Differential Attacks Against Stream Cipher ZUC

Hongjun Wu, Tao Huang, Phuong Ha Nguyen, Huaxiong Wang, and San Ling

Division of Mathematical Sciences™,
School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore
{wuhj,huangtao,ng007ha,hxwang,lingsan}@ntu.edu.sg

Abstract. Stream cipher ZUC is the core component in the 3GPP con-
fidentiality and integrity algorithms 128-EEA3 and 128-EIA3. In this
paper, we present the details of our differential attacks against ZUC 1.4.
The vulnerability in ZUC 1.4 is due to the non-injective property in the
initialization, which results in the difference in the initialization vector
being cancelled. In the first attack, difference is injected into the first
byte of the initialization vector, and one out of 2'°* random keys re-
sult in two identical keystreams after testing 2'32 IV pairs for each key.
The identical keystreams pose a serious threat to the use of ZUC 1.4 in
applications since it is similar to reusing a key in one-time pad. Once
identical keystreams are detected, the key can be recovered with aver-
age complexity 2994, In the second attack, difference is injected into the
second byte of the initialization vector, and every key can result in two
identical keystreams with about 25¢ IVs. Once identical keystreams are
detected, the key can be recovered with complexity 2°7. We have pre-
sented a method to fix the flaw by updating the LFSR in an injective way
in the initialization. Our suggested method is used in the later versions
of ZUC. The latest ZUC 1.6 is secure against our attacks.

1 Introduction

Comparing to block ciphers, dedicated stream ciphers normally require less com-
putation for achieving the same security level. Stream ciphers are widely used
in applications. For example, RC4 [10] is used in SSL and WEP, and A5/1 [8] is
used in GSM (the Global System for Mobile Communications). But the use of
RC4 in WEP is insecure [7], and A5/1 is very weak [4]. ECRYPT (2004-2008)
has organised the eSTREAM competition, which stimulated the study on stream
ciphers, and a number of new stream ciphers were proposed [1-3,5,6, 9, 15].
The 3rd Generation Partnership Project (3GPP) was set up for making glob-
ally applicable 3G mobile phone system specifications based on the GSM speci-
fications. Stream cipher ZUC was designed by the Data Assurance and Commu-
nication Security Research Center of the Chinese Academy of Sciences. It is the

* This research is supported by the National Research Foundation Singapore under
its Competitive Research Programme (CRP Award No. NRF-CRP2-2007-03) and
Nanyang Technological University NAP startup grant (M4080529.110).

2 H. Wu et al.

core component of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3
& 128-EIA3 which were proposed for inclusion in the “4G” mobile standard LTE
(Long Term Evolution). In July 2010, the ZUC 1.4 [11] was made public for
evaluation. We developed two key recovery attacks against ZUC 1.4 [16], and
our attacks directly led to the tweak of ZUC 1.4 into ZUC 1.5 [12] in Jan 2011.
(Note that it was reported independently in [14] that the non-injective initial-
ization of ZUC 1.4 may result in identical keystreams.) The latest version, ZUC
1.6 [13], was released in June 2011 (ZUC 1.6 and ZUC 1.5 have almost the same
specifications).

In this paper, we present the details of our differential attacks against ZUC
1.4. Our attacks against ZUC is similar to the differential attacks against Py,
Py6 and Pypy [17], in which different IVs result in identical keystreams. In the
first attack against ZUC 1.4, the difference is at the first byte of the IV, and
one in 2!54 keys results in identical keystreams after testing 2'3-3 IV pairs for
each key. Once identical keystreams are detected, the key can be recovered with
complexity 294 In the second attack against ZUC 1.4, the difference is at the
second byte of the IV, and identical keystreams can be obtained after testing
254 TVs. The key can be recovered with complexity 267.

This paper is organized as follows. The notations and the description of ZUC
1.4 are give in Sect. 2. The overview of the attack is is given in Sect. 3. In Section
4 and 5, we present the key recovery attack with difference at the first byte and
the second byte of IV, respectively. We suggest the tweak to fix the flaw in Sect.
6. Section 7 concludes the paper.

2 Preliminaries

2.1 The Notations
In this paper, we follow the notations used in the ZUC specifications [11].

4+ The addition of two integers
@ The bit-wise exclusive-or operation of integers
B The modulo 232 addition
ab The product of integers a and b
allb- The concatenation of a and b
a<<<k The k-bit cyclic shift of a to the left
a>>>k The k-bit cyclic shift of a to the right
a>>k The k-bit right shift of integer a
ag The most significant 16 bits of integer a
ar The least significant 16 bits of integer a

(a1,a2,...,a,) = (b1,b2,...,b,) It assigns the values of a; to b; in parallel

Differential Attacks Against Stream Cipher ZUC 3

0, The sequence of n bits 0
1, The sequence of n bits 1

Y The bitwise complement of y
An integer a can be written in different formats. For example,

a =25 decimal representation
= 0x19 hexadecimal representation

= 000110015 binary representation

We number the least significant bit with 1 and use A[i] to denote the ith bit
of a A. And use Bli..j] to denote the bit i to bit j of B.

2.2 The general structure of ZUC 1.4

7ZUC is a word-oriented stream cipher with 128-bit secret key and a 128-bit initial
vector. It consists of three main components: the linear feedback shift register
(LFSR), the bit-reorganization (BR) and a nonlinear function F. The general
structure of the algorithm is illustrated in Fig. 1.

mod 2%'-1

f L
: s‘,lm|s‘;ls,,‘|s”[<,.,|s‘)|sL|<Is,‘|s\[s‘|s‘lsi|s‘ls,x|fR
,,, »
o6, iR
gun] XL =

O

Fig. 1. General structure of ZUC

Linear feedback shift register(LFSR). It consists of sixteen 31-bit registers
50, 51, ..., 815, and each register is an integer in the range {1,2,...,23 —1}.
During the keystream generation stage, the LFSR. is updated as follows:

LFSRUpdate():

4 H. Wu et al.

1. S16 — (215815 + 217513 + 221810 + 22084 + (1 + 28)50)m0d(231 - 1),
2. If s16 = 0 then set s16 = 23! — 1;
3. (317327~-~>5157516>_>(307317-~-35147515)~

Bit-reorganization function. It extracts 128 bits from the state of the LFSR
and forms four 32-bit words Xy, X; X5 and X3 as follows:

Bitreorganization():
1. Xo = s15m||514L3
2. X1 = s11zl|som;
3. Xo = s71|s5m;
4. X3 = sar|[som:

Nonlinear function F'. It contains two 32-bit memory words R, and Rs. The
description of F'is given below. In function F', S is the Sbox layer and L; and
Ly are linear transformations as defined in [11]. The output of function F' is a
32-bit word W. The keystream word Z is given as Z =W @ X3.

