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Abstract

We investigate the problem of revenue maximization in
single-item auction within the new correlation-robust
framework proposed by Carroll [2017] and further de-
veloped by Gravin and Lu [2018]. In this framework
the auctioneer is assumed to have only partial informa-
tion about marginal distributions, but does not know
the dependency structure of the joint distribution. The
auctioneer’s revenue is evaluated in the worst-case over
the uncertainty of possible joint distribution.

For the problem of optimal auction design in the
correlation robust-framework we observe that in most
cases the optimal auction does not admit a simple
form like the celebrated Myerson’s auction for indepen-
dent valuations. We analyze and compare performances
of several DSIC mechanisms used in practice. Our
main set of results concern the sequential posted-price
mechanism (SPM). We show that SPM achieves a con-
stant (4.78) approximation to the optimal correlation-
robust mechanism. We also show that in the symmet-
ric (anonymous) case when all bidders have the same
marginal distribution, (i) SPM has almost matching
worst-correlation revenue as any second price auction
with common reserve price, and (ii) when the number
of bidders is large, SPM converges to optimum. In ad-
dition, we extend some results on approximation and
computational tractability for lookahead auctions to the
correlation-robust framework.

1 Introduction

The monopolist’s theory of Bayesian revenue maximiza-
tion for single-item auction is one of the most well stud-
ied topics in mechanism design literature. The central
result in this field is by Myerson [30] that gives the opti-
mal auction for the case when the buyers’ private values
are drawn according to independent prior distributions
which are known to the auctioneer. As Myerson pointed
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out, the independence is a strong assumption that is cru-
cial for the optimality of his auction and which does not
hold in many scenarios. Naturally, the general problem
where the joint prior distribution of bidders valuations
may be correlated has attracted significant amount of
attention in economics (for a survey see [27]). A no-
table result from this literature is [20] by Crémer and
McLean who showed that the auctioneer can extract full
social surplus if the joint prior distribution satisfies cer-
tain mild conditions1. This result implies that for those
sufficiently generic joint distributions the auctioneer can
always allocate the item to the highest value bidder and
at the same time make the expected utility of each bid-
der to be zero by collecting winner’s value for the good
as a payment. This result does not seem to be applica-
ble in any practical setting and, therefore, “casts doubt
on the value of the current mechanism design paradigm”
according to [29].

Another practical issue concerning the general
Bayesian problem with any (correlated) prior distribu-
tion was articulated in [25] for a related but different
context of the multi-product monopoly problem with a
single buyer. Namely, the corresponding learning prob-
lem of a multi-dimensional prior distribution has expo-
nential in the dimension (i.e., in the number of goods)
representation and sampling complexity. We note that
the same issue is pertinent to the Bayesian single-item
auction with general multi-dimensional prior distribu-
tion of buyers’ private values. In other words, if anyone
decides to obtain an accurate statistical estimate of the
joint distribution of buyers’ values they would need to
observe unrealistically many examples of the joint value
profiles. Furthermore, if the seller and the buyers do
not have publicly available and statistically accurate es-
timate of the joint prior, then they will need to agree
on the common Bayesian prior, each party having much
uncertainty about this distribution. The standard ap-
proach in theoretical economics to model such uncer-
tainty is via extremely expressive and rich type spaces
of [26]. This route is subject to the criticism from [8],
who state that “very large type spaces would be needed

1It was later shown in [18] that full surplus extraction is

possible for generic prior in a certain topological space defined
on the set of prior distributions.
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and applied work remains highly sensitive to sometimes
unexamined modeling choices about types; nowhere is
this more true than in mechanism design”.

The robustness analysis of the single-item auction
is the topic of our paper. To this end we employ
a new correlation-robust framework of [13] originally
proposed for the monopoly problem with multiple goods
and a single buyer, but which could be easily and
naturally adapted to Bayesian multiple bidder scenario
with possible correlation among the bidders’ types as
was mentioned in [25]. In this framework the valuation
profile v = (v1, . . . , vn) is drawn from a joint general
(correlated) distribution J of bidder’s values, which is
not completely known to the auctioneer. It is assumed
that the seller knows the marginal distributions of J
for the private values vi ∼ Fi of every individual
bidder i, but neither the seller nor the bidders have any
knowledge about possible correlation across different
bidders. Any single-item auction is evaluated according
to the auctioneer’s expected profit derived in the worst-
case, over all possible joint distributions consistent
with the given set of individual distributions Fi of
each separate bidder i ∈ [n]. This evaluation gives
the seller a robust guarantee on the expected profit
of his auction which holds for any distribution with
possible dependencies across different bidders. The
seller seeks a truthful auction, i.e., dominant strategy
incentive compatible (DSIC) and ex-post individually
rational (IR)2. On the other hand, because of the
von Neumann minimax theorem, there exists a prior
distribution for which the latter guarantee is tight
even in the standard Bayesian framework where the
auctioneer besides marginal distributions is given the
specific joint prior.

Interestingly, the correlation-robust framework was
first used in [13, 25] as a tractable mathematical
framework to study the unwieldy and difficult multi-
dimensional monopoly problem with a single buyer. On
the other hand, in this setting it is often possible for the
seller to acquire more information about dependencies,
say, between different pairs or even triplets of items by
doing more extensive market research. However, in the
scenarios with multiple buyers these pair-wise depen-
dencies might be quite hard to observe and learn. For
example, a particular pair of buyers could have never

2Truthfulness is a standard assumption usually adopted in
the computer science literature. In economics a more popular
assumption for multi-agent environment is a weaker Bayesian

incentive compatibility (BIC) and interim IR. We note that BIC
and interim IR assumptions are not well compatible with the
correlation-robust framework. Indeed, the prior joint distribution

J is not explicitly given. It is hard to model and even harder to
predict how the bidders would behave under such uncertainty.

participated in the same auction together, or the auc-
tioned item is of the type that is usually sold directly
via one-to-one negotiations or by price posting. An-
other common scenario where the auctioneer may only
know the marginal distribution for each buyer is the one
where identities of the participating bidders cannot be
observed. In this case it is reasonable to assume that
each buyer has identical prior distribution, which can
be deduced from an empirical study of a small random
subgroup of the buyers’ population.

The correlation-robust framework allows one to
directly compare the practical results in Myerson’s
setting 3. One can view both scenarios as a problem
where the auctioneer only knows prior distribution of
each individual bidder. The difference is that in our
case we assume that the buyers’ valuations can be
correlated and take the worst-case approach while in
Myerson’s setting the seller simply assumes that buyers’
valuations are independent, i.e., speaking in computer
science terms, does the average case analysis.

1.1 Our Results. Our first group of results con-
cerns the design of optimal correlation-robust auctions,
which, turn out to be not as simple as the Myerson’s
auction. In Appendix B we give a few simple numeri-
cal examples with an intricate structure of the optimal
auction. Next, we turn to the design of approximately
optimal, but much simpler and more practical auctions.
To this end, we look at a number of single-item DSIC
auctions used in practice in the correlated-robust frame-
work. We show that among them a sequential posted-
price mechanism (SPM) can always provide strong
correlation-robust revenue guarantees. Our main result
is a construction of SPM which is 4.78-approximation
to the optimal revenue in this correlation-robust frame-
work. In the anonymous case when all buyers share the
same marginal distribution, we show that (1) when the
number of bidders exceeds the number of types in the
support of the marginal prior distribution, SPM is the
optimal correlation-robust auction. In other words, as
the number n of bidders grows the SPM’s revenue ap-
proaches optimal correlation-robust revenue. We also
show for the anonymous case that (2) SPM extracts at
least n−1

n -fraction of the revenue of the best second price
auction with common reserve price.

