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Abstract
We study envy-free cake cutting with strategic
agents, where each agent may manipulate his pri-
vate information in order to receive a better alloca-
tion. We focus on piecewise constant utility func-
tions and consider two scenarios: the general set-
ting without any restriction on the allocations and
the restricted setting where each agent has to re-
ceive a connected piece. We show that no deter-
ministic truthful envy-free mechanism exists in the
connected piece scenario, and the same impossibil-
ity result for the general setting with some addi-
tional mild assumptions on the allocations. Finally,
we study a large market model where the economy
is replicated and demonstrate that truth-telling con-
verges to a Nash equilibrium.

1 Introduction
Cake cutting is a classic resource allocation problem in which
a central decision maker divides and allocates a divisible and
heterogeneous good, known as a cake, to n agents with in-
dividual valuation functions, with the goal of balancing ef-
ficiency and fairness. Despite its seemingly simple setting,
the problem compasses rich structures and has been a cen-
tral topic in resource allocation for many decades (see, e.g.,
the books by Brams and Taylor [1996] and Robertson and
Webb [1998]), as Procaccia [2013] remarked: Cake cutting is
not just child’s play.

One of the most widely studied fairness solution con-
cepts in cake cutting is envy-freeness. Informally speak-
ing, an allocation is envy-free if all agents are satisfied with
their own assigned pieces, compared with the allocation of
any other agent. It is well known that an envy-free al-
location always exists [Brams and Taylor, 1995], even if
only n − 1 cuts are allowed [Su, 1999], i.e., each agent re-
ceives a connected piece. The study of computing envy-
free allocations has a long history [Brams and Taylor, 1995;
Stromquist, 2008], and some great progress has been made
recently in deriving an envy-free algorithm for arbitrary num-
ber of agents in bounded running steps [Aziz and Mackenzie,
2016a; 2016b].

However, there is a fundamental incentive issue in comput-
ing an envy-free allocation: each participating agent is self-

interested and wants to receive an allocation with as much
value as possible. Agents therefore may manipulate their
privately-known valuation functions in order to increase the
values of their allocations. This motivates the study of cake
cutting from a game-theoretical point of view: is there any
algorithm, also known as a mechanism, that incentivizes all
agents to report their functions truthfully (such a mechanism
is called truthful or strategy-proof)?

This question was first addressed in [Chen et al., 2010] in
which the authors gave a truthful cake cutting mechanism for
piecewise uniform valuations. In their work, they also left the
problem of designing truthful mechanism for piecewise con-
stant valuations as an open problem. For piecewise constant
valuations, it is known that no truthful, proportional (i.e., one
gets at least its average share) and Pareto optimal mechanism
exists [Schummer, 1996; Aziz and Ye, 2014]. A character-
ization of truthful mechanisms for two agents was given by
Maya and Nisan [2012].

If one allows randomization, an envy-free mechanism
truthful in expectation is known due to Mossel and
Tamuz [2010]. (See the remark after Theorem 8 for details.)
In this paper, however, we deal exclusively with deterministic
mechanisms. We believe that deterministic mechanisms have
several advantages compared to randomized ones. For exam-
ple, agents can be risk-seeking or risk-averse, thus may have
different views on a randomized mechanism that is truthful in
expectation.

Instead of reporting their valuations in one shot (as it is
in the model considered in this paper), many work consid-
ers the Robertson-Webb query model [Robertson and Webb,
1998], in which agents reveal their valuations to the alloca-
tor through iterative queries. Under this model, it has been
shown that there exists no truthful, envy-free mechanism with
bounded number of queries [Kurokawa et al., 2013], and
that any truthful mechanism is dictatorial [Brânzei and Mil-
tersen, 2015] (i.e., there exists one agent that receives no cake
at all). When truthful mechanism design is concerned, the
Robertson-Webb query model is fundamentally different to
our model. Its iterative nature creates much more room for
agents’ strategic behaviors. We will discuss this in detail in
the last subsection of Section 3.2.

There are a number of mechanisms that work quite well
in practice, even though theoretically they are not truthful.
A theoretical support for such phenomena is that many mar-



kets of interests contain a very large number of participants.
For instance, Roberts and Postlewaite [1976] proved that as
the number of agents grows through replication, the util-
ity gain of any participant from manipulations decreases to
zero. Strategic analysis in large markets has been studied
in, e.g., market equilibrium [Otani and Sicilian, 1982; 1990;
Jackson, 1992; Jackson and Manelli, 1997], double auc-
tions [Cripps and Swinkels, 2006; Fudenberg et al., 2007] and
Gale-Shapley deferred acceptance stable matching algorithm
[Roth and Peranson, 1999; Immorlica and Mahdian, 2005;
Kojima and Pathak, 2009]. Most of these studies show either
that the gain from manipulations converges to zero or that an
equilibrium behavior converges to truth-telling.

