room contains exactly one agent. Then we combine each
room-person pair as one new “room”, and apply Algorithm
ONLINEMATCHING again on the last n people with adjusted
valuations to match them to the n room-person pairs.

Algorithm 2 ONLINEROOMMATE (n,H, V )

1: Run ONLINEMATCHING on the first n agents arrived.
2: Let M1 be the output matching.
3: for every agent i arrived after the first n agents do
4: for each room r ∈ R do
5: Set v′ir ← vir + (hij + hji) where (j, r) ∈M1

6: Run ONLINEMATCHING on the last n agents with valu-
ation matrix V ′.

7: Let M2 be the returned matching.
8: return M1 ∪M2

Theorem 1. Algorithm ONLINEROOMMATE is a polynomial
time and cb

4 -competitive algorithm for the online roommate
market problem, where cb = ln 5−0.8

5 ≈ 0.1618.

Proof. Let Aopt denote the optimal offline allocation with
maximum social welfare. Let Mpp denote the maximum
weight general graph matching between the 2n agents, where
the weight between agent i and j is hij + hji. Let Mpr de-
note the maximum weight matching between 2n agents and
n rooms where each room is duplicated into 2 vertices. By
slight abuse of notations, in the following we use SW (M) to
denote the summation of the edge weights in matching M .

The social welfare SW (Aopt) can be divided to two parts:
the first part is the happiness between roommates, which
will not exceed SW (Mpp); the other part is the valua-
tions between agents and the rooms, which will not exceed
SW (Mpr). Hence we have

SW (Mpp) + SW (Mpr) ≥ SW (Aopt).

Next we bound SW (Mpp) and SW (Mpr). Fix a particular
agents arriving order. Let A1 be the set of first n agents, A2

be the set of last n agents, and E12 be the set of weighted
edges between A1 and A2 (where again the weight of edge
(i, j) between agent i and agent j is hij + hji). We further
define the following notations:

• Mpb: the maximum weight matching in bipartite graph
(A1, A2, E12).

• Mpr1: the maximum weight matching between the first
n agents and n rooms

• Mpr2: the maximum weight matching between the last
n agents and n rooms.

We will show in the following that

2E[SW (Mpr1) + SW (Mpr2) + SW (Mpb)]

≥SW (Mpp) + SW (Mpr)

where the expection is over the random arriving order of the
agents.

First we bound SW (Mpb). Since agents arrives in uni-
formly random order, every edge in Mpp will be present in
E12 with probability at least 1

2 , and these edges together form
a matching. We therefore have

E[SW (Mpb)] ≥
∑

(i,j)∈Mpp

1

2
(hij + hji) =

1

2
SW (Mpp)

Now we bound SW (Mpr) by SW (Mpr1) and
SW (Mpr2). Let Mpr0 be the maximum weight bipar-
tite matching between 2n people and n rooms and each room
only has one slot. We have

SW (Mpr1) + SW (Mpr2) ≥ SW (Mpr0) ≥ 1

2
SW (Mpr).

The first inequality is because the edges in Mpr1 ∪Mpr2 can
at least cover all edges in Mpr0. Together with

E[SW (Mpb)] ≥
1

2
SW (Mpp),

we have

2E[SW (Mpr1) + SW (Mpr2) + SW (Mpb)]

≥SW (Mpp) + SW (Mpr)

≥SW (Aopt).

Back to our algorithm, the first call to ONLINEMATCHING
gives us a matching with expected social welfare no less than
cb ·SW (Mpr1); the second call to ONLINEMATCHING gives
us a matching with expected social welfare no less than cb ·
max{SW (Mpb), SW (Mpr2)}. Let A denote the allocation
output by our algorithm. Together we have

E[SW (A)]

≥cb · E[SW (Mpr1)] + cb ·max {E[SW (Mpb)],E[SW (Mpr2)]}

≥cb · E[SW (Mpr1)] +
cb
2
E[SW (Mpb) + SW (Mpr2)]

≥cb
2
E[SW (Mpr1) + SW (Mpb) + SW (Mpr2)]

≥cb
4
SW (Aopt).

