Algorithms and Theory of Computation

Lecture 6: Minimum Spanning Tree (2)

Xiaohui Bei

MAS 714

August 28, 2018
Algorithm: SmarterKruskal(G):

- Initialize $T = \emptyset$; // T will store edges of a MST
- Put each vertex $u \in V$ into a set by itself;
- **foreach** $e = \{u, v\} \in E$ *in the order of increasing costs* **do**
 - **if** u and v *belong to different sets* **then**
 - add e to T;
 - merge the two sets containing u and v;
 - **end if**
- **return** T
Algorithm: SmarterKruskal(G):

Initialize $T = \emptyset$; // T will store edges of a MST
Put each vertex $u \in V$ into a set by itself;

foreach $e = \{u, v\} \in E$ in the order of increasing costs do
 if u and v belong to different sets then
 add e to T;
 merge the two sets containing u and v;

return T

Need a data structure to:

- check if two elements belong to same set
- merge two sets
Data Structure: Union-Find

Union-Find

Store a set of disjoint sets with the following operations:

1. Make-Set\((V)\): generate a set \(\{v\}\) for each vertex \(v \in V\). Name of set \(\{v\}\) is \(v\).
2. Find\((u)\): find the name of the set containing vertex \(u\).
3. Union\((u, v)\): merge the sets named \(u\) and \(v\). Name of the new set is either \(u\) or \(v\).
Data Structure: Union-Find

Union-Find

Store a set of disjoint sets with the following operations:

1. **Make-Set**(V): generate a set \{v\} for each vertex \(v \in V\). Name of set \{v\} is \(v\).

2. **Find**(u): find the name of the set containing vertex \(u\).

3. **Union**(u, v): merge the sets named \(u\) and \(v\). Name of the new set is either \(u\) or \(v\).

The running time of Kruskal algorithm will depend on the implementation of the data structure.
Union-Find: Implementation

Sets are represented as trees, by pointers towards the roots. All elements in one tree belong to a set with root’s name.

- \textbf{Find}(u): \text{ Traverse from } u \text{ to the root}
- \textbf{Union}(u, v): \text{ Make root of } u \text{ (smaller set) point to root of } v. \text{ Takes } O(1) \text{ time.}

Each vertex \(u \) has a pointer \(\text{parent}(u) \) to its ancestor.
Union-Find: Implementation

Sets are represented as trees, by pointers towards the roots. All elements in one tree belong to a set with root’s name.

- **Find**(u): Traverse from u to the root
- **Union**(u, v): Make root of u (smaller set) point to root of v. Takes O(1) time.

Each vertex u has a pointer **parent**(u) to its ancestor.

![Diagram of Union-Find](image-url)
Union-Find: Implementation

Sets are represented as trees, by pointers towards the roots. All elements in one tree belong to a set with root’s name.

- **Find(u):** Traverse from u to the root
- **Union(u, v):** Make root of u (smaller set) point to root of v. Takes $O(1)$ time.

Each vertex u has a pointer parent(u) to its ancestor.

![Figure](image)

![Figure: Union(Find(v), Find(u))](image)
New Implementation

Algorithm: Make-Set(G):
 foreach \(u \in V \) do
 \(\text{parent}(u) = u; \)

Algorithm: Find(u):
 while \(\text{parent}(u) \neq u \) do
 \(u = \text{parent}(u); \)
 return \(u \)

Algorithm: Union(u, v):
 (* parent(u) = u & parent(v) = v *)
 if \(|\text{component}(u)| \leq |\text{component}(v)| \) then
 \(\text{parent}(u) = v \)
 else
 \(\text{parent}(v) = u \)
 set new component size to \(|\text{component}(u) + \text{component}(v)| \).
Analysis

- Make-Set: $O(n)$ time.
- Union: $O(1)$ time.
- Find:
Analysis

- Make-Set: $O(n)$ time.
- Union: $O(1)$ time.
- Find: $O(\text{depth of the tree})$ time.