Our second group of the results is closely related to
the computer science literature on lookahead auctions
initiated by Ronen [32]. The practical restriction in the

3Here, by saying practical we refer to the comparison between
Myerson’s setting to the general (correlated) case. Of course, one
may argue that even Myerson’s optimal auction is not practical,

but in certain important special cases its theoretical solution is
close to what is observed in practice.
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family of lookahead auctions is that only the highest
bidder can get the item. We note that this restriction
can be quite handy for the designer as together with
truthfulness it guarantees that the outcome is envy-free.
On the other hand, it is quite easy to optimize within
this class of auctions, because the problem reduces to
a single-dimensional pricing problem for the highest
bidder. It is also known that the revenue of the optimal
lookahead auction is at least half of the revenue of
the optimal auction. We note, however, that all the
previous results assume perfect knowledge of the prior
distribution of buyer types. In this paper, we study the
worst-correlation performance of lookahead auctions. It
is easy to show that the optimal lookahead auction
remains 2-approximation to the optimal revenue in the
correlation-robust framework. However, it is not that
easy to compute one without the access to the joint
prior distribution. We solve this computational question
in the anonymous case. Specifically, we identify the
structure of the corresponding worst-case distribution,
which allows us to find a polynomial time algorithm
that computes the optimal correlation-robust lookahead
auction.

1.2 Related work Most of the work on Bayesian
single-item auction for general (correlated) prior dis-
tribution concerns the optimal auction design with re-
spect to a given prior. It was shown in [20] that full
social surplus can be extracted if the joint prior distri-
bution is generic in a certain sense. Their result was
extended in [29] to continuous type spaces, and by [18]
to generic prior distributions in a properly defined topo-
logical space over the set of all prior distributions. From
a computational perspective, it was shown in [31] that
computing the optimal mechanism under ex-post indi-
vidual rationality constraint is NP-hard. On the other
hand, for randomized mechanisms [21] showed that op-
timum can be computed in time polynomial in the size
of the distribution’s support.

Another line of work is concerned with the design of
simple and approximately optimal auctions. In partic-
ular, the lookahead auctions introduced by Ronen [32]
admits both computational efficiency and good approx-
imation to the optimal revenue: it is a 2-approximation
to the optimal mechanism. Ronen also introduced the
generalized k-lookahead auction, which allows allocat-
ing the item to one of the k highest bidders. Later, [21]
showed that the best k-lookahead auction has 2k−1

3k−1 -
approximation and can be computed efficiently in the
oracle access model defined in [33]. [17] further im-

proved the ratio to e1−1/k

e1−1/k+1
, which was recently proved

to be asymptotically tight in [22]. The family of se-
quential posted-price mechanisms is proved to achieve

a e/(e − 1) approximation in the independent multi-
dimensional setting by Chawla et al. [15, 16]. Later,
Yan [34] generalized the results to matroid environ-
ments.

When the correlated prior distribution is unknown
and needs to be learned, computational and sampling
complexity concerns have been raised in several pa-
pers [1, 28, 25]. In contrast to the case of independent
prior, much less is known about learning problem of a
correlated prior or designing a mechanism from given
samples. Fu et al. [23] proved that the optimal mech-
anism can be efficiently learned when there is a finite
set of distributions from which the true distribution is
drawn. However, there is a fundamental distinction be-
tween infinite sets of distributions and finite sets, and
their results do not extend to the general value distri-
butions [3].

Our work follows a trend in economics literature
on robust mechanism design [5], where the goal is to
provide performance guarantees even when there is un-
certainty in the distribution over bidders’ valuations. A
number of works in different settings employ a similar to
our correlation-robust approach of searching solution to
a parametrized optimization problem in the worst-case
over the space of parameters, e.g., [12, 14, 9, 19, 24].
In particular, [4] and [11] study the setting of single-
item auction. As in the standard Bayesian framework
the bidders’ values for the item are drawn from a com-
monly known prior, however bidders there may have
arbitrary information (certain high-order beliefs) about
the prior distribution unknown to the seller. Auction’s
performance is measured according to the lowest ex-
pected revenue across a class of incomplete information
correlated equilibria termed Bayes correlated equilibria
(BCE) in [6, 7]. In our work we completely ignore the
believes of the buyers by focusing on the DSIC mecha-
nisms. The authors in [4] also admit that allowing for
model uncertainty only for the seller but not for the
buyers is a valid concern, and “the possibility that the
buyers face model uncertainty is eminently worthy of
study”. When one cannot say much about buyers’ be-
liefs, BCE or BIC cannot be applied anymore, and our
approach with DSIC and ex-post IR requirement seems
to be more appropriate.

In AI community [2] also studied mechanisms that
are robust to uncertainty in the distribution, assuming
that the space of distributions has polynomial number
of dimensions. In contrast, the dimension of the space
of distributions in our correlation-robust framework is
exponential in the number of buyers.
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2 Preliminaries

We consider a single-round auction where one item is
being sold to n bidders. Each bidder i ∈ [n] has
a privately known value vi for the item and submits
a sealed bid bi to the auctioneer. Upon receiving
submitted bids b = (b1, . . . , bn) from all bidders, the
auctioneer decides which bidder i (if any) receives the
item and the amount bidder i pays pi(b). Bidder i utility
is the difference between her value vi and her payment
pi(b) if she gets the item; otherwise, she pays 0 and
gets utility of 0. More generally, e.g., for a randomized
mechanism, we write allocation probabilities for the
bidders as x(b) = (x1(b), . . . , xn(b)). In general,
throughout the paper we use the convention to denote
vectors, or any multidimensional objects, with bold face
script. The only exception will be the set of price
function {pi(b)}ni=1 that we simply denote by p.

The type v is drawn from a joint distribution J,
which is not completely known to the auctioneer and
which may admit correlation between different com-
ponents vi and vj of v. The auctioneer only knows
marginal distributions Fi of J for each separate com-
ponent i but does not know how these components are
correlated with each other. We assume that every dis-
tribution Fi has finite support4 Vi. We use fi to denote
the probability density function of the distribution Fi.
For notational convenience we also use Fi to denote the
respective cumulative density function. The joint sup-
port of all Fi is V = ×ni=1Vi. We use Π to denote all
possible distributions π supported on V that are consis-
tent with the marginal distributions F1, F2, · · · , Fn, i.e.,
Π =

{
π
∣∣ ∑

v-i
π(vi,v-i) = fi(vi), ∀i ∈ [n], vi ∈ Vi

}
.

Since we want to study the worst-case performance of
a mechanism over this uncertainty, we measure perfor-
mance of a mechanism in the worst-case over π ∈ Π.

(2.1) min
π∈Π

∑
v

π(v) ·
n∑
i=1

pi(v).

Note that (2.1) is a linear program, since Π is given
by a set of linear inequalities. We also write the

4Similar to [13, 25] all our non computational and some

computational results extend to the distributions with continuous
types and bounded support.

corresponding dual problem.

min
∑
v

π(v) ·
n∑
i=1

pi(v)(2.2)

s. t.
∑
v-i

π(vi,v-i) = fi(vi) dual var. λi(vi)

π(v) ≥ 0

max

n∑
i=1

∑
vi

fi(vi) · λi(vi)(2.3)

s. t.

n∑
i=1

λi(vi) ≤
n∑
i=1

pi(v) ∀v

λi(vi) ∈ R

The (2.2) LP can be simplified if we consider identical
distributions (Fi = F for all i ∈ [n]) and when mech-
anisms are symmetric, i.e., mechanisms are invariant
under permutation of bidder identities. Indeed, we can
take the optimal solution π∗ to the primal LP and av-
erage it out over all permutations of bidders (note that
every permutation of bidders again yields an optimal so-
lution to the primal LP). The simplified dual LP looks
as follows.

max n ·
∑
v

f(v) · λ(v)

s. t.

n∑
i=1

λ(vi) ≤
n∑
i=1

pi(v) ∀v = (v1, · · · , vn) ∈ V n

λ(v) ∈ R ∀v ∈ V

The seller’s problem. Besides evaluating the
performance of a given mechanism (x, p), the seller’s
goal is to find a mechanism with the maximal worst-
correlation revenue for a given set of marginal distri-
butions {Fi}ni=1. Formally, we want to find a truthful
mechanism (x∗, p∗) such that

(2.4) (x∗, p∗) ∈ argmax
(x,p)

min
π(x,p)
π∈Π

∑
v∈V

π(v)

n∑
i=1

pi(v).

