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Abstract. In this paper we demonstrate a fast correlation attack on
the shrinking generator with known connections. Our attack is appli-
cable to arbitrary weight feedback polynomial of the generating LFSR
and comparisons with other known attacks show that our attack offers
good trade-offs between required keystream length, success probability
and complexity. Our result confirms Golić’s conjecture that the shrink-
ing generator may be vulnerable to fast correlation attacks without ex-
haustively searching through all possible initial states of some LFSR is
correct.

Keywords: Fast correlation attack, Shrinking generator, Linear feed-
back shift register.

1 Introduction

The shrinking generator (SG) is a well-known keystream generator proposed in
[4] at Crypto’93. It consists of two LFSR’s, say LFSR A and LFSR S. Both
LFSRs are regularly clocked and the output bit of the generating LFSR A is
taken iff the current output bit of the control LFSR S is 1. This generator obtains
a kind of implicit non-linearity from the shrinking process, i.e. the exact positions
of the remaining bits in the generated keystream become uncertain. It is proved
that the generated keystream has many merits in cryptographic sense such as a
long period, a desirably high linear complexity and good statistical properties.
It is recommended in [4] that both the initial states of the two LFSR’s and the
feedback polynomials of theirs be secret key. As in [5], we stress here that our
analysis is also based on the known feedback polynomials assumption.

So far, several attacks against the shrinking generator have been proposed.
A simple divide-and-conquer attack is proposed in [4] requiring an exhaustive
search through all possible initial states and feedback polynomials of LFSR S. A
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correlation attack is proposed in [8] and is experimentally analyzed in [19] which
takes an exhaustive search through all initial states and all possible feedback
polynomials of LFSR A. At Asiacrypt’98, T. Johansson [12] presented a reduced
complexity correlation attack based on searching for specific subsequences of
the keystream, whose complexity and required keystream length are both ex-
ponential in the length of LFSR A. In 2001, a probabilistic correlation analysis
[6] based on a recursive computation of the posterior probabilities of individual
bits of LFSR A was conducted by J. D. Golić, which revealed the possibility of
implementing certain fast correlation attack on the shrinking generator. A novel
distinguishing attack on the shrinking generator is proposed in [5]. According to
the facts that an arbitrary weight feedback polynomial of degree L is known to
have a weight 4 multiple of degree O(2L/3) and 10000 = 213.2877 = 2L/3 [7, 20] ,
that distinguisher is applicable to arbitrary shrunken LFSR’s of length around
40. Very recently, an improved linear consistency attack is presented in [17] which
is an completely exhaustive search through all initial states of LFSR S.

In [6], it was conjectured that the shrinking generator may be vulnerable to
fast correlation attacks that would not require an exhaustive search through all
possible initial states of LFSRs. In this paper we try to answer this question def-
initely even for LFSR A of length 61, as suggested in [9]. We show that given a
length of only 140000 keystream bits, the initial state of LFSR A with arbitrary
weight feedback polynomial of degree 61 can be recovered with success proba-
bility higher than 99% and complexity 256, which is a good trade-off between
these parameters.

This paper is organized as follows. In Section 2 we present a general descrip-
tion of our attack. Deep analysis of our attack is made in Section 3. Experiments
results together with comparisons with other attacks on the shrinking generator
are provided in Section 4. Finally, conclusions are given in Section 5.

2 A General Description of Our Attack

We first present a general description of our attack. Denote the output se-
quence of LFSR A by a = a0, a1, · · · and the output sequence of LFSR S by
s = s0, s1, · · · . The output keystream of (SG) is z = z0, z1, · · · . Our attack is com-
posed of two phases: first, correlation analysis phase which results in a sequence
â = â0, â1, · · · associated with sequence a by the relation P (âi = ai) = 1

2 +ε with
ε > 0; second, fast correlation attack phase which aims at recovering the secret
initial state of LFSR A. Here we adopt the BSC (binary symmetric channel)
model for fast correlation attack, as shown in Figure 1.