F(X()a X17 XQ):
1. W= (XOEBRl)EERQ;
2. Wl = R1 H Xl;
3. Wy =Ry ® Xo;
4. Ry = S(Li(WiL||[Wan));
5. Ry = S(Lo(War||Win));

2.3 The initialization of ZUC 1.4

The initialization of ZUC 1.4 consists of two steps: loading the key and IV into
the register, and running the cipher for 32 steps with the keystream word being
used to update the state.

Key and IV loading. Denote the 16 key bytes as k; (0 < i < 15), the 16
IV bytes as iv; (0 < ¢ < 15). We load the key and IV into the register as:
si = (killdi]|iv;). The values of the constants d; are given in [11]. The two
memory words Ry and R, in function F' are set as 0.

Running the cipher for 32 steps. At the initialization stage, the keystream
word Z is used to update the LFSR as follows:

LFSRWithlInitialisationMode(u):

L ov=(2%s15 4+ 2513 + 221519 4+ 22054 + (1 + 2%)s9)mod (23! — 1);
2. If v = 0 then set v = 23! — 1;

Differential Attacks Against Stream Cipher ZUC 5

3. s16 =vDu;
4. If s16 = 0 then set s1g = 231 — 1;
5. (51,52,...,515,516) — (50,51,.-,514,515)-

The cipher runs for 32 steps at the initialization stage as follows:

InitializationStage():
for i =0 to 31 {

1. Bitreorganization();
2. Z = F(Xo, X1, X2) ® X33
3. LFSRWithInitialisationMode(Z >>1).

3 Overview of the Attacks

We notice that the LFSR in ZUC is defined over GF(23! —1), with the element
0 being replaced with 23! —1. To the best of our knowledge, it is the first time
that GF(231 —1) is used in the design of stream cipher. In the initialization of
ZUC 1.4, we notice that XOR is involved in the update of LFSR (s16 = v @ u).
When XOR is applied to the elements in GF (23! —1), we obtain the following
undesirable property:

Property 1. Suppose that a and a’ are two elements in GF(23! —1), a # d,
and @ =a'. If b =a or b= a, then a®b mod (23'—1) = o’ ®b mod (23'-1) = 0.

The above property shows that the difference between a and a’ can get elimi-
nated with an XOR operation! In the rest of this paper, we exploit this property
to attack ZUC 1.4 by eliminating the difference in the state.

In our attacks, we try to eliminate the difference in the state without the
difference in the state being injected into the nonlinear function F'. The reason
is that if a difference is injected into F', then Sboxes would be involved, and the
difference would remain in F' until additional difference being injected into F,
thus the probability that the difference in the state being eliminated would get
significantly reduced.

We now investigate what are the IV differences that would result in the dif-
ference in the state being eliminated with high probability. The IV differences
are classified into the following three types:

Type 1. Aiv; # 0 for at least one value of ¢ (7 <i < 15).

After loading this type of IVs into LFSR, the difference would appear at the
least significant byte of at least one of the LFSR elements sz, sg, - -+, s15. Note
that the least significant byte of s; is part of X5 in the Bit-reorganization func-
tion since Xo = s71||ssm, and X3 is an input to function F'. Due to the shift

6 H. Wu et al.

of LFSR, the difference at the least significant byte of s7, sg, - -+, s15 would be
injected into F'. Thus we would not use this type of IV difference in our attacks.

Type 2. Aiv; =0 for 7 < i < 15, Adv; # 0 for at least one value of i (2 < i < 6).
After loading this type of IVs into LFSR, the difference would appear at the least
significant byte of at least one of the LFSR elements so, s3, -+, sg. Note that
the least significant byte of sy is part of X3 in the Bit-reorganization function
since X3 = sar||som, X3 is XORed with the output of F to generate keystream
word Z, and Z is used to update the LESR. Two steps later, the difference in ivg
would appear in the feedback function to update LFSR. It means that if there is
difference in ivs, the difference in s5 would be used to update the LFSR twice,
and the probability that the difference would be eliminated is very small. Due to
the shift of LFSR, the difference at ss, s3, - - -, s7 would be eliminated with very
small probability. Thus we did not use this type of IV difference in our attacks.

Type 3. Aiv; =0 for 2 < i < 15, Aivg # 0 or Aivg # 0.

The focus of our attacks is on this type of IV differences. In order to increase
the chance of success, we consider the difference at only one byte of the IV. We
discuss below how the difference in the state can be eliminated when there is
difference in sg (the analysis for the difference in s; is similar). At the first step
in the initialization,

S = (k0||d0||iv0), (1)
v =255+ 2513 + 22510+ 2205, + (1 +2%)sg mod (231 — 1), (2)
S1e=vDu. (3)

Suppose that the difference is only at vy, and vy — iv) = Aivg > 0. From (1)
and (2) we know that

v—2v = (1+2%(ivg —ivy) mod (23' —1)
= Aivo || Ai’l}o . (4)

If we need to eliminate the difference in sig, from Property 1 and (3), the fol-
lowing condition should be satisfied:

v @ U/ = 131 (5)

u=v or U=0v (6)

According to (5), v and v" have XOR difference in the left-most 15 bits (i.e.v[17..31]
and v'[17..31]), while according to (4), the subtraction difference of those bits are
0. The only possible reason is that the 15 bits, v[17..31], are all affected by the
carries from the addition of Aivg to v’. After testing all the one-byte differences,
we found that v must be in one of the following four forms (the values of v and

Differential Attacks Against Stream Cipher ZUC 7

v’ can be swapped):

v=1111111111111111 ||y || 12 || v
or v=01111111111111115 || y || 02 || »
or v = 00000000000000005 || 7 || 02 || 7 (7)
or v = 1000000000000000 || 7 || 12 || 7
(y is a T-bit integer.)