We consider only truthful mechanisms (x, p) that
are dominant strategy incentive compatible (IC) and
ex-post individually rational (IR). Formally, for all i,
type v, and vi

′, (x, p) satisfies:

xi(v) · vi − pi(v) ≥ xi(vi′,v-i) · vi − pi(vi′,v-i)(IC)

xi(v) · vi − pi(v) ≥ 0(IR)

For problem (2.4) we can write an LP formulation
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based on the dual of LP (2.2).

max

n∑
i=1

∑
vi

fi(vi) · λi(vi)

(2.5)

s. t.

n∑
i=1

λi(vi) ≤
n∑
i=1

pi(v) ∀v ∈ V

λi(vi) ∈ R
(x(v), {pi(v)}i∈[n]) : (IC), (IR)

Robust Analysis of specific Auctions. The
correlation-robust framework can be used to evaluate
any specific auction in the worst-correlation metric.
This metric serves as another dimension along which
one can compare different auction formats. We note
however, that it is not a trivial computational task
to evaluate worst-case revenue of a given mechanism
over all distributions π ∈ Π. However, for most of
the truthful mechanisms employed in practice we can
compute in polynomial time worst-correlation revenue
(see Appendix A for details): sequential posted price
mechanisms, second price auction with arbitrary set of
reserves, and Myerson’s optimal auction. Our result
for sequential posted price mechanism continue to hold
even when one can randomize between different set of
prices.

Optimal Auctions: Examples. For any set of
marginal distributions {Fi}i∈[n], we can calculate (in
theory) the optimal mechanism in the correlation-robust
framework by solving the LP (2.5). In practice, we can
solve for optimal correlation-robust auctions for the in-
stances with a constant number of bidders and prior
marginal distributions with reasonably small support
sizes. In Appendix B, we illustrate with a few numerical
examples how optimal correlation-robust auctions may
look like. From these examples, it seems hard to find
a reasonable description of such mechanisms other than
expressing it in the explicit form. These examples do
not completely rule out the possibility of a reasonably
simple description for the optimal solution, but they
were enough to refute all our conjectures about opti-
mality of already known simple formats for single-item
auction. We believe a better understanding of these
examples could shed light on the problem of optimal
correlation-robust mechanism design.

3 Sequential Posted-Price Auctions

In this section, we study the class of sequential
posted price mechanisms (SPM). First, we construct
an SPM which is a 4.78-approximation to the opti-
mal correlation-robust mechanism over any distribution
π ∈ Π. Next we focus on the anonymous setting where

buyers share an identical marginal distribution. We give
an SPM that achieves optimal worst-case revenue when
the number of bidders n is large enough; we also com-
pare SPM with the second price auctions with anony-
mous reserve price: for any such second price auction
we construct an SPM which is n−1

n -approximation to
the worst-case revenue of this auction.

Sequential Posted Price Mechanism. A se-
quential posted price mechanism (SPM) M can be pa-
rameterized by an ordering over the buyers σ, and a
vector of prices p. Given a set of marginal distributions
{Fi}ni=1, the mechanism is implemented by sequentially
proposing price pσ(i) to buyer σ(i) for i = 1, 2, . . . , n,
and selling the item to the first buyer who accepts his
price.

We will sometimes represent the price offered to a
buyer in the quantile space with respect to that buyer’s
distribution. More specifically, given price pi offered to
buyer i, let its distribution quantile be qi = 1− Fi(pi),
i.e., qi is the probability that buyer i accepts price
pi. When the function Fi is continuous and strictly
monotone, the mapping 1−Fi : supp(Fi)→ [0, 1] is one-
to-one. Hence, we can parametrize each distribution
Fi in the quantile space as a mapping Vi : [0, 1] →
supp(Fi)

5 with Vi(q) = F−1
i (1−q). The use of quantiles

is convenient in several places in this section. We
slightly abuse the notations and denote the mechanism
as both M = (σ,p) and M = (σ,q) interchangeably,
where q = (q1, . . . , qn).

3.1 Worst-Case Revenue Guarantee We first ar-
gue that the worst-case distribution for any SPM that
posts non-increasing sequence of prices is always the
distribution π∗ with the maximum positive correla-
tion6. To construct π∗ one randomly draws a quantile
q ∼ U [0, 1] and takes vi = Vi(q) for all i ∈ [n]. Thus

π∗
def
= {(V1(q), · · · , Vn(q))|q ∼ U [0, 1]}.

Lemma 3.1. For any sequential posted price mecha-
nism M that posts non-increasing sequence of prices,
minπ∈Π Rev(M, π) = Rev(M, π∗).

Proof. We first calculate the revenue extracted by M
for distribution π∗. Observe that buyer i takes the item
and pays pi if and only if vi ≥ pi and vj < pj for

5In general case, when Fi is not a continuous distribution, we

let Vi(q)
def
= inf{v | Fi(v) ≥ 1− q}.

6From a revenue maximization point of view, the assumption
that an SPM always posts non-increasing sequence of prices is

without loss of generality. Because otherwise one can always re-

order the prices in non-increasing order and this can only improve
the revenue.
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all j < i, which happens with probability maxj≤i(1 −
Fj(pj))−maxj≤i−1(1− Fj(pj)). Therefore,

Rev(M, π∗)

=

n∑
i=1

(
max
j≤i

(1− Fj(pj))− max
j≤i−1

(1− Fj(pj))
)
· pi.

On the other hand, the probability that the item is
sold in the first i rounds for any distribution π ∈ Π
is Pr[∃j ≤ i, vj ≥ pj ] ≥ maxj≤i(1 − Fj(pj)). Since the
sequence of pi is non-increasing, the latter probability
bound also means that the item is sold at a price equal
to, or greater than pi. This gives us a lower bound on
the expected revenue ofM, which matches the revenue
Rev(M, π∗) of M on π∗. Indeed,

Rev(M, π) =

n∑
i=1

pi ·
(

Pr [∃j ≤ i, vj ≥ pj ]

−Pr [∃j ≤ i− 1, vj ≥ pj ]
)

=

n∑
i=1

(pi − pi+1) ·Pr [∃j ≤ i, vj ≥ pj ]

≥
n∑
i=1

(pi − pi+1) ·max
j≤i

(1− Fj(pj))

=

n∑
i=1

(
max
j≤i

(1− Fj(pj))

− max
j≤i−1

(1− Fj(pj))
)
· pi

= Rev(M, π∗),(3.6)

where pn+1 = 0.

This characterization of the worst-case distribution
provides a simple and convenient way to analyze the
worst-case revenue of an SPM. For example, given a
set of marginal distributions {Fi}ni=1, we can assume
without loss of generality that any Pareto-optimal SPM
M = (σ,q) has qσ(i) < qσ(i+1) for every 1 ≤ i < n. This
is because if there exists i < j such that qσ(i) > qσ(j),
then when the type v is drawn from distribution π∗,
the item will never be sold to buyer σ(j). In this case
one might as well put buyer σ(j) to the very end of the
queue and set qσ(j) = 1 as it will never hurt the revenue.
Furthermore, when the offers are in the increasing order
of quantiles, the worst-case revenue of an SPM M is
simply

Rev(M, π∗) =

n∑
i=1

(qσ(i) − qσ(i−1))pσ(i).

Next we focus on a specific class of sequential
posted price mechanisms, where the quantiles proposed
to different buyers are all “spread-out”, in the sense that
any two quantiles are at least factor of 2 apart from each
other.

Definition 3.1. Spread-out SPM is a sequential posted
pricing MS = (σ,q) such that for any two i 6= j either
qi ≥ 2qj, or qj ≥ 2qi.

A good feature of SPM with spread-out quantiles is that,
as the following lemma shows, the worst-case revenue of
an SPMM = (σ,p) with spread-out quantiles is within
a constant factor of the revenue of the n independent
sales in which the seller has n copies of the items and
independently offers one to each buyer i at price pi.
This allows us to approximate the revenue of M as the
sum of individual revenues from price posting and to
simplify the comparison with the worst-case revenue of
the optimal mechanism.

Lemma 3.2. Given a set of marginal distributions
{Fi}ni=1, if an SPM MS = (σ,q) satisfies 2qσ(i) ≤
qσ(i+1) for every i ∈ [n − 1], then for any π ∈ Π,

Rev(MS , π) ≥ 1
2

∑
i qipi.

Proof. By Lemma 3.1, it suffices to show that
Rev(MS , π∗) ≥ 1

2

∑
i qipi. We have

Rev(MS , π∗) =

n∑
i=1

(qσ(i) − qσ(i−1))pσ(i)

≥
n∑
i=1

(qσ(i) − qσ(i)/2)pσ(i)

=
1

2

n∑
i=1

qσ(i)pσ(i) =
1

2

n∑
i=1

qipi.