Truthful mechanism design has also been considered when
allocating multiple divisible homogeneous items—a problem
similar to cake cutting (where a single divisible heteroge-
neous item is allocated) [Cole et al., 2013; Cheung, 2016;
Cole and Tao, 2016]. Especially, when we restrict agents’
valuations to be piecewise constant, the cake can be cut into
multiple pieces such that each agent’s valuation is uniform
on each piece. This seems to reduce the cake cutting prob-
lem to the divisible items allocation problem, with different
pieces viewed as items. However, a fundamental difference
lies between multiple divisible item allocation and cake cut-
ting, because viewing the cake as multiple divisible items
“predefines” the items. Agents could lie about the breakpoint
positions in their valuation functions, therefore modify the
boundaries between items, or even add new items or merge
items. This has a crucial impact when truthfulness is con-
cerned, and is why the positive results in [Cole et al., 2013;
Cheung, 2016] do not carry over to the cake cutting setting.

1.1 Our Results
In this paper, we study deterministic truthful envy-free mech-
anisms when agents have piecewise constant valuations.
Note that this is one of the most natural valuation func-
tion classes that has received much attention in the cake-
cutting study [Bei et al., 2012; Kurokawa et al., 2013;
Aziz and Ye, 2014]. Specifically, piecewise constant func-
tions enjoy two nice properties: (i) they are concisely repre-
sentable, and (ii) they can approximate any functions to an
arbitrary precision.

In the first part, we present a family of impossibility re-
sults. Firstly, we show that no truthful and envy-free deter-
ministic mechanism exists if only n − 1 cuts are allowed,
i.e., each agent must receive a connected piece. Secondly,
for the general model without any restrictions on the num-
ber of cuts, no deterministic truthful envy-free mechanism
exists under either one of the two rather mild assumptions:
the non-wastefulness or the position obliviousness. A mech-
anism is non-wasteful if it never allocates a piece to someone
who does not value it; a mechanism is position oblivious if it
decides the allocation of an arbitrary portion of the cake only
based on the agents’ valuations on this portion, but not on its
relative position in the cake. These results partially answer
the open question raised in [Chen et al., 2010]. We also com-
pare our results to the impossibility results in [Aziz and Ye,
2014] and [Brânzei and Miltersen, 2015].

Next, we consider the large market model similar to the

one in [Roberts and Postlewaite, 1976] where the economy is
replicated. In the envy-free cake cutting problem, we demon-
strate a similar incentive behavior for agents in large markets.
Specifically, in the connected piece setting, we show that in
any envy-free mechanism, truth-telling converges to a Nash
equilibrium as the number of the replications grows. This is
shown by providing a neat characterization of the Nash so-
cial welfare maximizing allocation, which may be of its own
interest. For the general model, we give a simple determin-
istic truthful envy-free mechanism if the original market is
replicated at least once.

2 Preliminaries
In a cake cutting instance, a divisible and heterogeneous
good (or a “cake”), represented by the interval1 [0, 1], to
be allocated to a set of n agents (or players) denoted by
N = {a1, . . . , an}. Each agent ai has a density function
fi : [0, 1] 7→ R+ ∪ {0} which measures his preference on the
cake. We assume in this paper that the density functions are
all piecewise constant; that is, the whole cake can be divided
into a number of intervals {X1, . . . , Xm} such that each of
the density functions has a constant value on each Xt, for
t = 1, . . . ,m. We will use the term segment and the no-
tation Xt exclusively to denote the t-th (from left to right)
such interval in the rest of the paper. As fi is a constant on
Xt, for simplicity we write fi(Xt) , fi(x) for any x ∈ Xt

to denote the value of fi on Xt. Notice that by our defini-
tion the partition {X1, . . . , Xm} is not pre-specified. Instead,
it is determined by the n agents’ reported density functions
{f1, . . . , fn}.

Given the density function fi, for any subset S ⊆ [0, 1],
the value that agent ai receives from S is denoted by vi(S) =∫
S
fi dx. An allocation of the cake is denoted by a vector

A = (A1, A2, . . . , An) where Ai is the share allocated to ai
and Ai ∩ Aj = ∅ for any i 6= j. An allocation is called
envy-free if for any ai, vi(Ai) ≥ vi(Aj) for any j. That is,
ai cannot obtain a larger value from the allocated share of
any other agent. We assume without loss of generality that
vi([0, 1]) > 0, i.e., agent ai desires at least one segment of
the cake. This assumption implies that in any envy-free allo-
cation (A1, A2, . . . , An), each agent ai has vi(Ai) > 0. We
sometimes consider allocations with only n − 1 cuts, or with
the connected pieces constraint, in which case each agent is
required to receive a connected piece, i.e., each Ai is an in-
terval.