There are 510 possible values of v (v = 137 and v = 031 are excluded since
one of v and @ cannot be 0). All the (v, v') pairs and their differences are given in
Table 1 in Appendix A. Notice that we ignored the order of v and v’ as they are
exchangeable. We have obtained all the possible values of v and u for generating
identical keystreams.

We highlight the following property in the table: the difference between v
and v’ uniquely determines the value of pair (v,v’) in the table. As a result, if
we know the difference of IVs that results in the collision of the state, we can
determine the value of (v,v') immediately.

By eliminating the difference in the state as illustrated above, we developed
two attacks against ZUC 1.4. The first attack is to exploit the difference at vy,
and the second attack is to exploit the difference at iv;. The details are given in
the following two sections.

4 Attack ZUC 1.4 with Difference at iv,

In this section, we present our first differential attack on the initialization by
using IV difference at ivy and generating identical keystream. The keys that
generate the same keystream are called weak keys in this attack. We will show
that a weak key exists with probability 2714, and a weak key can be detected
with about 2'3-3 chosen IVs. Once a weak key is detected, its effective key size
is reduced from 128 bits to around 100 bits.

4.1 The weak keys for Aivg

We will show that when there is difference at ivg, about one in 254 keys would
result in identical keystream. For a random key, we will check whether there
exists a pair of IVs such that (5), (6) and (7) can be satisfied.

We start with analyzing how keys and IVs are involved in the expression of
u and v in the first step of initialization. From the specifications of the initial-
ization, we have

u=zZ>1= (X() @Xd) >>1 = ((815H||814L) b (SQLHSOH)) >>1

8
:((k15 || U2 || k() || iU14) D 0x6b8f9a89) >>1 ()

In (2) and (8), there are 5 bytes of key, {ko, k4, k10, k13, k15 }, and 7 bytes of
IV, {ivg, iva, vy, iv10, i13, V14, 1015 } being involved in the computation of u and

8 H. Wu et al.

v. The complexity would be very high if we directly try all possible combinations
of the keys and IVs. However, with analysis on the expressions of u and v, we
can reduce the search space from 2°¢ to around 226-3.

Solve (5), (6), (7) and (8), we obtain the following four groups of solutions:

Group 1.
w=v=1111111111111111, || y || 12 ||
k15 = 0x94
ivg = 0x70 (9)
ko =0x9% @ (y || 12)
wis>>1=0x44 Dy
Group 2.
w=v=0111111111111111, | y || 02 ||
k15 = 0x14
ivg = 0x70 (10)
ko = 0x9a & (y || 02)
Wiy >>1=0x44 By
Group 3.
u = v = 00000000000000002 || 7 || 02 || ¥
k15 = 0x6b
iv9 = 0x8f (11)
ko = 0x9% @ (7 || 02)
w14 >>1=0xbb B gy
Group 4.
u = v = 10000000000000002 || 7 || 12 || ¥
k15 = Oxeb
ivg = Ox8f (12)

ko =0x9% & (7 || 12)
w14 >>1 =0xbb® ¥y
Furthermore, from (2) we compute v as follows (note that the property 2*s;
mod (23! — 1) = s; <<<k):
v=(1+42%)ko + 27ky5 + 2°(k13 + 2°ky + 2%k10) + (1 + 2%)ivg

13
+ 21 (ivy5 4 2%iv13 + 2%ivy + 2%iv10) + 0x451bfelb mod (23! — 1) (13)

Let sumq = ki + 23kq + 2%k10, suma = iv1s + 2%iv13 + 2%4v4 + 2%iv19. The
value of sum; ranges from 0 to 6375, and the value of sums ranges from 0 to
25755. We developed Algorithm 1 to search for weak keys.

Differential Attacks Against Stream Cipher ZUC 9

Algorithm 1 Find weak keys for Aivg

for (k1s, tv2) in each of the 4 groups of solutions (9), (10), (11), (12) do
for y =0 to 127 do
determine iv14 >>1 and ko
for sumi = 0 to 6375 do
for ivg = 0 to 255 do
keySum < 27k15 + (2%° 4+ 1)ko 4 2%sumy mod (23! — 1)
sums < (u — keySum — (1 + 2%)ivg — 0x451bfelb) /25 mod (23! — 1)
if sumsg is less than 25756 then
v=u; v =udlay;
if (v — ') mod (2% — 1) is a multiple of 1 + 2° then
Aivg = (v —v") mod (2°* —1)/(1 + 2%);
i) = vy — Aivo;
else
Aivg = (v —v) mod (2°* —1)/(1 + 2°);
i) = ivo + Aivo;
end if
output u, ko, kis, sSumi, ivo, i, 2, iv14 >> 1, sums
end if
end for
end for
end for
end for

Each output from Algorithm 1 gives the value of (kis, ko, suma, v, vy,
ivg, 1v14, Sumse) that results in identical keystreams. Running Algorithm 1, we
found 9934 = 2!3-28 different outputs. We note that on average, each sum; from
the output of the algorithm represents 224/6376 = 2!!-36 possible choices of
(k‘4, klO, k’13). Thus there are 213'3 ><211'4 = 224'7 weak values of (k‘o, k’4,]{110,]€137 k‘15).
Hence, there are 2247 weak keys out of 240 possible values of the 5 key bytes.
The probability that a random key is weak for IV difference at ivg is 27154, The
complexity of Algorithm 1 is 4 x 128 x 6376 x 256 = 2263,

Identical keystreams. We give below a weak key and an IV pair with difference
at ivg that result in identical keystreams.

key = 87,4,95,13,161,32,199,61,20,147,56,84,126,205,165,148
1V =166,166,112,38,192,214,34,211,170,25,18,71,4,135,68,5
IV' =116,166,112,38,192,214,34,211,170,25,18,71,4,135,68,5

For both IV and IV, the identical keystreams are: 0xbfe800d5 0360a22b 6¢4554c¢8
67f00672 2ce94f3f f94d12ba 11¢382b3 cbaf4b3l. . ..