Now we are ready to prove that SPM is a con-
stant approximation to the mechanism with the optimal
worst-case revenue. Given the marginal distributions
{Fi}ni=1, we already know the worst-case joint distri-
bution for an SPM is π∗, the one with the maximum
positive correlation. Our plan is to construct a specific
joint distribution π̂ ∈ Π, as well as a revenue upper
bound U , such that

• U is an upper bound on the revenue of any IC and
IR mechanism on distribution π̂.

• Find a spread-out SPM MS such that
Rev(MS , π∗) = Ω(U).

We construct a spread-out SPM MS in the follow-
ing iterative algorithm AlgSequence (see below). In
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Algorithm 1 AlgSequence

1: Offered← ∅ . Set of buyers who has been offered a
price

2: Qfree[0]← [0, 1] . Initially available quantiles for
spread-out pricing

3: for k = 1 to n do
4: Pick (i, qi) ∈ argmax(i,qi){qi · Vi(qi)|i /∈ Offered,
qi ∈ Qfree[k − 1].}.

5: σ(k)← i; Offered← Offered ∪ {i} . Offer
price Vi(qi) to i

6: Ii
def
= Qfree[k − 1] ∩ [ qi2 , 2qi] . Reserve quantile

interval around qi

7: Qfree[k]
def
= Qfree[k − 1] \ Ii . Update available

quantiles for spread-out pricing
8: end for
9: return (σ,q = (q1, . . . , qn))

the output of AlgSequence, the order σ and quan-
tiles q define the specific SPM. We note that in Al-
gSequence the sets Qfree[0] ⊃ Qfree[1] ⊃ . . . ⊃ Qfree[n].
On the other hand, each Ii is indeed an interval, since
none of the intervals [

qj
2 , 2qj ] is contained in any other

such interval. Also, by construction intervals Ii for all
i ∈ [n] are disjoint.

Construction of distribution π̂. The distribu-
tion π̂ is closely connected to the description of the
algorithm AlgSequence. To construct π̂ we define

Rσ(k)
def
= Qfree[k] for all k ∈ [n − 1]. For nota-

tional convenience, we redefine the last interval Iσ(n)
def
=

Qfree[n − 1] by including all uncovered quantiles in
[0, 1] \

(
Iσ(1) ∪ . . . ∪ Iσ(n−1)

)
and also define the last

Rσ(n)
def
= Qfree[n − 1]. Hence, the collection of sets

I = {I1, . . . , In} becomes a partition of [0, 1]. By con-
struction we have Rσ(k) ∩ Iσ(j) = ∅ for all j ≤ k < n
and Iσ(1)∪ . . .∪ Iσ(k)∪Rσ(k) = [0, 1] for all k ∈ [n]. The
partition I of the quantile space [0, 1] and R are used
to generate the distribution π̂.

Construction of distribution π̂.

1: Draw a quantile q ∼ U [0, 1]. Find k such that
q ∈ Iσ(k).

2: for i = σ(1) . . . σ(k − 1) do
3: Independently draw qi ∼ U [Ri] and let vi =
Vi(qi).

4: end for
5: for i = σ(k) . . . σ(n) do
6: Let vi ← Vi(q).
7: end for
8: return (v1, . . . , vn)

Figure 1 illustrates the structure of distribution
π̂. It is easy to check that π̂ is consistent with the
marginal distributions {Fi}ni=1. Indeed, for each given
i = σ(k), if the quantile q was drawn from the set
Iσ(j) with j ≤ k then vi = Vi(q). If q was drawn
from Iσ(j) with j > k, then q was drawn from U [Ri],
since Ri = Rσ(k) = ∪j>kIσ(j). The latter means that
vi = Vi(qi) where qi is sampled from U [Ri] has exactly
the same distribution as Vi(q). Hence, the marginal
distribution of vi is Vi(q) for q ∼ U [0, 1], i.e., vi ∼ Fi.

The next lemma sets up the upper bound U for the
revenue of any mechanism on distribution π̂.

Lemma 3.3.

max
M

Rev(M, π̂) ≤ U def
=

n−1∑
k=1

∫
Iσ(k)

max
j≥k
{Vσ(j)(q)}dq +

n∑
i=1

max
q∈Ri
{q · Vi(q)}.

Proof. Let M be the optimal mechanism for distribu-
tion π̂. Fix quantile parameter q ∈ [0, 1] which is used
in π̂ to generate v. Suppose q ∈ Iσ(k) and i = σ(k). We
consider the following two scenarios based on the buyers
who contribute to the revenue of M.

1. When k 6= n, and the payment comes from the buy-
ers in {σ(k), . . . , σ(n)}. In this case, the payment is
upper bounded by maxj≥k{vσ(j)}, since it cannot
exceed the valuation of the winning agent. When
we integrate this over q ranging from 0 to 1, we get
the term

∑n−1
k=1

∫
Iσ(k)

maxj≥k{Vσ(j)(q)}dq in RHS.7

2. Contribution to the revenue from agents
{σ(1), . . . , σ(k − 1)}, or when k = n payment
of agent j = σ(n). In this case, we allow M to
observe the set Iσ(k) from which quantile q was
drawn.

If k < n, then we do not need to think about
agents {σ(k), . . . , σ(n)}, since the payments from
these buyers are accounted for in the previous case.
On the other hand, according to the construction
of π̂ the values of agents {σ(1), . . . , σ(k − 1)}
are drawn independently from each other (each
qσ(j) ∼ U [Rσ(j)] for j ∈ [k − 1]). Similarly, if
k = n, the values of agents {σ(1), . . . , σ(n − 1)}
are drawn independently from each other and also
independently from the initial quantile q ∈ Iσ(n)

7Note that this upper bound could be achieved in theory by

M. Because when q ∈ Iσ(k) is selected, the valuations of buyers
σ(k), . . . , σ(n) are perfectly correlated. An optimal mechanism
will use other bids to infer the quantile parameter q and hence

the value vi = Vi(q). Therefore, it will extract the full social
surplus of buyer i.
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Iσ(n) = Rσ(n)· · · · · ·

... ...

q

Figure 1: structure of distribution π̂: after q ∼ U [0, 1] is drawn, the quantiles of buyers in Iσ(k) region all equal q,
i.e. qi = q for i = σ(k)...σ(n); the quantiles of the remaining buyers are drawn independently from their respective
R region, i.e. qi ∼ U [Ri] for i = σ(1)...σ(k − 1).

(vσ(n) = Vσ(n)(q), where q ∼ U [Iσ(n)]). Either
way, the values of the agents {σ(1), . . . , σ(k − 1)}
are drawn from independent distributions. In this
situation the Myerson’s auction gives the optimal
revenue. Instead we allow the auctioneer to sell
n items. Then the best mechanism is to sell
items separately by posting the best individual
prices. This gives an upper bound on the revenue
of Myerson’s auction. We integrate this bound over
all quantiles q ∈ [0, 1] and get an upper bound of
maxqi∈Ri{qi ·Vi(qi)} on the revenue extracted from
each agent i ∈ [n] (in fact, the bound is slightly
better, because the probability that i accepts price
Vi(qi), where qi ∈ Ri is smaller than or equal to qi).
Summing over all agents i ∈ [n] we get the second
term

∑n
i=1 maxqi∈Ri{qi · Vi(qi)} in RHS.

We conclude the proof by adding these two upper
bounds together.

Now we show that the output of algorithm AlgSe-
quence the spread-out SPMMS = (σ,q) has expected
revenue that approximates U for its worst-case distrib-
tuion π∗. The upper bound in Lemma 3.3 consists of two
terms. In the following (Lemma 3.4 and Lemma 3.5),
we relate Rev(MS , π∗) to each of them separately.

Lemma 3.4.

2 ln(4) · Rev(MS , π∗) ≥
n−1∑
k=1

∫
Iσ(k)

max
j≥k
{Vσ(j)(q)}dq.

Proof. We treat Ii separately for each i = σ(k), where
k ∈ [n − 1]. To simplify notations let us define the

function g(q)
def
= maxj≥k{Vσ(j)(q)}. By the selection

rule of qi and i in AlgSequence we have q · g(q) =
q · maxj≥k{Vσ(j)(q)} ≤ qi · Vi(qi) for every q ∈ Ii.

It implies that g(q) ≤ qiVi(qi) · 1
q for every q ∈ Ii.