A mechanism is a function M : (f1, . . . , fn) 7→
(A1, A2, . . . , An). That is, given input density functions, it
computes an allocation for the agents. As mentioned before,
we focus on deterministic mechanism in this paper. An envy-
free mechanism is one where the generated allocation is al-
ways envy-free with respect to the input density functions.
Note that the allocation of a mechanism is determined com-
pletely by the input density functions. In particular, all mech-
anisms considered in this paper are deterministic. Since all
agents are self-motivated (e.g. only interested in their own

1For the sake of ease, we occasionally denote the cake by an
arbitrary interval [a, b]. Note that such an instance can be easily
normalized to [0, 1].



obtained values), it is therefore natural that one manipulates
his privately-known density function in order to derive an al-
location with a larger value. We call a mechanism truthful
(also known as strategy proof, or incentive compatible) if it is
a dominant strategy for each agent to report his density func-
tion truthfully.

Note that there exists a trivial truthful envy-free mecha-
nism: no matter what density functions that agents report, no
one obtains any share; that is, the cake is not allocated at all.
To eliminate such a degenerate mechanism, we assume that
every segment Xt has to be allocated if someone values the
segment. Specifically, those Xt for which fi(Xt) = 0 for all
agent ai are to be discarded, while those Xt for which there
exists ai such that fi(Xt) > 0 should be allocated. We note
that this assumption is exactly the same as the “free-disposal”
assumption in [Chen et al., 2010], and we refer the readers
to [Chen et al., 2010] for a discussion why this assumption is
necessary.

Finally, given all agents’ density functions and an alloca-
tion A, the Nash social welfare is defined by the product of
all agents’ received values: NSW(A) =

∏n
i=1 vi(Ai). The

Nash social welfare, dated back to the last century [Nash Jr,
1950; Kaneko and Nakamura, 1979], is a solution concept
balancing fairness and (economic) efficiency. An allocation
maximizing the Nash social welfare satisfies many appealing
properties [Moulin, 2004], including envy-freeness, propor-
tional fairness [Kelly, 1997] and resource monotonicity [Szik-
lai and Segal-Halevi, 2015]. It is also independent to the scale
of each agent’s valuation, which is an suitable solution where
there is no price system involved, as it is in our cake cutting
case. For example, an agent values 1 to [0, 0.5] and values 2
to (0.5, 1] would be essentially the same with an agent values
100 to [0, 0.5] and values 200 to (0.5, 1].

3 Impossibility Results
In this section, we present several negative results on the ex-
istence of truthful envy-free deterministic mechanisms.

3.1 Connected Pieces Setting
Our first focus is on allocations with only n− 1 cuts.

Theorem 1. If every agent is required to receive a connected
piece, no deterministic truthful envy-free mechanism exists,
for any number of agents n ≥ 2.

Proof. Let ε > 0 be a sufficiently small constant. The cake
is represented by [0, 7+n]. The density functions are defined
as follows.

f1(x) = 1, for x ∈ [1, 2 + ε] ∪ [5, 6]

f2(x) = 1, for x ∈ [3, 4] ∪ [7− ε, 8]
For i = 3, . . . , n :

fi(x) = 1, for x ∈ [6 + i− ε, 6 + i+ ε]

The value of all density functions is zero on the unspecified
intervals. Notice that the cake is [0, 9] when n = 2, in which
case only f1 and f2 are defined.

Under the connected piece constraint, it is easy to see that
either a1 or a2 will get a value of at most 1 + ε. Without loss

of generality, assume it is a1. Considering the scenario where
a1 misreports his function to be

f ′1(x) =

{
1 x ∈ [1, 2 + ε] ∪ [5, 6]
2 x ∈ [8, 7 + n]

,

we next show that a1 can get an allocation with a value of at
least 2 (with respect to f1).

Given the condition that one has to receive a consecutive
piece, we know that a1 cannot get a value of more than 2
from the interval [8, 7 + n], for otherwise one of the agents
a3, a4, . . . , an will receive no cake at all and thus envy him.
(This holds trivially for n = 2, as a1 has value exactly 2 on
[8, 7+n] = [8, 9].) However, receiving value 2 is not enough
for proportionality (as

∫
[0,7+n]

f ′1(x) dx = 2n+ ε), and thus,
it is not enough for envy-freeness. In addition, it can be seen
that a1 cannot get a superset of [7−ε, 8] on which a2 has more
than half of his total value. Therefore, in order to receive a
value of more than 2, a1 has to take almost the entire interval
[1, 6]; this results in a value of more than 2 with respect to the
true function f1. Compared with the upper bound 1 + ε that
a1 receives when reporting f1 truthfully, his obtained value is
increased from manipulation.