4.2 Detecting weak keys for Aivg

We have shown above that a random key is weak with probability 2714, In the
attack against ZUC, we will first detect a weak key, then recover it. To detect

10 H. Wu et al.

a weak key, our approach is to use the IV pairs generated from Algorithm 1 to
test whether identical keystreams are generated. Note that for a particular value
of sumgy, we can always find a combination of (ivg, iv1g,iv13, 1015} that satisfies
sumg = ivis + 2%iv13 + 2%vs + 2%wv19. Thus a pair of IVs (tvg, Vg, Ty, iv1p,
iv13, tU14, 1015) and (i), ivg, ivy, 1019, 013, 014, 015) can be determined by each
output of Algorithm 1. Using this result, we developed Algorithm 2 to detect
weak keys for Aivg.

Algorithm 2 Detecting weak keys for Aivg

1. Choose one of the 2!3-28 outputs of Algorithm 1.

2. Find the pair of IVs determined by this output (if 4v; does not appear in the first
initialization step, set it as some fixed constant).

3. Use the IV pair to generate two key steams.

If the keystreams are identical, output the IVs and conclude the key is weak.

5. If all outputs of Algorithm 1 have been checked, and there are no identical
keystreams, we conclude that the key is not weak.

=

In Algorithm 2, we need to test at most 233 pairs of IVs to determine if a key
is weak for difference at ivg.

4.3 Recovering weak keys for Aivg

After detecting a weak key, we proceed to recover the weak key. Once a key is
detected as weak (as given from Algorithm 2), from the IV pair being used to
generate identical keystreams, we immediately know the value of kg, k15 and
sumy. Note that sum; = (k13 + 23ks + 2%k10). In the best situations, the sum
is 0 or 25755, then we can uniquely determine k4, k19 and ki3. In the worst
situation, there are 2'2 possible choices for ky, kig and ki3, and therefore, we
need 212 tests to determine the correct values for k4, k19 and k;3. On average,
for each value of sum;, we need to test 2!+ combinations of (k4, k10, k13)-
Since there are only five key bytes being recovered in our attack, the re-
maining 11 key bytes should be recovered with exhaustive search. Hence, the
complexity to recover all key bits is 238 x 2114 = 2994 From the analysis above,
we also know that the best complexity is 25% and the worst complexity is 2190,

5 Attack ZUC 1.4 with Difference at v,

In this section, we present the differential attack on ZUC 1.4 for IV difference at
1v1. Different from the attack in Section 4, we need to consider the computation
of u and v in the second step of the initialization. For this type of IV difference,
for every key, there are some IV pairs that result in identical keystreams since
more IV bytes are involved. Once we found such an IV pair, we can recover the
key with complexity around 257.

Differential Attacks Against Stream Cipher ZUC 11

5.1 Identical keystreams for Aiv,

The computation of u and v in the second initialization step involves more key
and IV bytes. The v in the second initialization step is computed as:

v = (2516 + 2514 + 2% 511 + 22055 + (1 4+ 2%)s1) mod (23! — 1),
S16 = ((215515 + 217313 + 221810 + 22084 + (1 + 28)80) mod (231 — 1)) (14)
5] (((k15 || V9 H ko H ’L"Ul4) D 0X6b8f9&89) >> 1)

And u is given as:

u=(((Xo® R1)+ Rs) ® X3)>>1
Xo = (s162]|101011005|iv15)
X3 = (010111102 ||iv3||k1]/010011015) (15)
Ry = S(Li(sonl|s7)) = fi(ivr, ko)
Ry = S(L2(ssm[s112)) = fa(ivir, ks)

where f; and fy are some deterministic non-linear functions.

There are 10 IV bytes involved in the expression of v, i.e. (ivg, tv1, iva, ivy,
ivs, V10, 1U11, 1U13, V14, tv15) and 8 IV bytes involved in the expression of
u, i.e. (ivg, ivs, fvy, ivy, G010, P11, V13, t015). In total, there are 12 IV bytes
being involved in the computation of u and v, and every bit of v and v can be
affected by IV. We conjecture that for every key, the conditions (5) and (6) can
be satisfied, and identical keystreams can be generated. To verify it, we tested
1000 random keys. Our experimental results show that there is always an IV
pair for each key that results in identical keystreams.

In the attack, a random key and a random 4v pair with difference at ivq, the
probability that v and u satisfy the conditions (5) and (6) is 2731 x 2731 x 2 =
2761 Choosing 2% ivs with difference at iv;, we have around 2'° pairs. The iden-
tical keystream pair appears with probability 2761415 = 2746 with 28 IVs. We
thus need about 246 x 28 = 254 TVs to obtain identical keystreams.

Identical keystreams. We give below a key and an IV pair with difference at
1v1 that result in identical keystreams. The algorithm being used to find the IV
pair is given in Appendix B. The algorithm is a bit complicated since a number
of optimization tricks are involved. The explanation of the optimization details
is omitted here since our focus is to develop a key recovery attack.

key = 123,149,193,87,42,150,117,4,209,101,85,57,46,117,49,243
1V =92,80,241,10,0,217,47,224,48,203,0,45,204,0,0,17
IV’ =92,182,241,10,0,217,47,224,48,203,0,45,204,0,0,17

The identical keystreams are: 0xf09ccl17d 41f12d3f 453ac0c3 cadcef9f f98fb964
cabeb76e b48b813 6¢43da22

12 H. Wu et al.

5.2 Key recovery for Aiv,

After identical keystreams are generated from an IV pair with difference at vy,
we proceed to recover the secret key. From Table 1 in Appendix A, we know the
value of (v, ") since we know the difference at vy of the chosen IV pair, and we
also know the value of u since u = v or u = v'. In the following, we illustrate a
key recovery attack after identical keystreams have been detected.