Therefore, the terms under summation in the RHS of
Lemma 3.4 are not more than∫

Iσ(k)

max
j≥k
{Vσ(j)(q)}dq ≤

∫
Ii

qiVi(qi) ·
1

q
dq

≤ qiVi(qi)
∫ 2qi

qi
2

1

q
dq

= qiVi(qi) ln 4,

where the second inequality holds as Iσ(k) ⊆
[
qi
2 , 2qi

]
.

The revenue of the SPM M = (σ,q) is at least
1
2

∑
i qiVi(qi) according to Lemma 3.2.

Lemma 3.5. 2 · Rev(MS , π∗) ≥
n∑
i=1

max
q∈Ri
{q · Vi(q)}.

Proof. Let i = σ(k) be the agent chosen at step k ∈ [n]
in AlgSequence. By definition Ri ⊂ Qfree[k−1], which
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means that qi ·pi = qi ·Vi(qi) ≥ maxq∈Ri {q · Vi(q)}. We
sum these inequalities over all i ∈ [n] and conclude the
proof by employing Lemma 3.2.

By putting everything together we obtain the final
theorem.

Theorem 3.1. The revenue guarantee of MS is a
(2 ln 4+2)(≈ 4.78)-approximation to the best worst-case
revenue among all mechanisms.

Proof. We have

(2 ln 4 + 2) ·min
π∈Π

Rev(MS , π)

=(2 ln 4 + 2) · Rev(MS , π∗)

≥
n−1∑
k=1

∫
Iσ(k)

max
j≥k
{Vσ(j)(q)}dq +

n∑
i=1

max
q∈Ri
{q · Vi(q)}

≥max
M

Rev(M, π̂) ≥ max
M

min
π∈Π

Rev(M, π),

where the first line follows from Lemma 3.1, the second
line is a combination of Lemma 3.4 and Lemma 3.5, and
the third line is by Lemma 3.3.

3.2 Large Market Auctions In this subsection we
study a regime where the number of bidders is large
and the auctioneer cannot observe bidder identities, e.g.,
in many auction scenarios on the internet. More con-
cretely, we assume that bidders have identical marginal
distributions Fi = F for every i ∈ [n] and consider the
case when support V of F has a small size, not more
than n, where n is the number of bidders. We show
that in this case a sequential posted-price mechanism
can achieve the optimal worst-case revenue. This is be-
cause by Lemma 3.1, the worst-case distribution for any
SPM is the distribution π∗ with the maximal positive
correlation. On the other hand, as the number of pos-
sible valuations is no more than the number of bidders,
the seller running an SPM has enough attempts to query
every possible value in the support of F , therefore ex-
tract the full social surplus.

Descending Sequential Posted Price Mecha-
nism DSPM.

1. Let the support of F be V = {s1, . . . , sm} (m ≤
n). W.l.o.g. let s1 > s2 > · · · > sm.

2. For i = 1 through m do:

• Offer take-it-or-leave price si to bidder i

Theorem 3.2. When n bidders have identical marginal
distributions Fi = F with support size |V | ≤ n,
sequential posted price mechanism DSPM has optimal
worst-case revenue.

Proof. Since DSPM is an SPM with monotonically de-
creasing sequence of prices, the worst-case distribution
is π∗ by Lemma 3.1. We repeat here the definition of
π∗ in the case when distributions Fi are identical: ran-
domly draw v ∼ F and make vi = v for all i ∈ [n]. The
revenue of DSPM achieved on any profile with vi = v for
all i ∈ [n] is exactly v, since the support of F is equal
to or smaller than n and DSPM will have a chance to
offer the price of v to a bidder with value v. Therefore,
the worst-case revenue achieved by this mechanism is
no less than

∑
v∈V f(v) · v.

On the other hand, the revenue of any IR mecha-
nism with respect to distribution π∗ cannot be larger
than the social welfare, which in this case is exactly∑
v∈V f(v) · v.

The above result can be extended to instances
where the support of F is larger than the number of
bidders, at a small multiplicative approximation error.
To work with the continuous spaces we simply group
the values into the ranges of [(1 + ε)i, (1 + ε)i+1) and
can get the following corollary.

Corollary 3.1. When n bidders have identical
marginal distributions Fi = F supported on [1, h],
an SPM achieves (1 + ε)-approximation to the worst-
correlation revenue of the optimal mechanism, provided
that n ≥ lnh

ln(1+ε) (≈ lnh
ε ).

3.3 Comparison with Second Price Auction
with Common Reserve Price In this subsection
we investigate the relation of the sequential posted-
price mechanisms and second price auctions with reserve
prices in our correlation-robust framework. These two
families of mechanisms are arguably the most important
and well-studied DSIC mechanisms in the mechanism
design area. In particular, in the classic setting when
buyers’ valuations are drawn i.i.d, Myerson’s celebrated
auction falls into the family of second price auction with
common reserve price, while SPM is shown to approach
optimal revenue asymptotically [10].

Interestingly, in our correlation-robust framework,
under the assumption that buyers share an identical
marginal distribution, the best SPM has almost match-
ing or even better worst-correlation revenue than the
best second price auction with uniform (anonymous)
reserve price. We formalize the statement below and
provide the proof in Appendix C.
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Lemma 3.6. When buyers’ valuations follow identical
marginal distributions. The revenue guarantee of the
best sequential posted price auction is always a n

n−1 -
approximation to the best worst-case revenue among all
second price auctions with common reserve price.

4 Lookahead Auctions

In this section, we study mechanisms with an additional
restriction that the auctioneer must sell the item to the
highest bidder. This family of mechanisms is also known
as the lookahead auctions in the literature. We first
give the formal definition of lookahead auctions, which
is slightly different from the literature when there are
multiple buyers sharing the same highest bid.

Lookahead Auction Family L. A mechanism
M = (x,p) is a lookahead auction if for any v ∈ V
and i ∈ [n] such that vi 6= maxj vj , the allocation to the
i-th buyer xi(v) = 0. LetML be the lookahead auction
with the best robust-correlation revenue.

Theorem 4.1. The revenue guarantee of ML is a 2-
approximation to the best worst-case revenue among all
mechanisms.

Proof. According to Ronen’s result [32], we know that
for any joint distribution π, maxM Rev(M, π) ≤ 2 ·
maxM∈L Rev(M, π). Therefore,

max
M

min
π(M)∈Π

Rev(M, π) = min
π∈Π

max
M(π)

Rev(M, π)

≤ 2 ·min
π∈Π

max
M(π)∈L

Rev(M, π)

= 2 · max
M∈L

min
π(M)∈Π

Rev(M, π).

Where the first and the last equality follow from the von
Neumann minimax theorem and the convexity of L and
the set of all truthful auctions.

For known correlated distribution and under appro-
priate oracle assumption of how to access the distribu-
tion (since the distribution itself may have exponential
in n size), the best lookahead auction can be computed
in polynomial time.

Is the optimal correlation-robust lookahead
auction computable in polytime?

Note that this question does not require any additional
assumptions on the oracle access model, as the input
to the problem is given by n single dimensional distri-
butions {Fi}i∈[n] that can be explicitly described as the
input to an algorithm. It is an interesting open question,
which we do not know how to solve. In the remaining
part of this section, we show how to solve this problem

for an important special case of the identical marginal
distributions.

For each permutation σ ∈ Sn, let vσ be the value
profile that vσi = vσ(i) for all i. As mentioned in
Section 2, for each distribution and mechanism, by
taking the average over all permutations of the buyer
identities, we may restrict our study to symmetric joint

distributions and mechanisms. Let Πsym
def
= {π ∈ Π :

π(v) = π(vσ),∀v, σ)} and Lsym
def
= {M ∈ L : xi(v) =

xσ(i)(v
σ), pi(v) = pσ(i)(v

σ),∀v, σ, i}. We have that

(4.7) max
M∈L

min
π∈Π

Rev(M, π) = max
M∈Lsym

min
π∈Πsym

Rev(M, π).

Consider the following simple family of value pro-
files, which we refer as high-low types:

VHL
def
= {v : ∃i ∈ [n], v

H
≥ v

L
such that vi = v

H

and vj = v
L
for j 6= i}.