Therefore, no truthful mechanism exists and the theorem
follows.

3.2 General Setting
Without the connected pieces constraint, we show that truth-
ful envy-free mechanism does not exist under either the non-
wasteful assumption or the position oblivious assumption.

The non-wasteful assumption
An allocation (A1, . . . , An) is non-wasteful if fi(x) > 0 for
any x ∈ Ai. That is, no agent receives any portion with value
0. Under this assumption, we next show that no truthful envy-
free deterministic mechanism exists.
Theorem 2. There does not exist deterministic non-wasteful
truthful envy-free mechanism even with two players.

Proof. Suppose otherwise that there is a non-wasteful truth-
ful envy-free mechanism M. Consider the cake cutting in-
stance with two agents whose density functions are f1(x) = 1
and f2(x) = 1 on the whole cake. The allocation A =
(A1, A2) given byM must satisfy |A1| = |A2| = 0.5. Con-
sider another cake cutting instance with two agents whose
value density functions are

g1(x) =

{
1 x ∈ A1

0 otherwise and g2(x) = 1.

For this instance (g1, g2), the first agent a1 will get the whole
A1 ifM is truthful, as otherwise a1 can bid g′1(x) = 1 and
get A1. Moreover, a1 cannot get more than A1, because oth-
erwise a2 will envy a1. Thus, A = (A1, A2) is the only
possible allocation generated byM for the instance (g1, g2).
However, by taking advantage of the non-wasteful condition,
a2 can misreport his density function and get a better alloca-
tion than A2. For example, a2 can bid the following function
g′2:

g′2(x) =

{
1 x ∈ A1

0.5 otherwise .



For the instance (g1, g′2), a2 will receive the entireA2 accord-
ing to the non-wasteful condition. In addition, he will receive
some of A1 to guarantee envy-freeness. Thus, a2 will receive
a strictly larger value from manipulation, which implies that
M cannot be truthful.

The position oblivious assumption
Definition 1. Given a vector of n piecewise constant density
functions f = (f1, f2, . . . , fn), define the indicator function
Lf : Rn 7→ R, where

Lf (r1, . . . , rn) = |{x | ∀i, fi(x) = ri}|.
Similarly, assume A = (A1, . . . , An) is an allocation pro-
duced by some mechanism with these density functions, define
LAi

f : Rn 7→ R, where

LAi

f (r1, . . . , rn) = |{x ∈ Ai | ∀i, fi(x) = ri}|.
Definition 2. A mechanism M is position oblivious if for
any two cake cutting instances with density functions f =
(f1, f2, ..., fn) and f ′ = (f ′1, f

′
2, ..., f

′
n) such that Lf ≡ Lf ′ ,

the mechanism always outputs two allocations M(f) =

(A1, . . . , An) andM(f ′) = (A′1, . . . , A
′
n) such that LAi

f ≡
L
A′

i

f ′ for every i.
Intuitively, a position oblivious mechanism will decide the

allocation only based on the set of segments {Xt | t =
1, . . . ,m} and each agent’s values on these segments, but not
on these segments’ relative positions on [0, 1].

Below we show that position oblivious, truthful and envy-
free mechanism does not exist.

First we consider a special piecewise uniform case.
Lemma 1. For any I1, I2 ⊆ [0, 1] such that I1 ∩ I2 = ∅ and
|I1| = |I2|, given two density functions

f1(x) =

{
1 if x ∈ I1 ∪ I2
0 otherwise

and f2(x) =
{
1 if x ∈ I2
0 otherwise

,

any mechanism M that is truthful, envy-free and posi-
tion oblivious would produce an allocation M(f1, f2) =
(A1, A2) such that I2 ⊆ A2.

Proof. First consider the case where both players have den-
sity function f1. By the envy-free condition, both players will
get half of I1 ∪ I2. That is, we haveM(f1, f1) = (A1, A2)
with |A1 ∩ (I1 ∪ I2)| = |A2 ∩ (I1 ∪ I2)| = |I1| = |I2|.

Next consider another case where player 2 has density
function

g2(x) =

{
1 if x ∈ A2 ∩ (I1 ∪ I2)
0 otherwise

Because M is truthful, one must have M(f1, g2) =
(A′1, A

′
2) with A2 ⊆ A′2, since otherwise player 2 can bid

g2 = f1 to receive whole A2.
Finally, due to the position oblivious property and the fact

that L(f1,f2) = L(f1,g2), we know with input (f1, f2) mech-
anism should also give the whole I2 to player 2. This proves
the lemma.

Theorem 3. There is no truthful, envy-free, and position
oblivious deterministic mechanism even with two players.