1. In the expression of u in (15), (k1, ks, k9, S16) is involved. Note that there
are only two possible values of the 31-bit u. We try all the possible values
of (ki, ks, ko, s161), then there would be 28%3+16 » 2731 5 2 — 210 pogsible
values of (k1, ks, kg, s16m) that generate the two possible values of u. The
complexity of this step is 24°.

2. Next we use the expression of s16 in (14). For each of the 210 possible values
of (ki1, ks, kg, s16m), we try all the possible values of (ko, k4, k10, k13, k15)
and check whether the values of s155 is computed correctly or not. There
would be 28%5 x 2716 = 224 pogsible values of (ko, k4, k10, k13, ki5) left.
Considering that there are 219 possible values of (k1, ks, ko, S167), about
210 » 224 = 234 possible values of (ko, k1, k4, ks, ko, k10, k13, K15, S168)
remain. The complexity of this step is 28%% x 210 = 250,

3. Then we use the expression of v in (14). For each of the 234 possible values
of (ko, k1, k4, ks, ko, k10, k13, k15, S16H), we try all the possible values of
(K11, k14) and check whether the value of v is correct or not. A random
value of (ki1, k14) would pass the test with probability 28%2 x 2731 = 2715
Considering that there are 234 possible values of (ko, k1, k4, ks, kg, k10, k13,
/{315,816]{), about 234 x 2715 = 219 possible values of (k‘o, ki, k4, ks, ko, k10,
k11, k13, k14, k15) remain. The complexity of this step is 28%2 x 234 = 250,

4. For each of the 29 possible values of (ko, k1, k4, ks, ko, k10, k11, k13, K14,
k15), we recover the remaining 6 key bytes (ko,k3,k¢,k7,ks,k12) by exhaustive
search. The complexity of this step is 219 x 28%6 = 267,

The overall computational complexity to recover a key is 2404250 42504.267 ~
267, And we need about 2°% IVs in the attack. Note that the complexity in the
first, second and third steps can be significantly reduced with optimization since
we are dealing with simple functions. For example, meet-in-the-middle attack
can be used in the first step, and the sum of a few key bytes can be considered
in the second and third steps. However, the complexity of those three steps has
little effect on the overall complexity of the attack, so we do not present the
details of the optimization here.

6 Improving ZUC 1.4

From the analysis in Sect. 3, the weakness of the initialization comes from the
non-injective update of the LFSR. To fix the flaw, we proposed the tweak in
the rump session of Asiacrypt 2010. Instead of using the XOR operation, it is
better to use addition modulo operation over GF(23! — 1). More specifically,

Differential Attacks Against Stream Cipher ZUC 13

the operation s;g = v @ u is changed to s;g = v +u mod (23! — 1). With this
tweak, the difference in v would always result in the difference in sig if there
is no difference in w, and the attack against ZUC 1.4 can no longer be applied.
In the later versions ZUC 1.5 and 1.6 (ZUC 1.5 and 1.6 have almost the same
specifications), the computation of si¢ is modified using our suggested method.

7 Conclusion

In this paper, we developed two chosen IV attacks against the initialization of
ZUC 1.4. In our attacks, identical keystreams are generated from different IVs,
then key recovery attacks are applied. Our attacks are independent of the number
of steps in initialization. The lesson from this paper is that when non-injective
functions are used in cipher design, we should pay special attention to ensure
that the difference cannot be eliminated with high probability.

References

1. S. Babbage and M. Dodd. The MICKEY stream ciphers. New Stream Cipher
Designs, pages 191-209, 2008.

2. C. Berbain, O. Billet, A. Canteaut, N. Courtois, H. Gilbert, L. Goubin, A. Gouget,
L. Granboulan, C. Lauradoux, M. Minier, T. Pornin, and Sibert H. Sosemanuk, a
fast software-oriented stream cipher. New Stream Cipher Designs, pages 98-118,
2008.

3. D. Bernstein. The Salsa20 family of stream ciphers. New Stream Clipher Designs,
pages 84-97, 2008.

4. A. Biryukov, A. Shamir, and D. Wagner. Real Time Cryptanalysis of A5/1 on a
PC. In Fast Software Encryption, pages 37-44. Springer, 2001.

5. M. Boesgaard, M. Vesterager, and E. Zenner. The Rabbit stream cipher. New
Stream Clipher Designs, pages 69-83, 2008.

6. C. De Canniere and B. Preneel. Trivium. New Stream Cipher Designs, pages
244-266, 2008.

7. S. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the key scheduling algorithm
of RC4. In Selected areas in cryptography, pages 1-24. Springer, 2001.

8. J.D. Golic. Cryptanalysis of Alleged A5 Stream Cipher. In Advances in Cryp-
tology — FEurocrypt’97, pages 239-255. Springer, 1997.

9. M. Hell, T. Johansson, A. Maximov, and W. Meier. The Grain family of stream
ciphers. New Stream Clipher Designs, pages 179-190, 2008.

10. R.L. Rivest. The RC4 Encryption Algorithm. RSA Data Security, Inc., March
1992.

11. ETSI/SAGE Specification. Specification of the 3GPP Confidentiality and Integrity
Algorithms 128-EEA3 & 128-EIA3. Document 2: ZUC Specification; Version: 1.4;
30" July 2010.

12. ETSI/SAGE Specification. Specification of the 3GPP Confidentiality and Integrity
Algorithms 128-EEA3 & 128-EIA3. Document 2: ZUC Specification; Version: 1.5;
4" January 2011.

13. ETSI/SAGE Specification. Specification of the 3GPP Confidentiality and Integrity
Algorithms 128-EEA3 & 128-EIA3. Document 2: ZUC Specification; Version: 1.6;
28" June 2011.

14

14.

15.

16.

17.

H. Wu et al.

B. Sun, X. Tang, and C. Li. Preliminary Cryptanalysis Results of ZUC. In First
International Workshop on ZUC' Algorithm, volume 12, 2010.

H. Wu. The stream cipher HC-128. New Stream Cipher Designs, pages 39-47,
2008.

H. Wu, P.H. Nguyen, H. Wang, and S. Ling. Cryptanalysis of the Stream Cipher
ZUC in the 3GPP Confidentiality & Integrity Algorithms 128-EEA3 & 128-EIA3.
Rump Session of Asiacrypt 2010, 2008.