Our main idea is to regard the sequence â as the noisy version of sequence a
through the binary symmetric channel representing the noise introduced by the
shrinking generator, i.e. 1− p = P (âi = ai), given p as the crossover probability
in the BSC. W.l.o.g assume p < 0.5. Our aim is to restore sequence a from â
by efficient fast correlation attack techniques. Note that several new efficient
fast correlation attacks on stream ciphers are proposed recently, [2, 3, 15, 16],
enabling us to construct an efficient fast correlation attack on the shrinking
generator, which is impossible by traditional techniques. In this paper, we follow
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Fig. 1. Model for fast correlation attack.

the method in [3] to mount our attack on the shrinking generator. In nature, our
correlation analysis has nothing to do with the decoding algorithm which means
other decoding techniques may also be applied, as discussed in Section 4.

The original idea of correlation analysis phase goes back to [21]. We made
crucial improvements to the initial method. For simplicity, assume that both
the LFSR sequences generated by LFSR A and LFSR S are purely random (a
sequence of independent uniformly distributed random variables is called purely
random). Consider the probability that zk equals ar in the (SG). It is obvious
that k ≤ r. If we regard the event that si = 1 as success, then the event that zk

equals ar is equivalent to the event that the kth success of sequence s occurs at
the rth trial which obeys the Pascal Distribution. Thus the probability that zk

equals ar is:

P (zk = ar) =
(

r

k

)
(
1
2
)r+1. (1)

On the other hand, if ar appears in the keystream z, the following equation
holds:

ar = z∑ r−1
i=0 si

. (2)

When r grows large, the distribution of the sum
∑r−1

i=0 si approximates the Nor-
mal Distribution, i.e. ∑r−1

i=0 si − r/2√
r/4

�→ N(0, 1). (3)

Let Ir/2 = [r/2 − α
√

r/4, r/2 + α
√

r/4], here comes our main observation:
for arbitrary probability p, there exists a α such that whenever ar appears in
keystream z, the following equation holds:

P (
r−1∑
i=0

si ∈ Ir/2) = p. (4)

As in [5], we formally define two kinds of intuitive notion of imbalance.

Definition 1. W.l.o.g, we assume the interval Ir/2 includes odd number of in-
tegers. Let S0 = {zi|i ∈ Ir/2, zi = 0}, S1 = {zi|i ∈ Ir/2, zi = 1}, the first kind of
imbalance of the interval Ir/2, Imb1(Ir/2), is defined as |S1| − |S0|, where | · | is
the cardinality of a set. If Imb1(Ir/2) �= 0, this interval is said to be imbalanced.
See Figure 2.
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Fig. 2. The interval that ar probably lies in.

Definition 2. The notations are the same as those in Definition 1. Let P
(r)
0 =∑

zi∈S0
P (ar = zi), P

(r)
1 =

∑
zi∈S1

P (ar = zi), the second kind of imbalance of

the interval Ir/2, Imb2(Ir/2), is defined as P
(r)
1 − P

(r)
0 . If Imb2(Ir/2) �= 0, this

interval is also said to be imbalanced. See Figure 2.

Now there are two kinds of construction methods of sequence â corresponding
to these two kinds of imbalance. The first one is a straightforward majority poll
according to Definition 1. The second one is a similar but more reasonable poll
according to Definition 2.

Method 1. Following Definition 1, if Imb1(Ir/2) > 0, let âr = 1. Otherwise, let
âr = 0.

Method 2. Following Definition 2, if Imb2(Ir/2) ≥ 0, let âr = 1. Otherwise, let
âr = 0.

Both theoretical analysis and experimental results show that sequence â con-
structed above satisfying P (âi = ai) = 1

2 +ε with ε > 0 as expected. We will give
the theoretical analysis in next section and the experimental results in Section
4.

