Algorithms and Theory of Computation

Lecture 1: Introduction, Basics of Algorithms

Xiaohui Bei

MAS 714

August 13, 2018
Administration

- **Lectures**
 - Monday 10:30am - 12:30pm SPMS-TR+12
 - Tuesday 9:30am - 11:30am SPMS-TR+12

- **Tutorials**
 - Tuesday 10:30am - 11:30am biweekly

- **Website:** http://www3.ntu.edu.sg/home/xhbei/MAS714.html

- **E-mail:** xhbei@ntu.edu.sg Office: MAS-05-46
Gradings

Homework: 20%, Midterm 20%, Final: 60%

Homework

- Submitted by e-mail (as PDF files obtained from \LaTeX{} or Word sources), or by pushing a hard copy under my office door.
- Solutions will be discussed on tutorials.

Homework policy:

- You are allowed (and encouraged) to discuss with your peers on the questions and solutions. But everyone needs to write and submit their own solutions.
- No cheating behavior will be tolerated.

NTU academic integrity policy can be found at http://www.ntu.edu.sg/ai.
Recommended Reading

- Kleinberg, Tardos: *Algorithm Design*
- Cormen, Leiserson, Rivest, Stein: *Introduction to Algorithms*
- Sipser: *Introduction to the Theory of Computation*
Course Structure

1. Algorithm Design
 - graph algorithms
 - greedy
 - divide and conquer
 - dynamic programming
 - linear programming
 - network flow

2. Automata Theory
 - regular languages
 - finite state machines

3. Computability Theory
 - Turing machines
 - undecidability
 - P and NP
 - NP-completeness
Algorithms

An algorithm is a procedure for performing a computation. Start from an initial state and an input (perhaps empty), eventually produce an output. An algorithm consists of primitive steps/instructions that can be executed mechanically. What is a primitive step? Depends on the model of computation.

A computer is a device that can be programmed to carry out primitive steps.
An **algorithm** is a procedure for performing a computation.

Start from an initial state and an **input** (perhaps empty), eventually produce an **output**.

An algorithm consists of **primitive steps/instructions** that can be executed mechanically.

What is a primitive step? Depends on the model of computation.
 - C++ commands
Algorithms

- An algorithm is a procedure for performing a computation.
- Start from an initial state and an input (perhaps empty), eventually produce an output.
- An algorithm consists of primitive steps/instructions that can be executed mechanically.
- What is a primitive step? Depends on the model of computation.
 - C++ commands
- A computer is a device that can be programmed to carry out primitive steps.
 - can then implement an entire algorithm by keeping track of state
 - model vs. device
Computers can be Humans!

Figure: Women at work tabulating during World War II (Shorpy)
How to measure the performance of an algorithm?
How to measure the performance of an algorithm?

- Correctness: a must!
 - the definition of “correctness” can be discussed
How to measure the performance of an algorithm?

- **Correctness**: a must!
 - the definition of “correctness” can be discussed

- Two most important measures are **time** and **space**.
How to measure the performance of an algorithm?

- Correctness: a must!
 - the definition of “correctness” can be discussed

- Two most important measures are time and space.

- Time: number of primitive steps needed to perform the computation.
Complexity

How to measure the performance of an algorithm?

- Correctness: a must!
 - the definition of “correctness” can be discussed

- Two most important measures are time and space.

- Time: number of primitive steps needed to perform the computation.

- Space: the amount of storage needed during the computation.
Algorithm Example

Number Addition

Given two \(n \)-digit numbers \(x \) and \(y \), compute \(x + y \).
Algorithm Example

Number Addition

Given two \(n \)-digit numbers \(x \) and \(y \), compute \(x + y \).

Procedure

\[
\begin{array}{c}
1 & 1 \\
3 & 8 & 7 & 3 & 4 \\
+ & 8 & 4 & 0 & 7 & 5 \\
\hline
1 & 2 & 2 & 8 & 0 & 9 \\
\end{array}
\]

Algorithm explained:

- write numbers under each other
- add number position by position moving a “carry” forward
Algorithm Analysis

Primitive steps:
Algorithm Analysis

Primitive steps:
- add two digits
- read and write

Time complexity: algorithm requires $O(n)$ primitive steps.