H. Wu and B. Preneel. Differential cryptanalysis of the stream ciphers py, py6 and
pypy. Advances in Cryptology-EUROCRYPT 2007, pages 276-290, 2007.

Differential Attacks Against Stream Cipher ZUC 15

A The List of Possible v and v’ for Collision

Table 1. The list of possible v, v’

Index v § Aiv [Index v o’ Aiv [Index v 7 Aiv

v v
1 Ox3 f f f8000 [0x40007 ff f|Oxff| 86 0x3f ffd555[0240002aaa|0x55| 171 [0x7ff faaaa|0x5555|0xzaa

O0x3fff8101 [0x40007efe |Oxfd| 87 |0x3fffd656|0x400029a9|0x53| 172 |0x7fffabab|0x5454|0xa8

0x3f f 8202 | 0240007dfd |0z fb| 88 |0w3fffd757 |0x400028a8|0x51| 173 |0x7fffacac|0xz5353 |0zab

0x3f f 8303 | 0240007cfc [0z f9| 89 |Ox3fffd858|0s400027a7 |[0xdf| 174 |0z7ff fadad| 025252 |0zad

0x3f f f8404 | 0240007bfb [0z f7| 90 |0w3fffd959|02400026a6|0xdd| 175 |0x7fffacae|0xz5151 |0za2

0x3 f ff8505 [0240007a fa |[0xf5] 91 |[0x3fffda5a|0x400025a5|0x4b| 176 |0x7fffafaf|0x5050|0xal

0x3f ff8606 |02400079f9 [0xf3| 92 |0x3fffdb5b[0x400024a4|0x49| 177 |[0x7fffb0Ob0 [Oxz4df4f[0x9e

00| 1| of en| x| o 1!

0x3f f f8707 | 004000788 [0z f1| 93 |0x3fffdc5c|02400023a3 | 047 | 178 | 0x7ff fblbl |Oxdede|Ozdc

9 Ox3f ff8808 02400077 f7 |Oxzef| 94 |0x3fffdd5d|0x400022a2|0x45| 179 | 0x7fffb2b2 |0xdd4d|0x9a

10 | 0«3/ ff8909 | 024000766 |Owed| 95 |0x3fffdebe|0x400021al|0243| 180 | 0x7f f fb3b3 | Owdcdc |0x98

11 [O0x3fff8a0a|[0x400075f5[0xeb| 96 |0x3fffdf5f|0x400020a0|0x41| 181 | 0x7ff fbdbd | 0x4b4d|0x296

12 | 0x3f f f8b0b | 02400074 f4 |0ze9| 97 |0z3fffe060 02400019/ |0x3F| 182 | 0x7ff fbbb5 |Owdada|0x94

13 [0x3fff8c0c 02400073 f3|[0xe7| 98 |0x3fffel6l|0x40001e9e |0x3d| 183 | 0x7ff fb6b6 | 0249490292

14 |0z3fff8d0d|02400072f2|Ozeb| 99 |0z3fffe262|0240001d9d|0x3b| 184 | 0x7ff fb7b7 | 0x4848 | 090

15 | 0x3f f f8e0e | 02400071 f1|Oze3| 100 |0z3fffe363|0240001c9c |0x39| 185 |07 f fb8b8 | 0x4747 |0x8e

16 [0x3fff8f0f]|0x400070f0 |[O0xzel| 101 |0x3fffed64|0x40001b9b|0x37| 186 |[O0x7fffb9b9 |0x4646 |0xz8c

17 |0x3fff9010 0240006 fef|Oxdf | 102 |0z3fffeb65|0240001ada|0235| 187 |0x7ff fbaba | 04545 |0x8a

18 |0x3fff9111|0x40006eee |Oxdd| 103 |O0xz3fffe666|0x40001999 0233 | 188 | 0x7fffbbbb | 0x4444|0x88

19 |0x3fff9212|0240006ded |Ozdb| 104 |0z3fffe767 | 0240001898 |0231| 189 | 0x7f f fbcbe | 0w4343 | 0w86

20 [0x3fff9313]|0x40006cec |[Oxd9| 105 |[Ox3fffe868 0240001797 [Ox2f| 190 [0x7fffbdbd |[0x4242|0x84

21 |0x3fff9414 | 0240006beb |0xd7| 106 |0x3f ffe969 | 0040001696 |0xz2d| 191 | 0x7ff fbebe | Owdlal |0x82

22 |0x3fff9515|0240006aea |0xd5| 107 |0x3ff feaba|0c40001595 |0x2b| 192 |0x7/ffbfbf | 04040 | 0x80

23 | 0x3fff9616 | 0x400069¢e9 [0xd3| 108 |0x3fffeb6b|0x40001494 [0x29| 193 |0x7f ffc0cO |0x3f3f|0xTe

24 | 0x3fff9717|02400068e8 |[Oxdl| 109 |0x3ff fecbe | 0c40001393 |0x27| 194 |0a7ff fclcl |0x3e3e|0zTe

25 |0x3fff9818|0x2400067e7 |Oxcf| 110 |0x3fffed6d|0x40001292|0x25| 195 |0x7fffc2c2|0x3d3d|0x7a

26 |0x3fff9919 | 02400066¢6 |Owcd| 111 |0x3f f feebe | 0040001191 |0x23| 196 | 0x7ff fc3c3 | Ow3c3c |0x78

27 |0x3fff9ala|0x400065e5 |O0xcb| 112 [0x3fffef6f[0x40001090 [0x21| 197 |[O0xT7fffcdcd [0x3b3b|0x76

28 | 023/ ff9blb | 02400064e4 |0wcO| 113 |0x3/fff070|0x40000/8f|0x1f| 198 |0x7ff fcbeb |0z3asal0x74

29 |0z3fff9clc|02400063e3 [Owc7| 114 |0x3/fff171|0240000e8e [Oxzld| 199 |0x7ff fcb6c6 |0w3939 |0x72