Proposition

The maximum depth of trees in union-find is $O(\log n)$.

Proof.

Depth of tree (u) increases by at most 1 only when the set containing u changes its name. If depth of tree u increases then the size of the set containing u (at least) doubles. Maximum set size is n; so the depth of any tree is at most $O(\log n)$.

Nanyang Technological University

MAS 714

August 28, 2018 6 / 17
Analysis

- Make-Set: \(O(n) \) time.
- Union: \(O(1) \) time.
- Find: \(O(\text{depth of the tree}) \) time.

Proposition

The maximum depth of trees in union-find is \(O(\log n) \).
Analysis

- Make-Set: $O(n)$ time.
- Union: $O(1)$ time.
- Find: $O(\text{depth of the tree})$ time.

Proposition

The maximum depth of trees in union-find is $O(\log n)$.

Proof.

- Depth of tree(u) increases by at most 1 only when the set containing u changes its name.
- If depth of tree u increases then the size of the set containing u (at least) doubles.
- Maximum set size is n; so the depth of any tree is at most $O(\log n)$.
Speed up!

When calling `Find(u)`, we traverse the path from `u` to the root. Consecutive calls of `Find(u)` traverse the same path.

Idea: Path Compression
Make all vertices on the path in `Find(u)` point to root directly.
When calling $\text{Find}(u)$, we traverse the path from u to the root.
Speed up!

- When calling $\text{Find}(u)$, we traverse the path from u to the root.
- Consecutive calls of $\text{find}(u)$ traverse the same path.
Speed up!

- When calling $\text{Find}(u)$, we traverse the path from u to the root.
- Consecutive calls of $\text{find}(u)$ traverse the same path.

Idea: Path Compression

Make all vertices on the path in $\text{Find}(u)$ point to root directly.
Path Compression: Example

Algorithm: Find(u):

```plaintext
if parent(u) \neq u then
    parent(u) =
    Find(parent(u));
return parent(u)
```

Figure: After Find(u)
Algorithm: Find(u):

```
if parent(u) ≠ u then
    parent(u) = Find(parent(u));
return parent(u)
```

Figure: After Find(u)
Algorithm: \texttt{Find}(u):

\begin{verbatim}
if parent(u) \neq u then
 parent(u) = \texttt{Find}(parent(u));
return parent(u)
\end{verbatim}
Path Compression

Question
Does Path Compression help?

Theorem
With Path Compression, the amortized running time of Find operations is $O\left(\alpha(n)\right)$, where $\alpha(n)$ is the inverse of the Ackermann function $A(n, n)$.
Path Compression

Question
Does Path Compression help?

Yes!
Path Compression

Question
Does Path Compression help?

Yes!

Theorem
With Path Compression, the amortized running time of \texttt{Find} operations is $O(\alpha(n))$, where $\alpha(n)$ is the inverse of the \texttt{Ackermann function} $A(n, n)$.
Ackermann and Inverse Ackermann Functions

Ackermann function $A(m, n)$ defined for $m, n \geq 0$:

$$A(m, n) = \begin{cases}
 n + 1 & \text{if } m = 0 \\
 A(m - 1, 1) & \text{if } m > 0 \text{ and } n = 0 \\
 A(m - 1, A(m, n - 1)) & \text{if } m > 0 \text{ and } n > 0
\end{cases}$$
Ackermann function $A(m, n)$ defined for $m, n \geq 0$:

$$A(m, n) = \begin{cases}
 n + 1 & \text{if } m = 0 \\
 A(m - 1, 1) & \text{if } m > 0 \text{ and } n = 0 \\
 A(m - 1, A(m, n - 1)) & \text{if } m > 0 \text{ and } n > 0
\end{cases}$$

- $A(3, n) = 2^{n+3} - 3$
- $A(4, 3) = 2^{2^{65536}} - 3$
Ackermann and Inverse Ackermann Functions