Space complexity: algorithm requires $O(n)$ storage space.
Algorithm Analysis

Primitive steps:
- add two digits
- read and write

Time complexity:
Algorithm Analysis

Primitive steps:
- add two digits
- read and write

Time complexity:
- algorithm requires $O(n)$ primitive steps.
Algorithm Analysis

Primitive steps:
- add two digits
- read and write

Time complexity:
- algorithm requires $O(n)$ primitive steps.

Space complexity:
Algorithm Analysis

Primitive steps:
- add two digits
- read and write

Time complexity:
- algorithm requires $O(n)$ primitive steps.

Space complexity:
- algorithm requires $O(n)$ storage space.
Model of Computation

An “idealized mathematical construct” that describes the primitive instructions and other details.

- Turing Machines
- Circuits
- Random Access Machine (RAM)
- etc.
Model of Computation

An “idealized mathematical construct” that describes the primitive instructions and other details.

- Turing Machines
- Circuits
- Random Access Machine (RAM)
- etc.

Random Access Machine (RAM)

- read/write from registers
- arithmetic operation on registers
- indirect addressing
Model of Computation

An “idealized mathematical construct” that describes the primitive instructions and other details.

- Turing Machines
- Circuits
- Random Access Machine (RAM)
- etc.

Random Access Machine (RAM)
- read/write from registers
- arithmetic operation on registers
- indirect addressing

Within this course, basically, pseudocode/informal language.
Some Other Examples

Number Multiplication

Given two \(n \)-digit numbers \(x \) and \(y \), compute \(x \cdot y \).
Some Other Examples

Number Multiplication

Given two n-digit numbers x and y, compute $x \cdot y$.

Procedure

\[
\begin{array}{c}
8 7 3 \\
\times 4 7 5 \\
\hline
4 3 6 5 \\
6 1 1 1 \\
3 4 9 2 \\
\hline
4 1 4 6 7 5
\end{array}
\]
Number Multiplication

- Number of primitive steps: $O(n^2)$.
- Space: $O(n^2)$.

Can we do better? Yes, but highly nontrivial.

Previous best time: $O(n \log n \log \log n)$ [Schonhage-Strassen 1971]

Conjecture: an $O(n \log n)$ time algorithm exists.

We don't even understand multiplication well.
Number Multiplication

- Number of primitive steps: \(O(n^2) \).
- Space: \(O(n^2) \).
- Can we do better?
Number Multiplication

- Number of primitive steps: $O(n^2)$.
- Space: $O(n^2)$.

Can we do better? Yes, but highly nontrivial.
 - best known algorithm time: $O(n \log n \cdot 2^{O(\log^* n)})$ [Furer 2008]
 - previous best time: $O(n \log n \log \log n)$ [Schonhage-Strassen 1971]
 - Conjecture: an $O(n \log n)$ time algorithm exists.

- We don’t even understand multiplication well.
Independent Set

Input: an undirected graph $G = (V, E)$.

A set of nodes $S \subseteq V$ is **independent** if no two nodes in S are jointed by an edge.

Problem: find an independent set that is as large as possible.
Independent Set

Input: an undirected graph $G = (V, E)$.

A set of nodes $S \subseteq V$ is **independent** if no two nodes in S are jointed by an edge.

Problem: find an independent set that is as large as possible.

Harder: no efficient algorithm is known.

- conjecture: no such algorithm exists

On the good side: checking the validity of a solution is easy.
Hex (Board Game)

Rules: Players take turn placing a stone (of their color) on an unoccupied cell.

Goal: Form a path of their own stones connecting the opposing side of the board marked by their colors.

Problem: determine whether a position is a winning position.
Hex (Board Game)

Hex

- **Rules**: Players take turn placing a stone (of their color) on an unoccupied cell.

- **Goal**: Form a path of their own stones connecting the opposing side of the board marked by their colors.

- **Problem**: determine whether a position is a winning position.

Even harder: PSPACE-Complete

- even checking a solution is hard
Posts’ Correspondence Problem

Input: two sequences of strings.

- e.g. $A = [a, ab, bba], B = [baa, aa, bb]$

Problem: Find a sequence of indices such that the corresponding concatenated strings are the same.