30 [0xz3fff9d1d|0x400062e2 |[0xc5| 115 [0x3ffff272]|0x40000d8d |[0x1b| 200 |0x7fffc7c7|0x3838|0x70

31 |0x3fff9¢ele|02400061el |[Owc3| 116 |0x3/fff373| 0040000c8¢ |0x19| 201 |0x7ff fc8c8 |0x3737 |Ozbe

32 |0x3fff9f1f]0x400060e0 |Oxcl| 117 |0x3ffff474|0x40000b8b [0x17| 202 | 0x7fffc9c9|0x3636|0x6e

33 |0x3f ffa020|0x40005df [Oxbf| 118 |0z3/fff575|0#40000a8a|0x15| 203 |0z7ff fcaca | 0x3535 |0x6a

34 |0x3fffal21]|0x40005ede |Oxbd| 119 [0x3ffff676 0240000989 [0x13| 204 | 0x7f ffcbcb [023434|0x68

35 |0x3fffa222|0x40005ddd | Oxbb| 120 |0x3ffff777|0x40000888 |0x1l| 205 | 0x7ff fecee | 03333 | 0266

36 |0x3fffa323|0240005cdc |0xb9 | 121 |0x3ffff878| 0240000787 | Oxf | 206 |0a7f [fcded |0w3232 | 0x64

37 |0x3fffa424|0x40005bdb [0xb7 | 122 [0x3ffff979]| 0240000686 | Oxd | 207 |0xz7fffcece|0x3131|0x62

38 |0x3fffab2b|0240005ada|0xb5| 123 |0x3ffffa7a|0c40000585| Oxzb | 208 |0x7fffcfcf 0230300260

39 |0xz3fffa626]|0x400059d9 |0xb3| 124 |0x3ffffb7b|0240000484 | 0x9 | 209 |0x7fffd0dO|0x2f2f|0x5e

40 |0x3fffa727|0x400058d8 |Owbl| 125 |0z3/ffffc7c|0x40000383 | 0x7 | 210 |0z7fffdldl|O0x2e2e|Ozbe

41 |0x3f ffa828|0x400057d7 |Oxzaf| 126 [0x3ffffd7d[0240000282| Ox5 | 211 [Ox7fffd2d2[0x2d2d|0x5a

42 |0x3fffa929 | 0x400056d6 |Ozad| 127 |0z3ffffe7e|0x40000181 | 0x3 | 212 |0x7fffd3d3 | 0w2c2c|0xb8

43 [0x3fffaa2a|0x400055d5 [Oxzab| 128 [0x3/fff/7f| 0240000080 | Ozl | 213 |Oz7/ffd4d4|0x2b2b|0x56

44 | 0x3fffab2b|0x400054d4 [0za9| 129 |0x7ffFf8080| Ox7f7f |Ozfe| 214 |0x7fffd5d5|0xz2a2a|0xb4

45 |0x3f f fac2c|0x400053d3 [Oza7| 130 |0x7fff8181| Oaz7ere |Ozfc| 215 |Ox7/ffd6d6|0x2929 |0xb2

46 |[0x3f ffad2d|0x400052d2 |[Oxab| 131 [0x7fff8282 0x7d7d Oxzfa| 216 |0xz7fffd7d7|0x2828|0x50

47 |0x3ff fae2e|0x400051d1 [Oza3| 132 |0x7fff8383| Ow7cic |0z f8| 217 |Ox7fffd8d8|0x2727 |Ozde

48 |0x3fffaf2f]|0x400050d0 |0xal| 133 |O0x7fff8484 0x7b7b Ox f6| 218 |0x7fffd9d9|0x2626|0xdc

49 | 0z3f ffb030 |0240004fcf |0xz9f| 134 |0x7fff8585| Ow7a7a |Ozf4| 219 |0a7fffdada|0x2525|0xda

50 |O0x3fffbl31]|0240004ece |0x9d| 135 [0x7fff8686 0x7979 Ox f2| 220 |Ox7fffdbdb|0x2424 [0x48

51 |0z3fffb232|0240004dcd |0x9b| 136 |0x7fff8787| 027878 |0xzf0| 221 |0x7fffdcdc|0x2323|0x46

52 |0x3/ffb333 | 0240004cce 0299 137 |0x7f/f8888 | O0x7777 |Owee| 222 |0ax7fffdddd]|0x2222|0xdd

53 | 0x3fffb434 | 0x40004bchb 0297 | 138 [0x7f ff8989 0x7676 Oxzec| 223 |0x7fffdede|[0x2121[0x42

54 | 0x3/ffb535 |0x40004aca |0x95| 139 |0x7fff8aBa| 0x7575 |Ozea| 224 |Owx7fffdfdf |022020 | 0x40

55 | 0x3fffb636|0x400049c9 |0293| 140 |O0x7fff8b8b 0x7474 Oxe8| 225 |0x7fffe0e0 |0x1f1f|0x3e

56 |0x3/ffb737 | 02400048c8 |0x91| 141 |0x7fff8c8c| 0x7373 |Owxe6| 226 |0x7fffelel |Owlele|O0x3c

57 |O0x3/ffb838|02400047c7 [Ox8/| 142 |Ox7/fff8d8d| Oxz7272 |Owed| 227 |0x7fffe2e2 |0xldld|0x3a

58 |0z3/ffb939 | 02400046¢6 |0x8d| 143 |0x7fff8e8e| O0x7171 |Owe2| 228 |0x7fffe3e3 |Owlclc|0x38

59 |0x3fffba3a|0x400045¢c5 [0x8b| 144 [0x7fff8f8f 0x7070 Oxe0| 229 |0x7fffeded |0xlbldb|0x36

60 | 0x3fffbb3b|0x400044c4 0289 145 [0x7fff9090 0x6f6f Oxde| 230 |0x7fffe5e5|0xlala|0x34

61 | 023/ ffbc3c|02400043¢3 0087 146 |0x7fff9191| Oxbe6e |Owxdc| 231 |0x7ff feb6eb |0x1919|0x32

62 | 0x3fffbd3d|0x400042c2 |0285| 147 |0x7fff9292 0x6d6d Oxda| 232 |0x7fffe7e7|0x1818[0x30