Next, we will present a brief description of the fast correlation attack [3]
involved in our attack. This attack is a one-pass correlation attack consisting of
two stages: pre-processing stage aiming at the construction of parity-check equa-
tions of weight k and processing stage in which a majority poll is conducted for
D (D > L−B) considered bits other than the first B bits (x0, x1, · · · , xB−1) of
the initial state (x0, x1, · · · , xL−1). In general, there are three new ideas proposed
in [3]. First, a match-and-sort algorithm is proposed to construct parity-check
equations of the following form with respect to a given considered bit xi

xi = xm1 ⊕ . . . ⊕ xmk−1 ⊕
B−1∑
j=0

cjxj (5)

where mj (1 ≤ j ≤ k − 1) denote the indices of the keystream bits and the
last sum represents a partial exhaustive search over (x0, · · · , xB−1) of the initial
state (x0, · · · , xL−1). (5) offers plenty of suitable parity-check equations needed
for high performance decoding, meanwhile avoids the low weight restriction of
the feedback polynomial of the LFSR. Second, after regrouping the parity-check
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equations that contain the same pattern of B −B1 initial bits, an application of
Walsh transform is suggested to evaluate the parity-check equations in processing
stage for a given zi, i.e. when ω = [xB1 , xB1+1, · · · , xB−1], Fi(ω) =

∑
(−1)t1i ⊕t2i

is just the difference between the number of predicted 0 and the number of
predicted 1, where t1i = zm1 ⊕ · · · ⊕ zmk−1 ⊕

∑B1−1
j=0 cjxj and t2i =

∑B−1
j=B1

cjxj .
Then for each of the D considered bits, if Fi(ω) > θ, let xi = 0. If Fi(ω) < −θ,
let xi = 1, where θ is the decision threshold. Third, in order to have at least
L − B correctly recovered bits among the D considered bits, a check procedure
is used which requires an exhaustive search on all subsets of size L − B among
the L − B + δ bits. The total complexity of the processing stage is:

O(2BDlog2Ω + (1 + perr(2B − 1))
(

L − B + δ

δ

)
1
ε2

) (6)

where perr is the probability that a wrong guess results in at least L − B + δ
predicted bits and Ω is the expected number of parity-check equations of weight
k for each considered bit. For the details of these formulae and the notations,
please see the Appendix A and [3].

A summary of our attack is as follows:

1. Input: the feedback polynomial, f(x), of LFSR A, a segment of keystream
z0, z1, · · · , zN−1, N ′ < N , N ′ is determined by N ′ ≈ N − α

√
N ′/2.

2. Construct sequence â = â0, · · · , âN ′−1 according to Method 1 or Method 2
from keystream z0, z1, · · · , zN−1.

3. For each guess of (a0, · · · , aB−1) and each bit position i, (i = B + 1, B +
2, . . . , D), evaluate the parity-check equations using the Walsh transform
technique. Select those bits passing the majority poll to recover the initial
state of LFSR A using the above check procedure.

After having recovered the initial state of LFSR A, we should also restore
the initial state of LFSR S. With the knowledge of known sequence of LFSR
A and keystream z, the remaining problem is much simplified compared to the
original one . One way to do so is to use the method proposed in [6]. Here we
do not focus on this problem.

3 Analysis of Our Attack

In this section, we will analyze our attack deeply, mainly on the two correlation
analysis methods. We give two theorems on the coincidence probabilities P (âr =
ar) under the above two methods, respectively. We will show that a special case
of our method 2 is equivalent to the method proposed by Golić in [6].

3.1 The Coincidence Probability Under Method 1

Keep the assumption that both sequences generated by LFSR A and LFSR S
are purely random. Theorem 1 yields the probability that sequence â equals
sequence a under method 1.
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Theorem 1. Under method 1, the probability that the constructed sequence â
equals sequence a is given by

P (âr = ar) =
1
2

+
1

22E

(
2E

E

)
p

4
=

1
2

+ εr. (7)

where 2E + 1 satisfying E = 
(α√r − 1)/2�, is the closest odd integer to α
√

r

and p = 1√
2π

∫ α

−α
e−x2/2dx is the probability in (4).