Proof. Assume by contradiction that such mechanismM ex-
ists. Consider the cake cutting instance (f1, f2) with

f1(x) =

{
1 if x ∈ [0, 13 ]

0 otherwise
and f2(x) =

{
1 if x ∈ [0, 13 ]

ε if x ∈ ( 13 , 1]

with some small ε > 0.
Assume that with these inputsM produces the allocation

A = (A1, A2). By the envy-free condition of a1, we know
|A1 ∩ [0, 13 ]| ≥

1
6 , which implies |A2 ∩ [0, 13 ]| ≤

1
6 , and

by the envy-freeness of a2 we have 1
6 ≥ |A2 ∩ [0, 1/3]| ≥

1
6 (1−O(ε)), and |A2 ∩ (1/3, 1]| ≥ 1

3 .
Next, consider another cake cutting instance (g1, g2) with

g1 = f1 and g2(x) =
{
1 if x ∈ [0, 13 ] ∪ I
0 otherwise

,

where we have picked I ⊆ A2 ∩ (1/3, 1] such that |I| = 1
3 .

By Lemma 1, when reporting the true valuations,Mwould
produce the allocationM(g1, g2) = (A1, A2) with [0, 13 ] ⊆
A1. Thus a2’s utility will be no more than |I| = 1

3 . On the
other hand, by reporting his density function as g2 = f2, a2
will receive the wholeA2 according to case (a), and his utility
will be at least 1

6 (1 − O(ε)) + 1
3 = 1

2 − O(ε). With ε small
enough, this value is strictly larger than 1

3 , which implies that
M cannot be truthful.

We note that we do not know if a deterministic truthful
mechanism exists or not without any condition; we conjecture
that the answer is negative.

Comparison to other impossibility results
Our result in Theorem 2 is stronger than the impossibility re-
sults in [Aziz and Ye, 2014]. When there are only two agents,
envy-freeness is equivalent to proportionality, so Theorem 2
implies that no non-wasteful proportional mechanism exists.
The three impossibility results in [Aziz and Ye, 2014], on
the other hand, either requires the extra Pareto optimality as-
sumption, or is based on a stronger notion called robust pro-
portionality.

Another similar impossibility result is given in [Brânzei
and Miltersen, 2015], in which the authors show that any
truthful mechanism must be dictatorial. Our result is not
comparable to this. Although dictatorship is stronger than
non-envy-freeness, Brânzei and Miltersen consider mecha-
nisms based on the Robertson-Webb query model. Revealing
agents’ density functions through such iterative queries pro-
vides much more room for agents’ strategic behaviors, as the
agents answering the queries in later iterations can observe
the actions of the agents who answer the queries in the first
few iterations, and have their strategies being adaptive. In
fact, if we consider an analogous setting in our case such that
agents report their density functions sequentially (instead of
simultaneously), we can have the below impossibility result
with no additional assumptions like non-wastefulness and po-
sition obliviousness.
Theorem 4. If agents report their density functions sequen-
tially in a fixed order such that fi is made public at the time
agent ai reports it, then there does not exist any deterministic
truthful envy-free mechanism even with two players.



Proof. Suppose there is a truthful envy-free mechanismM.
We assume without loss of generality that a1 reports first.

Let f1, f2, A1, A2, g1, g2, g
′
2 denote the same meanings as

in the proof of Theorem 2. Following the same analysis,M
must output A = (A1, A2) for both (f1, f2) and (g1, g2).

Consider another profile (h1, h2) where h1 = g1 and
h2 = g′2. Due to the envy-free condition, a1 cannot receive
the entire A1. Since h1 = 0 on A2, this means a1 receives a
value strictly less than 0.5.

Consider the following strategy for a2: if a1 reports f1,
report f2; otherwise, report his true valuation h2. Fixing
this strategy for a2, if a1 truthfully reports h1, then a2 shall
report h2, and we have seen that a1 will receive value strictly
less than 0.5. On the other hand, if a1 lies, and reports f1
instead, then a2 shall report f2, in which case the input toM
is (f1, f2), and we know the output allocation is (A1, A2).
Now, a1 receives value exactly 0.5. This shows that truth-
telling is not a dominant strategy for a1, and we conclude the
proof.

4 Large Markets
In a large market, the original market (with n agents) is repli-
cated k times, i.e., there are nk agents in total. The defi-
nitions of envy-freeness is the same as the one in original
markets. However, rather than the dominant strategy truth-
fulness, in this section we are interested in mechanisms in
which every agent reporting his valuation truthfully form a
Nash equilibrium. This is because the large market assump-
tion requires agents’ valuations to form groups of identicals.
Such assumption would play no role in the definition of dom-
inant strategy truthfulness. Further, it is reasonable to as-
sume that in a large market there will be enough partici-
pants who are truth-telling. Such notion of truthfulness has
also been used in several works of other research topics such
as prediction markets, crowdsourcing [Miller et al., 2005;
Dasgupta and Ghosh, 2013; Shnayder et al., 2016].