63 |0z3fffbe3e | 02400041cl |0x83| 148 |0x7fff9393| Ow6c6c |0xd8| 233 |0ax7ff fe8e8 |0wl717 |Oz2e

64 |0x3fffbf3f]|0x400040c0 |0x81| 149 |0xTfff9494 0x6b6b Oxd6| 234 |[0x7fffe9e9 [0x1616|0x2c

65 | 0x3f ffc040 |0240003fbf [0x7f| 150 |0x7fff9595| Ow6aba |Oxzdd| 235 |0x7fffeaea|0xl515|0x2a

66 | 0x3fffcldl | 0240003¢ebe [0Ox7d| 161 |0x7fff9696| 026969 |0xd2| 236 |O0x7fffebeb |0x1414|0x28

67 | 0x3fffc242|[0x40003dbd |[0x7b| 152 [0x7fff9797 0x6868 0xd0| 237 |0z7fffecec|0x1313]|0x26

68 |0x3fffc343 | 0040003che [0079| 163 |0x7fff9898 | 026767 |Owxce| 238 |Oz7fffeded |0w1212|0x24

69 | 0x3f ffcddd | 0x40003bbdb |0277| 154 |0x7fff9999 0x6666 Oxcc| 239 |0x7fffeeee |O0x1111|0x22

70 |0x3fffc545|0240003aba |0x75| 165 |0x7fff9a9a| 026565 |Owzca| 240 |0x7fffefef|0x1010 0220

71 | 0x3fffc646| 0240003969 [0273| 156 |[O0x7fff9b9b 0x6464 Oxc8| 241 |0x7ffffOf0| OxfOf |Oxle

72 | 0x3fffc747 | 0240003868 [0x71| 157 |0x7fff9c9c¢| 026363 |Owc6| 242 |0x7ffff1f1] Ozele |Ozlc

73 | 0x3f ffc848 | 0240003767 [0x6/| 168 |0x7fff9d9d| 026262 |Owxcd| 243 |0x7ffff2f2] Oxd0d |Oxla

74 | 0x3f ffc949 | 0240003666 |0x6d| 159 |0x7fff9e9e| 026161 |Owxc2| 244 |0x7ffff3f3] OxcOc |0z18

75 |0x3f f fcada| 0240003565 |0w6b| 160 |0x7fff9f9f| 026060 |OxcO| 245 |0x7ffff4f4] 0zb0b |0x16

76 | 0x3f ffcbdb | 0240003404 [0x69| 161 |[0x7fffa0al 0x5f5f Oxbe | 246 |0xz7ffff5f5| Oxzala |Ox14

77 | 023/ ffccdc | 0240003363 0067 | 162 |0x7fffalal| Ozbebe |Owbc| 247 |0x7ffff6f6] 02909 |Oz12

78 |0x3fffcddd| 024000322 |0x65| 163 |0x7fffa2a2 0x5d5d Oxba | 248 |0x7ffff7f7| 0808 [0x10

79 | 0z3f f fcede | 0240003161 |0063| 164 |0x7fffa3a3| Owxbcbe |0wb8| 249 |0x7ffff8f8] 02707 | Oxe

80 |0z3fffcfaf|02400030b0 |[0x61| 165 |0x7fffadad| Ox5b5b | 0xb6| 250 |0x7ffff9f9] 02606 | Oxc

81 |0x3fffd050|0x40002faf|0x5f| 166 |0x7fffabab| Owxbaba |Owxbd| 251 |0z7ffffafa| 02505 | Oza

82 |0x3fffd151|0x40002¢ae |Ox5d| 167 |0x7fffaba6| 025959 |0xb2| 252 |0x7ffffbfb| 02404 | 0x8

83 |0x3fffd252[0x40002dad|0x5b| 168 [0xz7fffa7aT 0x5858 0xb0 | 253 [0x7ffffcfc| 02303 | 0z6

84 |0x3fffd353|0240002cac |0x59| 169 |0x7fffaBa8| 0x5757 |Owae| 254 |Oz7ffffdfd]| 02202 | Ox4

85 |0x3fffd454|0x40002bab |0x57| 170 |0z7fffa9a9 0x5656 Oxzac| 255 |0xz7ffffefe| 0101 | Ox2

16

B

H. Wu et al.

Generating Identical Keystreams for Aziv,

Here we describe more details of an algorithm that is used to generate identical
keystreams for the IV difference at iv;:

1.

Initialize ivg, ivy,...,iv15 with 0. Set iv13 = 64.

2. Denote (ivg + 8ivi3 + 16iv1g) as sumy and guess sum; with 1 of the 6376

possible values.

. Guess iv3[1, 2], and compute v, until the condition v[1..7] — (v >>8)[1..7] < 1

is satisfied. If not possible, go to (2) .

. Guess iv7 and iv11, and compute u, until ©[24..31] = Oxff is satisfied. We

store the intermediate state s16. If not possible, go to (3).

. Guess iv15 and re-compute u, until u[1..7] = «[9..15] and u[8] = 0 are satis-

fied. If not possible, go to (4).

. Now we compare the current s14 with stored s;14 to capture the change. By

properly changing ivy and ivy3(this is the reason iv;3 is initialized as 64), we
can always change the current si6 back to the saved value. Hence, u[24..31]
will remain.

. Determine iv; as follows:

— If v[8] # v[16], then if u[1..16] < v[1..16] is satisfied, iv; = 256+u[1..16]—
v[1..16] and update v, otherwise, go to (5).

— If v[8] = v[16], then if u[l..16] >= v[1..16] is satisfied, iv; = u[1..16] —
v[1..16] and update v, otherwise, go to (5).

. Guess vy, ivs and iv14, compute v, until v[16..31] = 0xf£££f. If not possible,

go to (5).

I (udo)[1] = 1, let dvy = ive @ 2. Choose ivs properly to ensure u[16..23] =

0xff. Check if we indeed have v = u, then output ivg, vy, ..., 1v15. Other-
wise, go to (8).

In this algorithm, we restrict the forms of v and w to those starting with

0x7fff to reduce the search space.