The above results can also be generalized to the case where
the number of agents is not exactly 2n. Note that in this case,
we need to adjust the model to either allow that some room
contains less than 2 people (when the number of agents is
smaller than 2n), or that some agent is left unassigned (when
the number of agents is more than 2n).
Corollary 2. There is a constant competitive ratio algorithm
for online roommate market problem with n rooms and the
number of agents p = O(n).

The proof details are omitted due to space constraints.



3.3 Online Roommate Market Problem with
Unknown Number of Agents

Note that a prerequisite for Corollary 2 to hold is that the al-
gorithm must know the number of agents p beforehand. Per-
haps surprisingly, this also turns out to be a necessary require-
ment. In this section we show that if the number of agents p
is unknown to the algorithm, then no online algorithm that
can achieve constant competitive ratio for the online bipar-
tite matching problem as well as the online roommate market
problem.

Lemma 3. If the number of the agents is unknown in an
online bipartite matching problem, no online algorithm can
achieve a constant competitive ratio.

Due to space constraints, we only present a sketch of the
proof. Given any constant ε > 0, we prove the lemma by
constructing a class of bipartite graphs such that no algorithm
can achieve competitive ratio ε for all graphs.

We restrict ourself to the following type of bipartite graphs:
there exists only one vertex r∗ ∈ R that has nonzero valua-
tions for the online vertices, i.e., vir = 0 for all i ∈ L and
r 6= r∗ ∈ R. We can represent such a graph by a value
multiset {v1r∗ , v2r∗ , . . . , vnr∗}. Thus the decision that the al-
gorithm needs to make is to select upon arrival which vertex
in L to match to r∗, and the optimal offline solution is always
maxi vir∗ .

Next we construct graph sets B0, . . . , Bm for any value of
m, where each Bk is a class of bipartite graphs that satisfy
the following properties:

1. Every graph in Bk has the same number of online ver-
tices, denoted by bk, and their value multiset is sup-
ported on the set {1, L, L2, . . . , Lk}, where L is a large
enough constant (say at least 2

ε ). This implies that when
given a graph in Bk as the input, in order to guaran-
tee ε-competitive ratio, the algorithm needs to select an
optimal online vertex (i.e., vertex with value Lk) with
probability at least ε2 .

2. b0 = 1 and bk+1 > bk for all k ≥ 0. Given any graph
Gk+1 ∈ Bk+1 as the input, after seeing its bk random
vertices, with high probability the values seen coincide
with the value multiset of some graph in Bk. Therefore
the algorithm will not be able to distinguish whether this
input is from Gk+1 or from some graph in Bk.

The construction details are omitted. The technique is similar
to the construction of a particular exponentially distributed
probability distribution used in other contexts such as [Haji-
aghayi et al., 2007; Gharan and Vondrák, 2013].

From these properties we know that to be ε competitive on
any input graph Gm ∈ Bm, the algorithm must match some
vertex to r∗ in time steps [bm−1 + 1, bm] with probability
at least ε

2 . By an induction argument, we can show that the
algorithm must match some vertex to r∗ with probability at
least ε2 from each time step interval [bk + 1, . . . , bk+1] for all
0 ≤ k < m. However, when we set m > 2

ε , the sum of these
probabilities will be greater than 1, and the task becomes im-
possible because the algorithm can match at most one online
vertex to r∗.

Note that an algorithm for the online roommate mar-
ket problem with constant competitive ratio would imply a
constant competitive ratio algorithm for the online bipartite
matching problem. Thus Lemma 3 implies that the former
also cannot exist.

Corollary 4. If the number of the agents is unknown in an on-
line roommate market problem, there is no online algorithm
that can achieve a constant competitive ratio.

4 Generalized c-Bed Model
Our algorithm can also be generalized to the case where each
room can take more than 2 people. In a generalized online
roommate market problem, there are cn people and n rooms,
and we want to assign c people to every room, with the goal
of maximizing the social welfare

SW (A) =
∑

(i1,i2,...,ic,r)∈A

 ∑
1≤j<k≤c

hijik +

c∑
j=1

vijr


The other settings are the same as the standard roommate
market problem.