- e.g. $(3, 2, 3, 1) \implies bba \ ab \ bba \ a = bb \ aa \ bb \ baa$
Posts’ Correspondence Problem

- **Input**: two sequences of strings.
 - e.g. $A = [a, ab, bba]$, $B = [baa, aa, bb]$

- **Problem**: Find a sequence of indices such that the corresponding concatenated strings are the same.
 - e.g. $(3, 2, 3, 1) \implies bba \ ab \ bba \ a = bb \ aa \ bb \ baa$

- Even harder: Undecidable
 - no algorithm exists!
Algorithm design is not a piece of cake.

Difficulty varies in different problems.
Basics of Algorithm Analysis
What is a good algorithm?

“No, Thursday’s out. How about never—is never good for you?”

Figure: All Rights Reserved http://www.cartoonbank.com
What qualifies as an efficient algorithm?

- Most important factor: running time.
- Many possibilities: \(n, n \log n, n^2, n^3, n^{100}, 2^n, n!, \) etc...
What qualifies as an efficient algorithm?

- Most important factor: running time.
- Many possibilities: n, $n \log n$, n^2, n^3, n^{100}, 2^n, $n!$, etc...

Brute force: enumerate every possible solutions that check their validity.

- Usually takes at least 2^n time, is not considered as efficient.
Running Time Examples

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{25} years, we simply record the algorithm as taking a very long time.

<table>
<thead>
<tr>
<th>n</th>
<th>n</th>
<th>$n \log_2 n$</th>
<th>n^2</th>
<th>n^3</th>
<th>1.5^n</th>
<th>2^n</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>< 1 sec</td>
<td>4 sec</td>
</tr>
<tr>
<td>30</td>
<td>< 1 sec</td>
<td>18 min</td>
<td>10^{25} years</td>
</tr>
<tr>
<td>50</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>11 min</td>
<td>36 years</td>
<td>very long</td>
</tr>
<tr>
<td>100</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>12,892 years</td>
<td>10^{17} years</td>
<td>very long</td>
</tr>
<tr>
<td>1,000</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>1 sec</td>
<td>18 min</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>10,000</td>
<td>< 1 sec</td>
<td>< 1 sec</td>
<td>2 min</td>
<td>12 days</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>100,000</td>
<td>< 1 sec</td>
<td>< 2 sec</td>
<td>3 hours</td>
<td>32 years</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
<tr>
<td>1,000,000</td>
<td>1 sec</td>
<td>20 sec</td>
<td>12 days</td>
<td>31,710 years</td>
<td>very long</td>
<td>very long</td>
<td>very long</td>
</tr>
</tbody>
</table>
Efficient Algorithms

An algorithm called \textit{efficient} if it has a polynomial running time.

What is so good about polynomial running time?

- Robust, mathematically sound.
- When input size doubles, the running time only increases by some constant factor C.
- Works well in practice.

Drawbacks:
- Polynomials with large constants/exponents are not that practical.
- $20n$ or n^{100} or $n + 0.02\ln n$?
Polynomial Running Time

Efficient Algorithms

An algorithm called **efficient** if it has a polynomial running time.

What is so good about polynomial running time?

- Robust, mathematically sound.
- When input size doubles, the running time only increases by some constant factor C.
- Works well in practice.
Polynomial Running Time

Efficient Algorithms

An algorithm called **efficient** if it has a polynomial running time.

What is so good about polynomial running time?

- Robust, mathematically sound.
- When input size doubles, the running time only increases by some constant factor C.
- Works well in practice.

Drawbacks:

- Polynomials with large constants/exponents are not that practical.
- $20n^{100}$ or $n^{1.02\ln n}$?
Type of Analyses

Running Time

How to define the running time of an algorithm?

Worst-case. Running time guarantee for any input of size \(n \).

Average-case. Expected running time for a random input of size \(n \).

Probabilistic. Expected running time of a randomized algorithm.

Amortized. Worst-case running time for any sequence of \(n \) operations.
Type of Analyses

Running Time

How to define the running time of an algorithm?

- **Worst-case.** Running time guarantee for any input of size n.
Running Time

How to define the running time of an algorithm?

- **Worst-case.** Running time guarantee for *any input* of size \(n \).
- **Average-case.** Expected running time for a *random input* of size \(n \).
- **Probabilistic.** Expected running time of a *randomized algorithm*.
- **Amortized.** Worst-case running time for any sequence of \(n \) operations.