Proof. According to method 1, we have

P (âr = ar) = P (sr = 1)P (âr = ar|sr = 1) + P (sr = 0)P (âr = ar|sr = 0)

=
1
2
P (âr = ar|sr = 1) +

1
4

=
1
2
P (âr = ar|

r−1∑
i=0

si ∈ Ir/2, sr = 1)P (
r−1∑
i=0

si ∈ Ir/2|sr = 1)

+
1
2
P (

r−1∑
i=0

si∈̄Ir/2|sr = 1)P (âr = ar|
r−1∑
i=0

si∈̄Ir/2, sr = 1) +
1
4

=
1
4

+
1
4
(1 − p) +

p

2
P (âr = ar|

r−1∑
i=0

si ∈ Ir/2, sr = 1)

=
1
2
− p

4
+

p

2
P ∗

where P ∗ = P (âr = ar|
∑r−1

i=0 si ∈ Ir/2, sr = 1) can be derived by the following
equations.

P ∗ = P (âr = ar = 0|
r−1∑
i=0

si ∈ Ir/2, ·) + P (âr = ar = 1|
r−1∑
i=0

si ∈ Ir/2, ·)

= P (ar = 0)P (âr = 0|ar = 0,

r−1∑
i=0

si ∈ Ir/2, sr = 1)

+P (ar = 1)P (âr = 1|ar = 1,

r−1∑
i=0

si ∈ Ir/2, sr = 1)

=
1
2

2E∑
i=E

(
2E

i

)
1

22E
+

1
2

2E∑
i=E

(
2E

i

)
1

22E
. (8)

(8) comes from the observation that if ar = j (j = 0, 1), then there must be
at least E elements other than ar itself in Ir/2 to be j for âr = ar = j holds.
According to

∑2E
i=E

(
2E
i

)
=

∑E
i=0

(
2E
i

)
, we get

P ∗ =
1
2

+
1

22E+1

(
2E

E

)
.

This completes the proof.
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Corollary 1. The coincidence probability P (âr = ar) is a function of r satisfy-
ing

1
2

< P (âr = ar) ≤ 3
4

(9)

where the upper bound is achieved when r = 0.

Theorem 1 implies that the smaller r, the larger P (âr = ar) is. Note that our
aim is to have a sequence â with a large enough correlation to a, which means
that we should make the probability P (âr = ar) as large as possible. The larger
εr is, the larger number of bits in sequence â satisfy âr = ar. However, the above
theorem shows that the probability function has an irregular form such that the
classical methods for finding global maximum value of regular functions can not
be used to obtain its global maximum. Instead, we try to find out the optimum
numerical values of P (âr = ar) for each r. From Theorem 1, we can see that the
bias

εr =
1

22E

(
2E

E

)
p

4
(10)

is dependent on the product of p and
(
2E
E

)
/22E. Therefore, the optimum value

of εr is

ε
(r)
max = max0≤p≤1{ 1

22E

(
2E

E

)
p

4
}. (11)

Note that 2E + 1 is a measure of the length of Ir/2 which is determined by the
probability p chosen in advance. In intuitive point of view, we should always
choose p (by choosing α) rather large so that we can guarantee the interval Ir/2

always includes the indices of the elements that lie in keystream z. One easy
way to do so is to choose p equals to one fixed value such as 0.90, 0.95, · · · , even
p = 0.99. However, both theoretical and experimental results show that the bias
εr drops so rapidly in this way that the average coincidence probability found is
not good enough for an efficient fast correlation attack. Instead, we programmed
in Mathematica to find each α that results in ε

(r)
max. Figure 3 (In Figure 3, the

horizontal axes represents α) shows for each r, where the optimum of α is located
in the range (0, 5).

Note that our construction method of sequence â is independent of the con-
crete LFSR structure under the purely random assumption, which means the
pre-computation of the optimum values of α would be applied to arbitrary LFSR.
Figure 3 shows that the optimum values of α satisfy 1 ≤ α ≤ 2 for r ≥ 244.
Noting the instruction Findminimum in Mathematica can only find the local
minimum, we use the following two instructions to find the optimum value of α
(a represents α):

Findminimum[− (2E
E )

22E

∫ a
−a

e−x2/2dx

4
√

2π
, {a, 0, 5}], 0 ≤ r ≤ 243

or

Findminimum[− (2E
E )

22E

∫ a
−a

e−x2/2dx

4
√

2π
, {a, 1, 5}], r ≥ 244.

Figure 4 (In Figure 4 and 5, the horizontal axis represent keystream length N)
shows the locations of the optimum values of α. With the knowledge of the
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Fig. 3. The optimum position of α.