Similar to the original case, we divide the cn agents into c
blocks with n agents in every block. Then we apply ONLINE-
MATCHING c times, each time assign a block of n agents to
n rooms using an updated valuation matrix.

Algorithm 3 ONLINECBEDROOMMATE (n,H, V )

1: V ′ ← V
2: for g = 1, 2, . . . , c do
3: Run ONLINEMATCHING on the next n arriving

agents with valuation matrix V ′.
4: Let Mg be the returned matching.
5: for every agent i that is yet to arrive do
6: v′ir ← v′ir + hij + hji where (j, r) ∈Mg

7: return ∪Mg

Theorem 2. ONLINECBEDROOMMATE has competitive ra-
tio cb(c−1)

c3 for the generalized online roommate market prob-
lem, where cb = ln 5−0.8

5 ≈ 0.1618.

Proof. The proof is along similar lines of that for Theorem 1.
Let Aopt denote the optimal offline allocation with max-

imum social welfare. Let App denote the allocation of cn
agents into n rooms that with maximum total happiness value
between agents, and let Mpr denote the maximum bipartite
matching between cn agents and n rooms where each each
room is duplicated into c copies. Again it is easy to see that
SW (Aopt) ≤ SW (App) + SW (Mpr).

Note that for each room r, the c agents in this room will
have total happiness contributed by c(c−1)

2 pairs of relations.
Let Cr be the general graph matching with maximum total
happiness among the c agents allocated to room r in alloca-
tion App. We can show that SW (Arpp) ≤ c ·SW (Cr), where
Arpp is the sum of happiness of all agents in room r in alloca-
tion App. This is because each clique of c vertices can always



be covered by c matchings via the round-robin tournament
algorithm.

Now go back to the online random arrival order. We call
every n consecutively arriving vertices a block. The proba-
bility of any two vertices arrive in different blocks is cn−n

cn−1 .
Let M ij

pp represent the maximum weight bipartite matching
between agents in the ith block and jth block, and we can
assume c > 2. We can distribute all matching edges in each
Cr into someM ij

pp if the two vertices of the edge are in differ-
ent blocks, and every vertex will be involved in at most one
matching edge. Hence by linearity we have

∑
1≤i<j≤c

E[SW (M ij
pp)] ≥

cn− n
cn− 1

n∑
r=1

SW (Cr)

>
c− 1

c

n∑
r=1

SW (Cr)

Put everything together, we have

SW (App) =
n∑
r=1

SW (Arpp) ≤
n∑
r=1

c · SW (Cr)

≤
∑

1≤i<j≤c

c2

c− 1
· E[SW (M ij

pp)]

Next we look at Mpr. Let M1
pr be the matching induced

from Mpr such that each room connects with only one agent
who has the largest matching value. We have SW (Mpr) ≤
c · SW (M1

pr). Let Mir be the maximum weight matching
between agents in i-th block and one slot of each room. We
also have SW (M1

pr) ≤
∑c
i=1 SW (Mir). Combing these

two inequalities gives us

SW (Mpr) ≤ c
c∑
i=1

SW (Mir) <
c2

c− 1

c∑
i=1

SW (Mir).

Together with App, we have

SW (Aopt) ≤ SW (App) + SW (Mpr)

≤ c2

c− 1
· E

 ∑
1≤i<j≤c

SW (M ij
pp) +

c∑
i=1

SW (Mir)


Finally, let Mi be the maximum weight matching between

the agents in i-th block and aggregated agent-room combina-
tions according to the algorithm. We have

SW (Mi) ≥ max{SW (Mir), max
1≤j≤i−1

SW (M ij
pp)}.

Since there are at most c items in the max bracket, we have
c · SW (Mi) ≥ SW (Mir) +

∑i−1
j=1 SW (M ij

pp). Thus,

c2

c− 1
· E

[
c∑
i=1

c · SW (Mi)

]

≥ c2

c− 1
· E

 ∑
1≤i<j≤c

SW (M ij
pp) +

c∑
i=1

SW (Mir)


≥ SW (App) + SW (Mpr) ≥ SW (Aopt)

By Lemma 1, the algorithm computes M∗i which satisfies
E[SW (M∗i )] ≥ cb · SW (Mi). Therefore, we have

E

[
c∑
i=1

SW (M∗i )

]
≥ cb(c− 1)

c3
SW (Aopt).