In other words, there exists a high-type buyer i with
value v

H
while all other buyers have the same value

v
L
. Let ΠHL be the family of distributions that are

supported on VHL, i.e. ΠHL
def
= {π ∈ Πsym : π(v) =

0,∀v /∈ VHL}. Our next goal will be to show that
the worst-correlation distribution with respect to (4.7)
belongs to ΠHL. Note that all lookahead mechanisms
can be described as posting a randomized price to
the highest bidder based on the other bidders’ values.
Intuitively, the worst distribution should reveal the least
possible information about the highest bid by showing
the remaining bids. We show that following this logic
the most efficient way to hide information is by using
only high-low types.

Given a distribution π ∈ Πsym, we consider the fol-
lowing transformation into a distribution πHL ∈ ΠHL.
For each v = (v1, . . . , vn), We distribute the proba-
bility mass π(v) uniformly among the following high-
low types {(vi, vj , . . . , vj)}j 6=i, where i is sampled uni-
formly among highest bidders and then j is sampled
uniformly among all bidders except i. We denote
this partial distribution on VHL transformed from v
as vHL. Applying this process to all v, we obtain a
distribution πHL supported on VHL. Moreover, by con-
struction πHL must be consistent with the marginal f ,
i.e., πHL ∈ Π. Indeed, our transformation per any
v ∈ V does not change the average (over the set
[n] of bidders) marginal distribution8. We claim that
maxM Rev(M, π) ≥ maxM Rev(M, πHL).

8Speaking in algebraic terms, our transformation does not
change bidder marginal distributions when applied to all types in

the orbit of any particular v ∈ V under the action of permutation
group Sn.
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Before going to the details of our proof, we intro-
duce extra notations to describe a partial lookahead
mechanism defined on high-low types. For v

H
> v

L
, the

mechanism will look at the value v
L

and offer a possibly
randomized price p ≥ v

L
to the high type bidder. We

denote δ(v
L
, p), where p ≥ v

L
, the probability of posting

price p. IC and IR conditions are satisfied automati-
cally in this form, and the feasibility of any symmet-
ric single-item lookahead auction can be described by
the two following conditions:

∑
p≥v

L
δ(v

L
, p) ≤ 1 and

δ(v
L
, v

L
) ≤ 1

n . For any truthful symmetric lookahead
auction M, we define MHL as its restriction on high-
low type and we know that it can be represented by the
above δ(·, ·).

Next, we provide a reversal transformation to ex-
tend a partial mechanismMHL to a symmetric truthful
mechanism MHL on the full support. For each value
profile v, let vsecond be the second highest bid, which is
equal to the highest bid when there are multiple high-
est bidders. Recall that vHL is a partial distribution on
VHL with total probability mass π(v). The mechanism
MHL on v simply mimics the mechanism MHL on vHL

with the following small modification: when the mech-
anismMHL offers a prices which is less than vsecond, the
mechanism MHL will offer the price vsecond instead. By
this definition, it is easy to verify that MHL is indeed
a symmetric truthful lookahead auction on the whole
support. Another conclusion from this transformation
is that the payment ofMHL on v is at least the expected
payment of MHL on vHL since MHL can always sell the
item when MHL can sell it and with a same or larger
price. Sum over all v, we get the conclusion that

Rev(MHL, π) ≥ Rev(MHL, πHL).

Now, we are ready to prove maxM Rev(M, π) ≥
maxM Rev(M, πHL) by the following chain of inequal-
ities:

max
M

Rev(M, πHL) = max
MHL

Rev(MHL, πHL)

≤ max
MHL

Rev(MHL, π) ≤ max
M

Rev(M, π).

Taking the minimum over all π ∈ Πsym, we have

min
π∈Πsym

max
M

Rev(M, π) = min
π∈ΠHL

max
MHL

Rev(MHL, π).

Therefore, we can calculate the optimal partial
mechanism by solving the following LP and extend it

into the whole support by the previous procedure.

max n ·
∑
v

f(v) · λ(v)

s. t. λ(v) ≤ vδ(v, v) ∀v
λ(v

H
) + (n− 1)λ(v

L
) ≤

∑
v
H
≥p≥v

L

pδ(v
L
, p) ∀v

H
> v

L∑
p≥v

L

δ(v
L
, p) ≤ 1 ∀v

L

δ(v, v) ≤ 1

n
∀v

Note that this LP involves only quadratic number of
variables and polynomial number of constraints, hence,
is computable in polynomial time.

For notational simplicity, we presented our result
for the original lookahead auction, which only sells item
to the highest value bidder. Both previous results can
be extend to more general k-lookahead auction, which
allows allocating the item to one of the top k bidders.

Theorem 4.2. The revenue guarantee of k-lookahead

auction is a e1−1/k

e1−1/k+1
-approximation to the best worst-

case revenue among all mechanisms. For constant k
and symmetric distributions, the optimal k-lookahead
auction can be computed in polynomial time.

5 Conclusion and Open problems

In this work we adapted the correlation-robust frame-
work developed for the additive monopoly problem [13]
to the well studied setting of single-item auction. Our
approach can be considered as a worst-case counterpart
to the extensively studied Myerson’s setting with in-
dependent prior. In this sense the Myerson’s auction
can be interpreted as the optimal average-case mecha-
nism. This framework provides meaningful guarantees
for the difficult problem with general (correlated) prior,
and also is much easier to apply in practice than the
standard Bayesian approach, since it only requires in-
formation about single dimensional distributions from
each agent (which can be efficiently learned from data)
and also avoids unrealistically good conclusions of [20].

In this work we showed the power of sequential
posted price mechanisms and proved that SPMs achieve
approximately optimal revenue in the correlation-robust
framework. We also studied lookahead auctions and
gave some computational results. Our work leaves a
lot of open questions. Perhaps the most important (as
our numerical experiments indicate also quite difficult)
is the question of describing/computing the optimal
correlation-robust auction. On the other hand, we
found that, when the number of bidders is large, the
format of the optimal auction does not matter much and
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a simple SPM extracts the optimal worst-correlation
revenue. A simpler but still very interesting question
is to find other regimes where the optimal correlation-
robust mechanisms are easy to describe or to compute.

We also showed how to evaluate the worst-case
revenue of most of the existing deterministic DSIC
mechanisms such as SPM, second price auctions with
reserves, and Myerson’s auction. The question to
which extent these computational results extend to the
randomized mechanisms remains widely open. We only
know the answer for the class of randomized SPM (and
that one only for the prices offered in the decreasing
order).

Correlation-robust framework offers some interest-
ing computational questions for lookahead auctions. In
the classic Bayesian framework the computation of the
best lookahead auction is quite trivial and simply re-
quires careful description of the oracle access to the
prior distribution. In the correlation-robust framework
the input to the problem has a succinct representation,
and for special case of anonymous bidders we already
know that optimal lookahead auction can be computed
in polynomial time. It is intriguing question to extend
this result to an arbitrary set of distributions. On the
other hand, it is unclear if the correlation-robust ap-
proximation guarantee of lookahead auctions can be im-
proved for the case of identical marginals. Consequently,
it is also an interesting question whether the approxi-
mation ratio of lookahead auctions can be improved in
the standard Bayesian setting if the prior distribution
is symmetric, i.e., invariant under any permutation of
bidders’ identities.
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A Robustness Analysis of Existing Auctions

We emphasize that the correlation-robust framework
can be used to evaluate any specific auction in the
worst-correlation metric. These evaluations can help to
compare and decide between different auction formats.
Motivated by this consideration we study the problem
of computing minimal revenue of a given auction over
all distributions Π with feasible marginals. Specifically,
we show in this section how to calculate the revenue of
sequential posted price mechanisms, second price auc-
tion with individual reserves, and Myerson auction in
the correlation-robust framework. Our result for the se-
quential posted price mechanisms (SPM) holds even for
randomized mechanisms, provided that randomization
is only used over Pareto-efficient deterministic SPMs,
i.e., the sequence of posted prices that are offered to the
buyers is non-increasing.

Theorem A.1. There are polynomial time algorithms
to calculate the worst-correlation revenue for

1. second price auction with individual reserves9,

2. Myerson auction,

3. sequential posted price mechanisms,

4. randomized sequential posted price mechanisms.

For the last result we assume that every deterministic
pricing mechanism in the support of the randomized
mechanism offers prices in non-increasing order.