Ackermann function $A(m, n)$ defined for $m, n \geq 0$:

$$A(m, n) = \begin{cases}
 n + 1 & \text{if } m = 0 \\
 A(m - 1, 1) & \text{if } m > 0 \text{ and } n = 0 \\
 A(m - 1, A(m, n - 1)) & \text{if } m > 0 \text{ and } n > 0
\end{cases}$$

- $A(3, n) = 2^{n+3} - 3$
- $A(4, 3) = 2^{2^{65536}} - 3$

$\alpha(n)$ is the inverse of $A(n, n)$

For all practical purposes, $\alpha(n) \leq 5$.
Running time of Kruskal’s Algorithm

Using Union-Find data structure, Kruskal’s Algorithm takes

- \(O(m) \) \textbf{Find} operations (two for each edge)
- \(O(n) \) \textbf{Union} operations (one for each edge added to \(T \))
- 1 sorting operation

Total time = \(O(m\alpha(n) + n + m\log m) = O(m\log m) \)
Running time of Kruskal’s Algorithm

Using Union-Find data structure, Kruskal’s Algorithm takes

- $O(m)$ Find operations (two for each edge)
- $O(n)$ Union operations (one for each edge added to T)
- 1 sorting operation

Total time $= O(\alpha(n) + n + m \log m) = O(m \log m)$
Prim’s Algorithm

\(T \) maintained by the algorithm will be a tree, starting from a single vertex. In each iteration, pick edges with least attachedment cost to \(T \).

Algorithm: \(\text{Prim}(u) \):

1. Initialize \(T = \emptyset \); \hspace{1cm} // \(T \) will store edges of a MST
2. Initialize \(S = \{1\} \);
3. **while** \(T \) is not a spanning tree of \(G \) **do**
 - choose \(e = (u, v) \in E \) of minimum cost
 - such that \(u \in S \) and \(v \in V - S \);
 - \(T = T \cup \{e\} \);
 - \(S = S \cup \{v\} \);
4. **return** \(T \)
Correctness

T maintained by the algorithm will be a tree, starting from a single vertex. In each iteration, pick edges with least attachedment cost to T.

Proof of correctness.

1. If e is added to the tree, then e is safe
 - Let S be the vertices connected by edges in T when e is added.
 - e is the minimum cost edge crossing cut $(S, V \setminus S)$.

2. S is connected in each iteration and eventually $S = V$.
Time Complexity Analysis

T maintained by the algorithm will be a tree, starting from a single vertex. In each iteration, pick edges with least attachededment cost to T.

Algorithm: $\text{Prim}(u)$:

Initialize $T = \emptyset$; // T will store edges of a MST
Initialize $S = \{1\}$;

while T is not a spanning tree of G do
 choose $e = (u, v) \in E$ of minimum cost such that $u \in S$ and $v \in V - S$;
 $T = T \cup \{e\}$;
 $S = S \cup \{v\}$;

return T

$O(n)$ iterations
$O(m)$ time to pick edge e in each iteration

Total running time $= O(mn)$
Time Complexity Analysis

T maintained by the algorithm will be a tree, starting from a single vertex. In each iteration, pick edges with least attachedment cost to T.

Algorithm: Prim(u):

1. Initialize $T = \emptyset$; // T will store edges of a MST
2. Initialize $S = \{1\}$;
3. while T is not a spanning tree of G do
 1. choose $e = (u, v) \in E$ of minimum cost such that $u \in S$ and $v \in V - S$;
 2. $T = T \cup \{e\}$;
 3. $S = S \cup \{v\}$;
4. return T

- $O(n)$ iterations
- $O(m)$ time to pick edge e in each iteration
- Total running time $= O(mn)$
More Efficient Implementation

Algorithm: SmarterPrim(u):