Again, we consider both the connected pieces setting (Sec-
tion 4.1) and the general setting (Section 4.2). Before these,
we first provide a characterization of the Nash social welfare
optimal allocations. Such characterization can be found use-
ful in the analysis for the connected pieces setting, as well as
other potential applications.

A known property for Nash social welfare maximizing al-
locations is the proportional fairness [Kelly, 1997].
Theorem 5. An allocation A = (A1, . . . , An) maxi-
mizes the Nash social welfare NSW(A) if and only if∑n

i=1
vi(A

′
i)−vi(Ai)
vi(Ai)

≤ 0 for any allocation A′.

Theorem 5 implies the following important characteriza-
tion of the Nash social welfare maximizing allocations.
Theorem 6. An allocation A = (A1, . . . , An) maximizes the
Nash social welfare NSW(A) if and only if the following
condition holds for each segment Xt:

if Ai ∩Xt 6= ∅, then
fi(Xt)

vi(Ai)
≥ fj(Xt)

vj(Aj)
for all i, j. (*)

Proof. The only-if direction follows immediately from The-
orem 5: if we let A′ be the allocation in which, starting

from A, we take some fraction ε > 0 of Xt allocated to
ai and give it to aj , the inequality in Theorem 5 becomes
εfj(Xt)/vj(Aj)− εfi(Xt)/vi(Ai) ≤ 0, which yields (*).

To show the if direction, suppose an allocation A satisfies
(*). Consider an arbitrary allocation A′. We have vi(A′i) =∑m

t=1 fi(Xt)|A′i ∩Xt|, so vi(A
′
i)

vi(Ai)
=
∑m

t=1
fi(Xt)
vi(Ai)

|A′i ∩Xt|.

Summing all those vi(A
′
i)

vi(Ai)
, we have

n∑
i=1

vi(A
′
i)

vi(Ai)
=

n∑
i=1

m∑
t=1

fi(Xt)

vi(Ai)
|A′i ∩Xt|

=

m∑
t=1

n∑
i=1

fi(Xt)

vi(Ai)
|A′i ∩Xt|

≤
m∑
t=1

|Xt|
(

max
1≤j≤n

fj(Xt)

vj(Aj)

)

=

m∑
t=1

(
max
1≤j≤n

fj(Xt)

vj(Aj)

) n∑
i=1

|Ai ∩Xt|

=

m∑
t=1

n∑
i=1

fi(Xt)

vi(Ai)
|Ai ∩Xt|

(By (*), Ai ∩Xt 6= ∅ implies fi(Xt)
vi(Ai)

is maximum)

=

n∑
i=1

1

vi(Ai)

m∑
t=1

fi(Xt)|Ai ∩Xt|

=

n∑
i=1

vi(Ai)

vi(Ai)
,

which is exactly the proportional fairness. We conclude the if
direction by Theorem 5 again.

Finally, we need the following lemma in the next subsec-
tion, which shows that the maximum Nash social welfare is
insensitive when a small extra amount of cake is allocated.
Lemma 2 follows easily from the resource monotonicity, an-
other known property that a Nash social welfare maximizing
allocation has [Sziklai and Segal-Halevi, 2015]. We omit its
proof due to space limit.

Lemma 2. For I ⊆ [0, 1], let A = (A1, . . . , An) be an al-
location on [0, 1] and A− = (A−1 , . . . , A

−
n ) be an allocation

on [0, 1] \ I such that both maximize the Nash social welfare.
If there exists ε > 0 such that vi(I) ≤ εvi(Ai) holds for all
i, then (1− ε)nvi(Ai) ≤ vi(A−i ) ≤ vi(Ai).

4.1 Connected Pieces Setting
In this subsection, we consider the connected pieces setting
in the large market model. Recall that in a large market, the
original market with n agents is replicated k times, i.e., there
are nk agents in total in the market. For each i, let Ni =
{ai,j | j = 1, . . . , k} be the set of agents replicated from ai.
Thus, the whole agent set is given by N = ∪i=1,...,nNi. Let
A = (Ai,j)i=1,...,n,j=1,...,k denote an allocation, and Bi =
∪j=1,...,kAi,j be the bundle of allocated shares of agents in
Ni. Let fi and vi denote the density and value functions,
respectively, shared by all agents in Ni.



Notice that in an envy-free allocation, all agents in the
same set Ni must receive the same value vi(Ai,j) =

vi(Bi)
k .

This is because they have the same valuation function and
should not envy each other. The lemma below is an immedi-
ate implication of this observation.