To calculate the revenue in the correlation-robust
framework we shall consider the dual LP (2.2). We ob-
serve that it has polynomially many variables, namely,
{λi(vi)}i∈[n],vi∈Vi , but exponential in n number of con-
straints. Therefore, a näıve approach of solving this
LP directly would take exponential in n number of
steps. Instead we adopt three different strategies for
the above families of mechanisms. First, for the sec-
ond price auction with individual reserves, we show that
{λi(vi)}vi∈Vi are monotone in the optimal solution of
the dual LP (2.2) for any i ∈ [n]. To this end, we
prove a more general fact that as long as

∑n
i=1 pi(v)

is a monotone function of v the set of {λi(vi)}vi∈Vi
must also be monotone for each i ∈ [n]. The mono-
tonicity of {λi(vi)}vi∈Vi allows us to prune redundant
constraints from the dual LP (2.2) and efficiently re-
duce it to a manageable size. We note that this ap-
proach fails to solve the case of the Myerson auction,
since the total payment in the Myerson auction may
exhibit non-monotone behavior. Instead, we introduce
extra variables and develop a polynomial size LP that is
equivalent to LP (2.2). Our construction builds on the
observation that for the Myerson auction, there are only
polynomially many possible outcomes, i.e., the winner
of the auction and her payment, and each outcome de-
fines a simple-to-describe set of buyers’ types. Finally,
we explicitly construct the worst case distribution for all
sequential posted price mechanisms with non-increasing
prices (SPM) and give closed-form expression for the
worst-correlation revenue. Moreover, since all mecha-
nisms within this family share the same worst-case dis-
tribution, it is easy to compute the worst-correlation
revenue of randomized sequential posted price mecha-
nisms.

Proof of Theorem A.1:

9The auction is defined as follows: Each bidder is associated

with a reserve price. Consider the bidders who bid at least their
individual reserves. If there are at least two such bidders, the
highest bidder wins and pays the larger between his reserve and

the second highest bid. If there is only one such bidder, that
bidder wins and pays the reserve price.
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(1) Second price auction with individual reserves.
First, we consider second price auction with indi-

vidual reserves. To this end, we show that {λi}vi∈Vi
must be monotone for all i ∈ [n] for a large family of
mechanisms.

Lemma A.1. For any M with monotone payments
(i.e., ∀v̆ � v,

∑
i pi(v̆) ≤ ∑

i pi(v)), there exists an
optimal λ = {λi(vi)}i∈[n],vi∈Vi such that {λi(vi)}vi∈Vi
are non decreasing for all i.

Proof. Let λ be the optimal solution to the LP. We
argue that λ̄i(vi) = maxv≤vi λi(v) is also an optimal
solution. Note that λ̄i is monotonically increasing for
all i and λ̄i(vi) ≥ λi(vi) for all i and vi. Hence, the
objective function

∑n
i=1

∑
vi
fi(vi) · λ̄i(vi) is equal to or

greater than the optimal. It suffices to show that λ̄ =
{λ̄i}i∈[n],vi∈Vi is feasible, i.e.,

∑n
i=1 λ̄i(vi) ≤

∑n
i=1 pi(v)

for all v.
Fix a value profile v. Suppose λ̄i(vi) = λi(v̆i) for

all i, where v̆i ≤ vi. Let v̆ = (v̆1, · · · , v̆n). Note that
v̆ � v. By the original constraint corresponding to v̆,
we have

n∑
i=1

λ̄i(vi) =

n∑
i=1

λi(v̆i) ≤
n∑
i=1

pi(v̆) ≤
n∑
i=1

pi(v).

We note that any second price auction with individ-
ual reserves has monotone payments. By Lemma A.1
the solution to the dual LP (2.2) does not change if
we add more linear constraints saying that λ is mono-
tone. Now we are going to point out only a few (poly-
nomially many) important constraints in the latter LP,
so that all the remaining constraints do not affect the
optimal solution. Let ri be the reserve price for each
buyer i ∈ [n]. We partition the space of all value pro-
files V into {Vi,zi}i∈[n],zi∈Vi according to the winner of
the auction and her payment zi and V0 when no buyer
gets the item. Specifically, in Vi,zi we consider all value
profiles v such that buyer i wins the auction and pays
exactly zi. In this case, we know that buyer i has the
highest bid and every other buyer j 6= i has a value
either smaller than her individual reserve price rj , or
smaller than the price zi. That is,

Vi,zi ⊆
{
v
∣∣ vi ≥ zi, ∀j 6= i, vj ≤ max{zi, r−j }

}
,

where r−j
def
= maxvj<rj vj .

Then any constraint in the dual LP (2.2) for v ∈
Vi,zi is implied by the monotonicity of λ and the
following inequality∑

j 6=i

λj(max{zi, r−j }) + λi(v
max
i ) ≤ zi,

where vi
max is the maximum value in the support of

Fi. Moreover, the latter inequality is weaker than the
constraint of dual LP (2.2) corresponding to the value
profile v̆, where v̆i = vi

max and v̆j = max{zi, r−j } for
all j 6= i. For V0, we know that all buyers bid smaller
than their individual reserves, i.e. V0 = {v | ∀i, vi <
ri}. Then, due to monotonicity of λ it suffices to
use only

∑
i λi(r

−
i ) ≤ 0 constraint. We observe that

there are only polynomially many different categories
{Vi,zi}i∈[n],zi∈Vi and the monotonicity of λ can be
described with only

∑
i∈[n] |Vi| linear constraints. Thus

we can prune the remaining constraints and solve the
LP efficiently.

(2) Myerson auction.
Next, we study the worst-correlation revenue of the

Myerson’s auction. Let ri be the reserve price and φi be
the ironed virtual valuation for each buyer i. Following
the proof for second price auction with individual re-
serves, we partition V into {Vi,zi}i∈[n],zi∈Vi according
to the winner of the auction and her payment zi ≥ ri
and V0 when no buyer wins the item. Specifically, we
consider all value profiles v so that buyer i wins the
auction and pays exactly zi. We know that the buyer i
has the highest virtual value φi(zi) ≥ 0 and every other
buyer j 6= i has a virtual value smaller than φi(zi)

10.
That is

Vi,zi ⊆ {v | vi ≥ zi, ∀j 6= i, φj(vj) < φi(zi)} .
Then any constraint in dual LP (2.2) for v ∈ Vi,zi is
implied by the following inequality

(A.1)
∑
j 6=i

max
vj :φj(vj)<φi(zi)

λj(vj) + max
vi≥zi

λi(vi) ≤ zi.

Moreover, as in the previous case this inequality is im-
plied by the constraint of the dual LP (2.2) correspond-
ing to the value profile v̆, where v̆i = argmaxvi≥zi λi(vi)
and v̆j = argmaxvj :φj(vj)<φi(zi) λj(vj) for all j 6= i. Also
V0 = {v | ∀i, vi < ri }. Hence, the constraints for all
v ∈ V0 are implied by

(A.2)
∑
i

max
vi≤r−i

λi(vi) ≤ 0.

We observe that there are only polynomially many
different categories {Vi,zi}i∈[n],zi∈Vi . To succinctly
describe the max operators in (A.1) and (A.2), we
introduce extra variables {λ̄i(vi)}i∈[n],zi∈Vi with a few
extra constraints:

λ̄i(·) is monotone ∀i ∈ [n]

and λ̄i(vi) ≥ λi(vi), ∀i, vi ∈ Vi.

10For simplicity of the presentation we assume that there are
no ties for virtual values.
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Then constraints (A.1) and (A.2) can be expressed as∑
j 6=i

λ̄j(φ
−1
j (φ(zi)))+λ̄i(v

max
i ) ≤ zi and

∑
i

λ̄i(r
−
i ) ≤ 0,

where φ−1
j (φi(zi))

def
= max{vj | φj(vj) < φi(zi)}. Thus,

we obtain a polynomial size LP that is equivalent to the
dual LP (2.2) and can solve this new LP efficiently.

(3) & (4) Deterministic and randomized sequential
posted price mechanisms.

For this case, we first consider SPM that posts
non-increasing sequence of prices. It has already been
shown in Lemma 3.1 that the worst-case distribution for
SPM is the distribution π∗ with the maximal positive
correlation. Therefore, to calculate the worst revenue
guarantee, it suffices to calculate the sum in (3.6)
in Section 3. Furthermore, observe that the worst
distribution π∗ does not dependent on the mechanism.
Hence, for any randomized mechanism with only non
increasing sequences of posted prices the worst-case
distribution is again π∗. Then it is easy to compute the
worst-correlation revenue of the mechanism by summing
the expression (3.6) over all random price sequences11.