Fig. 4. The optimum value α that results in ε
(r)
max. (a)-small scall, (b)-larger scale.

Fig. 5. The values of ε
(r)
max. (a)-small scale, (b)-large scale.

optimum values of α, the biases we found are plotted in Figure 5. Let H =
{âi| i ∈ {0, 1, · · · , N − 1}, âi = ai}, the correlation found in this way is defined
as |H |/N . We can see that the correlations is good enough for an efficient fast
correlation attack against LFSR of moderate length. For example, for N=243, it
amounts to 0.56555. For N = 3000, the correlation is 0.52748 and for N = 8000,
it is 0.52075. See Section 4.
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3.2 The Coincidence Probability Under Method 2

Next, we consider the probability P (âr = ar) under the construction of method
2. We will show that a special case of method 2 is equivalent to the method
proposed by Golić in [6] in a sense that the numerical biases found under both
methods (a special case of our method 2 and the method in [6]) are almost the
same.

First note that from Definition 2 and (1), we have

P
(r)
0 =

∑
zi∈S0

P (ar = zi) =
∑

zi∈Ir/2

(
r

i

)
(1 − zi)(

1
2
)r+1 (12)

P
(r)
1 =

∑
zi∈S1

P (ar = zi) =
∑

zi∈Ir/2

(
r

i

)
zi(

1
2
)r+1. (13)

(12) and (13) imply that

E(P (r)
0 ) = E(P (r)

1 ) =
1
2

∑
zi∈Ir/2

(
r

i

)
(
1
2
)r+1 =

1
2
(P (r)

1 + P
(r)
0 ), (14)

where E(·) is the mathematical expected value of the random variable. Note that
method 2 actually takes into account the weight (the probability P (ar = zk)
associated with the point) of each point in Ir/2 upon making a majority poll,
while in method 1, we regard each point in Ir/2 as the same, i.e. no one is more
important than any other one. Therefore,

P (âr = ar) = P (âr = ar,
r−1∑
i=0

si ∈ Ir/2) + P (âr = ar,
r−1∑
i=0

si∈̄Ir/2)

=
1
2

+ {max(P (r)
1 , P

(r)
0 ) − 1

2
(P (r)

1 + P
(r)
0 )}

=
1
2

+ {max(P (r)
1 , P

(r)
0 ) − E(max(P (r)

1 , P
(r)
0 ))} =

1
2

+ εr. (15)

Now we consider an important case of method 2. Let Ir/2 = {0, 1, · · · , r} such
that P

(r)
1 + P

(r)
0 = 1

2 , i.e. the probability that ar lies in the interval Ir/2 is 0.5,
instead of 1, due to the nature difference between method 1 and method 2. In
this case, E(P (r)

0 ) = E(P (r)
1 ) = 1

4 . It follows from (14) and (15) that

E(εr) = E(max(P (r)
1 , P

(r)
0 )) − 1

4

= E((P (r)
1 + P

(r)
0 )/2 + |P (r)

1 − P
(r)
0 |/2) − 1

4

= E(|P (r)
1 − 1

4
|). (16)

Since Ir/2 = {0, 1, · · · , r}, we regard P
(r)
1 =

∑r
i=0

(
r
i

)
zi(1

2 )r+1 as the sum of
r + 1 independent random variables ξ0, ξ1, · · · , ξr satisfying P (ξi = 0) = P (ξi =
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(
r
i

)
(1
2 )r+1) = 0.5. When r → ∞, P

(r)
1 follows the Normal Distribution, i.e.

P
(r)
1 � N(1

4 , σ2), where the variance σ2 =
∑r

i=0

(
r
i

)2(1
2 )2r+2 1

4 =
(
2r
r

)
(1
2 )2r+2 1

4 .
Hence, we get

E(εr) =
2σ√
2π

=

√
(1
2 )2r

(
2r
r

)
2
√

2π
≈ 1

2
√

2π 4
√

π
· 1

4
√

r
≈ 0.149828

1
4
√

r
. (17)

Note that the corresponding bias found in [6] is 0.1515 1
4√r

based on approxi-
mating a binomial distribution by a uniform distribution. Both estimations are
almost the same. From above, we get the following theorem.