This finishes the proof of this theorem.

4.1 Rooms with Different Capacities
The model can be further generalized to allow rooms to have
different capacities. Assume we have n agents and k rooms
with capacities ~c = (c1, c2, . . . , ck) such that

∑
i ci = n.

Algorithm 4 ONLINEGENCBEDROOMMATE (~c,H, V )

1: c← max{c1, . . . , ck}
2: V ′ ← V
3: for g = 1, 2, . . . , c do
4: Let ng be the number of available rooms.
5: Run ONLINEMATCHING on the next ng arriving

agents with valuation matrix V ′ (only rooms with open
capacities are used).

6: Let Mg be the returned matching.
7: for every agent i that is yet to arrive do
8: v′ir ← v′ir + hij + hji where (j, r) ∈Mg

9: for every room i with ci > 0 do
10: ci ← ci − 1

11: return ∪Mi

Corollary 5. ONLINEGENCBEDROOMMATE achieves con-
stant competitive ratio for the generalized online roommate
market problem where every room has constant capacity.

The proof is similar to that for Theorem 2 and is omitted.

5 Stability Results
In this section we discuss different stability conditions in the
online roommate market model.

We mainly focus on the stable notions introduced by Chan
et al. [2016]. Note that it is always more difficult to achieve
stability conditions in the online setting than in the offline
setting. Thus we will only discuss stability notions that guar-
antee to exist in the offline setting. These notions are the 4-
person stability and room stability. In addition, we will also
consider a new stable notion – weak room stability.

Our goal is to design online algorithms that can satisfy cer-
tain stability conditions together with strong social welfare
guarantees. Note that this is not always achievable for all
stability notions we mention above. Our results can be sum-
marized in the following table.

Stability type Achievable Social welfare
competitive ratio

4-person stable no -
Room stable yes unknown

Weakly room stable yes constant



5.1 4-Person Stable
Definition 1. [Chan et al., 2016] An allocation is 4-person
stable if for any agents i and agent j in two different rooms,
swapping them cannot make all 4 people in these two rooms
strictly increase their utility.

In the offline setting, [Chan et al., 2016] gave an algorithm
that can find a 4-person stable solution in O(n2) time. How-
ever, in the following we show that in the online setting, no
algorithm can always guarantee a 4-person stable solution.
Lemma 6. No algorithm can always find a 4-person stable
allocation in the online roommate market setting.

Proof. We prove this lemma by a simple example with 4
agents and 2 rooms. Assume every agent has valuation 0 for
every room. Hence we only need to consider the happiness
values between them. We also assume happiness values are
symmetric, i.e., hij = hji for every agent i and j. Consider
the following agents arrival sequence: let 1 and 2 be the first
and second arriving agents with h12 = 1. When agent 2 ar-
rives, any algorithm needs to make one of two choices:
• Assign agent 1 and 2 to the same room. In this case,

assume that the next two arriving agents 3 and 4 have
happiness values h13 = h24 = 100. All other unspec-
ified happiness values are 0. It is easy to check that
this already breaks the 4-person stable condition because
swapping 1 and 3 would make every agent better off.
• Assign agent 1 and 2 to different rooms. In this case,

assume that the next two arriving agents 3 and 4 have
h34 = 1 and all other happiness values are 0. Here mov-
ing agent 1 and 2 to the same room can improve the util-
ity of every agent.

Note that an online algorithm need to make an assignment
decision at each moment some agent arrives. This means re-
gardless of what this algorithm does, there always exists a
problem instance and a particular agents arriving, such that
the algorithm does not output a 4-person stable solution.

5.2 Room Stability and Weak Room Stability
Recall the definition of room stability as follows.
Definition 2. An allocation is room stable if for any two
agents i, i′ in room ri and two agents j, j′ in another room
rj , switching their rooms cannot increase the sum of the two
roommates’ utilities for both rooms.