Finally, the approach used in Myerson auction of
partitioning the value space according to the winner
of the auction and her payment, can also be used to
get a polynomial time algorithm for sequential posted
price mechanisms with arbitrary sequence of prices (e.g.,
which is not necessarily monotone).

B Optimal Auctions: Examples

This section provides numerical examples of several
optimal correlation-robust auctions. In order to better
understand the framework, we run experiments for
different marginal distributions to explore the structure
of the optimal mechanisms.

In our first example there are two buyers with
identical marginal distributions U [0, 1]. In this case, we
could analytically prove that the optimal mechanism
has a reasonably simple description: it is the second
price auction with a random anonymous reserve, where
the reserve price is drawn from U [0, 3

4 ]. The optimal

λ(v) = 2v2

3 for v ∈ [0, 3
4 ] and λ(v) = 3

8 for v ∈ ( 3
4 , 1]

and the worst-correlation revenue equals to 3
8 . It is

worthwhile to mention that second price auction and
Myerson auction achieve worst-correlation revenue 1

4
and 5

16 respectively. Given the simple format of the
optimal mechanism in the latter setting, it is natural to
ask:

11If there are exponentially many price sequences in the support

of the randomized mechanism, one can simply do Monte-carlo
simulation by sampling valuations from π∗ and running M.

Does the result generalize to (1) more buyers
and (2) other distributions?

Our further numerical experiments give a strong evi-
dence that the answer to both of these questions is
negative. Consider a minimal extension of the previ-
ous example to the case of n = 3 buyers with identical
marginal distribution U [0, 1]. We observe complicated
structure of the optimal mechanism12: the mechanism
not only allocates the item to the highest bidder, but
also allocates to the second highest bidder with signifi-
cant probability. The latter fact is quite disconcerting, as
the optimal auction exhibits such unruly behavior even
in this simple symmetric setting. Furthermore, this fact
also rules out the possibility that any lookahead auc-
tion can be optimal in general. We remark that we only
do not know how to describe the optimal mechanism
in a simple language, but still admit that there could
be interesting special cases where the optimal auctions
are well behaved. We warn our readers about possi-
ble difficulties and leave the two latter questions as an
interesting open research direction.

Next, we consider the case of two symmetric buyers
with marginal uniform distribution U(1, 2, 3), i.e., the
uniform distribution over the discrete values 1, 2, and
3. It might seem that at least in this extremely
simple setting the optimal mechanism must have a
clean description. Surprisingly, it is not the case. We
present the optimal mechanism in the following matrices
described in a symmetric way, i.e., independent of the
buyer identities, where x(v1, v2) and p(v1, v2) are the
allocation and payment to the buyer who bids v1 while
the other one bids v2:

x :


1 2 3

1 1
3 0 0

2 5
6

1
2 0

3 1 1 1
2

 and p :


1 2 3

1 1
3 0 0

2 4
3 1 0

3 11
6

5
2

3
2


The optimal λ(1) = 1

3 , λ(2) = 1, λ(3) = 3
2

and the worst-correlation revenue is 17
9 . One pos-

sible description of this mechanism is as a second
price auction with random individual reserves. How-
ever, the reserve prices are much trickier as we il-
lustrate below. First, one chooses a pair of re-
serve prices uniformly at random from the multiset
{(1, 2), (1, 2), (2, 1), (2, 1), (2, 3), (3, 2)}. Then we run
second price auction with tie broken in favor of the
bidder with the larger reserve. For instance, when the
buyers have values (3, 2) and reserve prices are (1, 2),

12We do not have an analytical expression for the optimal

mechanism in this case. Instead, we discretize the uniform
distribution and observe the numerical solution to the LP (2.5).
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the first buyer wins and pays 3, since if she bids 2, the
second buyer would win the auction by the higher re-
serve tie-breaking rule. Some part of the auction’s com-
plexity could be explained as a result of the tricky tie-
breaking issues for the discrete types. Nonetheless, the
complicated structure we already observe in such small
instances precludes us from making any good conjecture
about the optimal mechanism.

Finally, we consider an asymmetric setting to avoid
any tie-breaking complications from the previous exam-
ple. In this setting there are n = 2 buyers with marginal
distributions U(1, 3, 5) and U(2, 4, 6) respectively. We
give the optimal mechanism by the following matrices.

x1 :


2 4 6

1 0 0 0

3 2
3 0 0

5 1 1 0

, x2 :


2 4 6

1 1
2

5
6 1

3 0 5
6 1

5 0 0 1



and p1 :


2 4 6

1 0 0 0

3 2 0 0

5 11
3 5 0

, p2 :


2 4 6

1 1 7
3

10
3

3 0 10
3

13
3

5 0 0 6


C Proof of Lemma 3.6

Lemma C.1. When buyers’ valuations follow identical
marginal distributions. The revenue guarantee of the
best sequential posted price auction is always a n

n−1 -
approximation to the best worst-case revenue among all
second price auctions with common reserve price.

Proof. Let SPAr be the second price auction with re-
serve price r. By Lemma 3.1, it suffices to show that for
all r, there exists an SPM M∈ S such that

n

n− 1
Rev(M, π∗) ≥ min

π∈Π
Rev(SPAr, π).

Again, it would be easy for us to work in the quantile
space. We first construct distribution π̂ to establish an
upper bound on minπ∈Π Rev(SPAr, π).

Construction of distribution π̂.

1: Draw a quantile q ∼ U [0, 1]

2: if q ≤ q∗ def
= 1− F (r) then . All bids are at least r

3: Draw a buyer h ∼ U [n]. . Pick the winning
buyer

4: Let vh ← V ( qn )

5: Let v` ← V ( (n−1)q
n + q∗

n ) for all ` 6= h.
6: end if
7: if q > q∗ then . All bids are less then r and the

item remains unsold
8: Let vi ← V (q) for all i.
9: end if

We first explain why π̂ is consistent with the
marginal distribution F . Fix any buyer i.

• When q ≤ q∗ and i was selected as the winning
buyer h, vi ← V ( qn ) where q

n was drawn from

U [0, q
∗

n ]. This event happens with probability q∗

n .

• When q ≤ q∗ and i was not selected as the winning

buyer, vi ← V (q′) where q′ = (n−1)q
n + q∗

n was

drawn from U [ q
∗

n , q
∗]. This event happens with

probability q∗ − q∗

n .

• When q > q∗, vi = V (q) where q was drawn from
U [q∗, 1]. This event happens with probability 1−q∗.

Combining these three cases together, vi = V (q) where
q ∼ U [0, 1], i.e., vi ∼ F .

When SPAr is run on π̂, if q > q∗, all bids are
less than r and the item remains unsold. On the other
hand, if q ≤ q∗, we always have q

n ≤
(n−1)q
n + q∗

n ,
which implies vh ≥ v`. In this case bidder h wins the
auction and pays the price of v`. Therefore we have

Rev(SPAr, π̂) =
∫ q∗

0
v`dq =

∫ q∗
0
V
(

(n−1)q
n + q∗

n

)
dq. By

letting q′ = (n−1)q
n + q∗

n , we have

Rev(SPAr, π̂) =

∫ q∗

q∗
n

V (q′)d

(
nq′ − q∗
n− 1

)
=

n

n− 1

∫ q∗

q∗
n

V (q)dq

=
n

n− 1

n−1∑
i=1

∫ (i+1)q∗
n

iq∗
n

V (q)dq

≤ n

n− 1

n−1∑
i=1

V

(
iq∗

n

)
· q
∗

n

=
q∗

n− 1

n−1∑
i=1

V

(
iq∗

n

)
.

Now consider an SPM M that posts price V ( iq
∗

n )
to the i-th buyer in sequence for 1 ≤ i ≤ n − 113. By
Lemma 3.1, we know the worst-correlation revenue of
M is

Rev(M, π∗) =
q∗

n

n−1∑
i=1

V

(
iq∗

n

)
.

We conclude the lemma by combining the above two
bounds.

13We only post prices to the first n− 1 buyers in this SPM.
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