Theorem 2. Under method 2 and let Ir/2 = {0, 1, · · · , r}, the probability that
the constructed sequence â equals sequence a is given approximately by

P (âr = ar) ≈ 1
2

+ 0.149828
1
4
√

r
(18)

where Ir/2 is the same notation as that defined in Section 2.

Note that we obtain Theorem 2 under a special case of method 2. As in Theorem
1, we also want to maximize the probability P (âr = ar) under the general case
of method 2. In nature, the maximization problem is to determine how long
the interval Ir/2 should be chosen (by choosing α) such that the second kind of
imbalance, Imb2(Ir/2), can be maximized. The detailed analysis appears to be
difficult, for the Normal Distribution may not be used in this case. We just leave
this problem open. In the following, we will show that the coincidence probability
obtained under Theorem 1 is approximately comparable to those got in Theorem
2 and in [6]. See Table 1. Note that the biases listed in Table 1 are not the average
values, which are listed in Section 4. We can see that the bias values got from
two methods are very close. Actually, such close values have almost the same
inflect on the complexity of the whole fast correlation attack. Hence, any one
of them can be used in practice. If all the binomial coefficients

(
i
k

)
0 ≤ i ≤ r

are pre-computed as suggested in [6] using the recursion
(

i
k

)
=

(
i−1
k−1

)
+

(
i−1
k

)
in

O(i2) time and stored in O(r2) space, then method 2 will give a slightly higher
coincidence. If the optimum values of α have been pre-computed in advance,
method 1 is OK.

In addition, from Theorem 2 we can see that with the increase of r, the
coincidence probability P (âr = ar) tends to 0.5 slowly. This fact can be inter-
preted as the reasonable result of basic design criterion of stream ciphers that
the keystream z should satisfy P (z = 0) = P (z = 1) = 0.5 and the fact that a
binomial distribution approximates a uniform distribution when r → ∞.

Table 1. The one-point bias values of two methods.

r 1000 4000 8000 20000
Th. 1 0.0258843 0.018021 0.0150915 0.0119576
Th. 2 0.0266436 0.0188399 0.0158424 0.012599
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4 Experimental Results

In this section we present some simulation results of our attack together with
some comparisons with other known attacks on the shrinking generator. The
experiments were done on a Pentium 4 PC processor.

First, we list the optimum values of α that give ε
(r)
max in Table 2. We use

Mathematica to pre-compute these values in about four hours. It can be easily
seen that most of the optimum values of α lie in the interval (1.3, 1.5). The
average value ᾱ = 1.376395 corresponds to the average probability p̄ = 83.13%.
It is worth noting that the optimum values of α are applicable to arbitrary
LFSRs due to our purely random assumption in Section 2. Table 3 shows the
average biases obtained by two theoretical methods and computer simulations.
It is obvious that Theorem 1 is preferable when r is small, while Theorem 2
coincides with simulations better and offers a little better correlation when r
grows large. The actual values of ε in Table 3 are found based on a shrinking
generator with the following two primitive polynomials as the feedback polyno-
mials of LFSR A and LFSR S, respectively: fA(x) = 1+x+x3 +x5 +x9 +x11 +
x12 + x17 + x19 + x21 + x25 + x27 + x29 + x32 + x33 + x38 + x40 [3, 15, 16, 10] and
fS(x) = 1 + x + x2 + x3 + x4 + x5 + x42 by method 1. The experimental results
are in accordance with the theoretical expectations very well.

In order to compare our attack with other known ones, we consider another
example of the shrinking generator with the generating LFSR A of length 61,
as suggested in [9]. For practical considerations, we assume the length of LFSR
S ≈ 61. Following the fast correlation attack in Section 2 and Appendix A,

Table 2. The optimum values of α (N=120000).

Domain Number of α Percent
1.0 ∼ 1.1 248 0.2%
1.1 ∼ 1.2 3139 2.5%
1.2 ∼ 1.3 4308 3.6%
1.3 ∼ 1.4 63480 53.0%
1.4 ∼ 1.5 48221 40.2%
1.5 ∼ 1.6 365 0.3%
others 239 0.2%

ᾱ average 1.376395 100%

Table 3. The average biases ε of two methods and simulations.