Lemma 3. If there is an agent set Ni such that the piece
received by an agent in Ni totally lies in a segment Xt, then
fi(Xt)
vi(Bi)

≥ fj(Xt)
vj(Bj)

for any other agent set Nj .

Proof. If the piece received by an agent in Ni totally lies in
Xt, then the length of this piece is vi(Bi)

kfi(Xt)
. By the envy-free

condition, we have vj(Bj)
k ≥ fj(Xt)· vi(Bi)

kfi(Xt)
for all j. Hence,

fi(Xt)
vi(Bi)

≥ fj(Xt)
vj(Bj)

.

The inequality in the above lemma is similar to the con-
dition (*) in Theorem 6. Note that as k tends to infinity,
the length of the piece that each agent gets approaches to
zero. Since there are at most m − 1 agents whose allocated
pieces do not completely fall into a single segment, techni-
cally, (B1, . . . , Bn) maximizes the Nash social welfare if we
ignore those m − 1 agents’ allocated pieces. Based on this
idea, we present the following result saying that truth-telling
converges to a Nash equilibrium as k tends to infinity.

Theorem 7. For the large market model where the original
instance with n agents is replicated by k copies, given any
envy-free mechanism M, if all agents report their true val-
uations, the utility gain of any agent from misreporting ap-
proaches to zero as k →∞.

Proof (Sketch). Suppose a1,1 plays the best strategy by re-
porting f ′1, and let A′ be the resultant allocation output by
M. We aim to show v1(A

′
1,1)/v1(A1,1) → 1 as k → ∞. To

keep other agents in group N1 from envying a1,1, it should
still hold that v1(A′1,1) ≤ v1(A

′
1,j) for all j = 2, . . . , k. We

therefore have

v1(A
′
1,1)

v1(A1,1)
=
kv1(A

′
1,1)

kv1(A1,1)
≤
∑k

j=1 v1(A
′
1,j)

kv1(A1,1)
=
v1(B

′
1)

v1(B1)
,

so it will be enough to show v1(B
′
1)/v1(B1)→ 1.

Let I be the union of those agents’ allocated pieces in the
allocationAwhich do no fall into a single segment, i.e., those
Ai,j such that there exists t with Ai,j ∩ Xt 6= ∅ and Ai,j ∩
Xt+1 6= ∅. Similarly, let I ′ be the same union corresponding
to the allocationA′. It is easy to see that both |I| and |I ′| tend
to zero as k → ∞. Therefore, for each i = 1, . . . , n, both
vi(I) and vi(I ′) tend to zero.

Finally, consider an allocation S of [0, 1] to only n players
with the same density functions f1, . . . , fn which maximizes
NSW(S). By Lemma 3 and Theorem 6, we can see that
B maximizes the Nash social welfare on [0, 1] \ I and B′

maximizes the Nash social welfare on [0, 1]\I ′. By Lemma 2,
we have v1(B1) → v1(S1) and v1(B′1) → v1(S1), which
implies v1(B′1)/v1(B1)→ 1.

4.2 General Setting
For general setting without the connected pieces constraint,
we present a truthful mechanism for large markets.
Theorem 8. For each k ≥ 2, the mechanism that allocates
each segmentXt evenly to all nk agents (in any deterministic
way) is envy-free and truthful.

Proof. Since each segment Xt, on which all agents have uni-
form valuation, is evenly divided, each agent receives ex-
actly 1/nk of the total value on the cake, and believes any
other agents receive the same value. This implies the envy-
freeness. It remains to show the truthfulness.

Consider the m − 1 break points between segments
X1, . . . , Xm defined by (f1, . . . , fn). When the market is
replicated, even if an agent misreports his valuation function,
the break point between Xt and Xt+1 still exists (because
the replicated agents still report their true functions). There-
fore, although there might be new break points, the existing
break points do not vanish. No matter how Xt is further sub-
divided, it is still evenly distributed among all agents. Hence,
the mechanism is truthful.

We comment that the claim still holds if we slightly change
the mechanism by assigning each segmentXt evenly to those
who values the segment positively (i.e., the mechanism is
non-wasteful). When k = 1 (i.e., the large market degen-
erates to the normal market), if we allocate each segment
to all agents uniformly and randomly, [Chen et al., 2010]
and [Mossel and Tamuz, 2010] showed that such randomized
mechanism is truthful in expectation. However, it is easy to
see that the mechanism is not universally truthful.

5 Conclusion
We study the problem of designing deterministic truthful
envy-free cake cutting mechanisms when agents have piece-
wise constant value density functions. Our results indicate
that truthfulness cannot be achieved by an envy-free mecha-
nism in many settings. This partially answers an open ques-
tion raised in [Chen et al., 2010]. In addition, we consider
cake cutting mechanisms in large markets and show that when
the economy is replicated, there exist mechanisms in which
truth-telling converges to a Nash equilibrium.