When discussing this condition, the happiness value be-
tween roommates can be ignored because the roommate re-
lation will not be changed. It turns out that this room stable
condition can be satisfied by an online algorithm.
Lemma 7. There is an online algorithm that always gives a
room stable allocation.

Proof. The simple serial dictatorship algorithm works as fol-
lowing: For every arriving agent, assign this agent to his/her
most preferred room.

Now we show that the simple dictatorship algorithm that
assigns every arriving agent her most preferred available
room can produce a room stable allocation. Fixing any two
rooms r1 and r2, let A,B,C,D denote the 4 agents assigned

to these two rooms by this algorithm. Suppose the arriving
order among them is A,B,C,D. If A and B both choose the
same room, then they would not want to move to the other
room. If A and B choose different rooms, without loss of
generality, assume A chooses room r1 and B chooses room
r2. If C chooses room r1, then A and C both prefer room r1
to r2; If C chooses r2, both B and C prefer room r2 to r1. In
either case, there is a room in which the two tenants do not
want to switch.

We comment that the above dictatorship algorithm, while
always preserving the room stability, does not have any com-
petitive ratio guarantees on social welfare. It remains an
open question to design an algorithm that can achieve both
room stability and constant competitive ratio on social wel-
fare. However, as we will show below, if we are willing to
weaken the room stablility condition, such goal indeed be-
comes achievable.
Definition 3. An allocation is weakly room stable if for
any two agents i, i′ in room ri and two agents j, j′ in an-
other room rj , switching their rooms cannot increase all four
agents’ utilities.
Theorem 3. There is an online algorithm that can always
produce a weakly room stable allocation with competitive ra-
tio cb/8 on social welfare, where cb = ln 5−0.8

5 ≈ 0.1618.

Proof. Recall in the proof of Theorem 1, we showed
2E[SW (Mpr1) + SW (Mpb) + SW (Mpr2)] ≥ SW (Aopt).

Note that we also have E[SW (Mpr1)] = E[SW (Mpr2)].
This means we can ignore one of these two terms and still
get a constant competitive ratio solution. Thus we modify al-
gorithm ONLINEROOMMATE as follows: for each of the first
n arriving agents, we just choose the best empty room avail-
able to her. For the next n agent we still follow algorithm
ONLINEMATCHING. After this change, our new algorithm
will have competitive ratio cb/8. In addition, the output so-
lution also satisfies weak room stability. This is because if
we want to swap room ri and rj , and first slot of ri is assign
before rj . Then the agent who is assigned to ri will not want
to switch because she (weakly) prefers room ri to rj . Thus
the output allocation is always weakly room stable.

6 Conclusion
This paper studies an online version of the roommate problem
with stochastic arrivals, proposes a constant-factor competi-
tive algorithm, and generalizes the results to the case of dif-
ferent number of agents per room. It also shows both positive
and negative results in satisfying different stability conditions
in this online setting. This model aims to capture a general
online resource allocation scenario in which a resource can
be assigned to multiple agents, and agents sharing the same
resource exhibit positive externalities. That is, the valuation
of an agent to a resource also depends on the identity of other
agents who are assigned to the same resource.

The framework leaves a number of future working direc-
tions. For example, it remains open how close to optimal the
provided algorithms are. It is also worth taking strategic be-
havior into consideration and study truthful mechanisms in
the online roommate problem setting.
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David F Manlove. The exchange-stable marriage problem.
Discrete Applied Mathematics, 152(1):109–122, 2005.

[Chan et al., 2016] Pak Hay Chan, Xin Huang, Zhengyang
Liu, Chihao Zhang, and Shengyu Zhang. Assignment and
pricing in roommate market. In Thirtieth AAAI Conference
on Artificial Intelligence, pages 446–452, 2016.

[Dimitrov and Plaxton, 2008] Nedialko B Dimitrov and
C Greg Plaxton. Competitive weighted matching in
transversal matroids. In International Colloquium on Au-
tomata, Languages, and Programming, pages 397–408.
Springer, 2008.

[Eriksson et al., 2006] Kimmo Eriksson, Jonas Sjöstrand,
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