Initialize $T = \emptyset$; // T will store edges of a MST
Initialize $S = \{1\}$;
for $u \notin S$, $a(u) = \arg \min_{e=(u,v), v \in S} c_e$;
while T is not a spanning tree of G do
 pick minimum $a(u) = (u, v)$;
 $T = T \cup \{a(u)\}$;
 $S = S \cup \{u\}$;
 update array a;
return T
More Efficient Implementation

Algorithm: SmarterPrim(u):

- Initialize \(T = \emptyset \);
 \(\text{// T will store edges of a MST} \)
- Initialize \(S = \{1\}; \)
- for \(u \notin S \), \(a(u) = \arg \min_{e=(u,v), v \in S} c_e; \)
- **while** \(T \) **is not a spanning tree of** \(G \) **do**
 - pick minimum \(a(u) = (u, v) ; \)
 - \(T = T \cup \{a(u)\}; \)
 - \(S = S \cup \{u\}; \)
 - update array \(a; \)
- return \(T \)

Maintain vertices in \(V \setminus S \) in a **priority queue**.
Priority Queue

Priority Queues

Store a set \(S \) of \(n \) elements, where each element \(v \in S \) has an associated real/integer key \(k(v) \), with the following operations:

1. **Make-Queue**: create an empty queue
2. **Find-Min**: find the minimum key in \(S \)
3. **Extract-Min**: remove \(v \in S \) with the smallest key and return it
4. **Decrease-Key** \((v, k'(v))\): decrease key of \(v \) from \(k(v) \) to \(k'(v) \)
5. **Add** \((v, k(v))\): add new element \(v \) with key \(k(v) \) to \(S \)

Very useful data structure, will discuss in detail in later lectures.

Prim requires \(O(n) \) Extract-Min and \(O(m) \) Decrease-Key operations.

Using standard Heaps, total time = \(O((m + n) \log n) \).

Using Fibonacci Heaps, total time = \(O(n \log n + m) \).
Priority Queue

Priority Queues

Store a set \(S \) of \(n \) elements, where each element \(v \in S \) has an associated real/integer key \(k(v) \), with the following operations:

1. **Make-Queue**: create an empty queue
2. **Find-Min**: find the minimum key in \(S \)
3. **Extract-Min**: remove \(v \in S \) with the smallest key and return it
4. **Decrease-Key** \((v, k'(v))\): decrease key of \(v \) from \(k(v) \) to \(k'(v) \)
5. **Add** \((v, k(v))\): add new element \(v \) with key \(k(v) \) to \(S \)

Very useful data structure, will discuss in detail in later lectures.

Prim requires \(O(n) \) Extract-Min and \(O(m) \) Decrease-Key operations.

Using standard Heaps, total time = \(O((m+n) \log n) \).

Using Fibonacci Heaps, total time = \(O(n \log n + m) \).
Priority Queue

Priority Queues

Store a set S of n elements, where each element $v \in S$ has an associated real/integer key $k(v)$, with the following operations:

1. **Make-Queue**: create an empty queue
2. **Find-Min**: find the minimum key in S
3. **Extract-Min**: remove $v \in S$ with the smallest key and return it
4. **Decrease-Key**($v, k'(v)$): decrease key of v from $k(v)$ to $k'(v)$
5. **Add**($v, k(v)$): add new element v with key $k(v)$ to S

Very useful data structure, will discuss in detail in later lectures.

Prim requires $O(n)$ Extract-Min and $O(m)$ Decrease-Key operations.

- Using standard Heaps, total time $= O((m + n) \log n)$.
- Using Fibonacci Heaps, total time $= O(n \log n + m)$.
More about MST

- There is an algorithm that runs in $O(n + m\alpha(n))$ time.

- There is a randomized algorithm that runs in $O(m + n)$ expected time.

- There is an algorithm using bit operations in RAM model that runs in $O(m + n)$ time.

- **Still open:** Is there an $O(m + n)$ time deterministic algorithm in the comparison model?