The negative results (Theorem 2, 3 and 4) in Section 3.2
are based on certain assumptions. We believe it is an in-
teresting and important open question to determine if the
negative result still holds without these assumptions, that is:
for piecewise constant valuations, does there exist a deter-
ministic truthful envy-free mechanism (without the connected
pieces constraint)? If the answer to this question is still neg-
ative, another natural direction for future research is to study
truthful mechanisms for piecewise constant valuations that
are approximately envy-free.



References
[Aziz and Mackenzie, 2016a] Haris Aziz and Simon

Mackenzie. A discrete and bounded envy-free cake
cutting protocol for any number of agents. FOCS, 2016.

[Aziz and Mackenzie, 2016b] Haris Aziz and Simon
Mackenzie. A discrete and bounded envy-free cake
cutting protocol for four agents. STOC, 2016.

[Aziz and Ye, 2014] Haris Aziz and Chun Ye. Cake cutting
algorithms for piecewise constant and piecewise uniform
valuations. In WINE, 2014.

[Bei et al., 2012] Xiaohui Bei, Ning Chen, Xia Hua,
Biaoshuai Tao, and Endong Yang. Optimal proportional
cake cutting with connected pieces. In AAAI, 2012.

[Brams and Taylor, 1995] Steven J Brams and Alan D Tay-
lor. An envy-free cake division protocol. American Math-
ematical Monthly, 102(1), 1995.

[Brams and Taylor, 1996] Steven J Brams and Alan D Tay-
lor. Fair Division: From cake-cutting to dispute resolution.
Cambridge University Press, 1996.

[Brânzei and Miltersen, 2015] Simina Brânzei and Peter Bro
Miltersen. A dictatorship theorem for cake cutting. IJCAI,
2015.

[Chen et al., 2010] Yiling Chen, John Lai, David Parkes, and
Ariel D Procaccia. Truth, justice, and cake cutting. In
AAAI, 2010.

[Cheung, 2016] Yun Kuen Cheung. Better strategyproof
mechanisms without payments or prior—an analytic ap-
proach. arXiv preprint arXiv:1604.05243, 2016.

[Cole and Tao, 2016] Richard Cole and Yixin Tao. Large
market games with near optimal efficiency. In EC, 2016.

[Cole et al., 2013] Richard Cole, Vasilis Gkatzelis, and
Gagan Goel. Mechanism design for fair division: allo-
cating divisible items without payments. In EC, 2013.

[Cripps and Swinkels, 2006] Martin W. Cripps and
Jeroen M. Swinkels. Efficiency of large double auc-
tions. Econometrica, 74(1), 2006.

[Dasgupta and Ghosh, 2013] Anirban Dasgupta and Arpita
Ghosh. Crowdsourced judgement elicitation with endoge-
nous proficiency. In WWW, 2013.

[Fudenberg et al., 2007] Drew Fudenberg, Markus M. Mo-
bius, and Adam Szeidl. Existence of equilibria in large
double auctions. JET, 133(1), 2007.

[Immorlica and Mahdian, 2005] Nicole Immorlica and Mo-
hammad Mahdian. Marriage, honesty, and stability. In
SODA, 2005.

[Jackson and Manelli, 1997] Matthew O. Jackson and Ale-
jandro M. Manelli. Approximately competitive equilibria
in large finite economies. JET, 77(2), 1997.

[Jackson, 1992] Matthew O. Jackson. Incentive compatibil-
ity and competitive allocations. Economics Letters, 1992.

[Kaneko and Nakamura, 1979] Mamoru Kaneko and Ken-
jiro Nakamura. The nash social welfare function. Econo-
metrica, 1979.

[Kelly, 1997] Frank Kelly. Charging and rate control for
elastic traffic. ETT, 8(1), 1997.

[Kojima and Pathak, 2009] Fuhito Kojima and Parag A.
Pathak. Incentives and stability in large two-sided match-
ing markets. JET, 99(3), 2009.

[Kurokawa et al., 2013] David Kurokawa, John K Lai, and
Ariel D Procaccia. How to cut a cake before the party
ends. In AAAI, 2013.

[Maya and Nisan, 2012] Avishay Maya and Noam Nisan. In-
centive compatible two player cake cutting. In WINE,
2012.

[Miller et al., 2005] Nolan Miller, Paul Resnick, and Richard
Zeckhauser. Eliciting informative feedback: The peer-
prediction method. Management Science, 2005.

[Mossel and Tamuz, 2010] Elchanan Mossel and Omer
Tamuz. Truthful fair division. In SAGT, 2010.
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