N ε(Th. 1) ε(Th. 2) ε(found)
240 0.0667726 0.0512096 0.054167
3000 0.02748 0.0270324 0.02100
8000 0.02075 0.0211382 0.02037
40000 0.0135484 0.014129 0.015650
80000 0.0113329 0.01188 0.012275
140000 0.00982376 0.0103285 0.008700
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we choose the attack parameters as follows: D = 36, δ = 3, B = 46, k = 5
for L = 61, the keystream length is N = 140000 ≈ 217.1 and the coincidence
probability is 0.50982376. We use the parity-check equations of weight 5, which
can be obtained in O(243) pre-processing time and can be reused in later as many
times as desirable. The expected number of parity-check equations for a given
bit is Ω = 4.88464 × 1014 and the probability that one parity-check equation
gives the correct prediction is q = 1

2 (1 + 0.019647524). From Appendix A, in
order to have P1 ≥ (L − B + δ)/D = 0.5, we choose t = 2.4423196361× 1014

such that P1 ≈ 0.500156 and Pv ≈ 0.999999. This gives the success probability

Psucc =
3∑

j=0

(
18
3

)
P 18−j

v (1 − Pv)j ≈ 99.9%.

The probability of false alarm is negligible in this case. In fact, the probability
Perr is limited to Perr ≈ 7.6 × 10−45. Hence, the total processing complexity is

246 · 36 · log2Ω + (1 + perr(246 − 1))
(

18
3

)
1
ε2

≈ 256.7786.

Table 4 shows the comparisons of different known attacks on the above example
shrinking generator.

Table 4. Comparisons of different attacks on the example shrinking generator.

[13] [8] A.[12] B.[12] C.[12] Our attack

Length of z few 210.23 few 230 230 − 240 217.1

Complexity 280 277 271 256 250 − 240 256

psucc 100% 100% 66% 66% 66% 99.9%

For the detailed discussion of the concrete values in Table 4, see Appendix
B. From Table 4, we can see that the attacks in [13], [8] and the attack A in [12]
are all with the complexity higher than an exhaustive search. The attacks B and
C in [12] are faster than an exhaustive search. But if a very high probability of
success is required, we have to repeat the whole attack at least 4 times, which,
for the best complexity result in [12], results in a 242 keystream length and 242

complexity. The required keystream length is too long for a 61-stage LFSR. In
contract, the keystream length required in our attack is rather small, 217.1, and
the complexity is comparable to those in [12]. Hence, our attack offers a better
trade-off between these parameters. In addition, our attack is better than the
recent proposed attack on irregularly clocked generators in [17]. In that paper,
a malformed shrinking generator with a LFSR S of length 26 and LFSR A of
length 60 is cracked using an exhaustive search over the initial states of LFSR
S with 1000000 ≈ 220 keystream bits. Besides, several fast correlation attack
ideas on the (SG) have been proposed in [6]. However, few concrete results are
available in that paper, making it difficult to make a comparison with it.
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Some Remarks. An important fact about our attack is that the coincidence
probability between a and â decreases, though rather slowly, with the increasing
length of keystream. Hence, we propose two recommendations on attacking the
shrinking generator.
1. It is of great importance to improve the fast correlation attack techniques by

reducing the number of keystream bits required and deriving more efficient
algorithm to construct parity-check equations with a little more weight. A
new fast correlation attack is proposed in [18] without the detailed process-
ing procedures, whose main advantage is the small amount of keystream
necessary for a success attack with respect to a certain noise level compared
to other attacks. From our experiments, the bias corresponding to N = 3000
keystream is 0.0274845, we think it is a promising way to apply this kind of
attack to the shrinking generator.

2. Another direction is to consider the sequence â satisfying P (âi = ai) = pi

with different pi, which is more closer to the truth of the construction
method. Actually, such a method is used in [14] whose main disadvantage
is the weight restriction of the feedback polynomials. Therefore, it is impor-
tant to develop new fast correlation attacks applicable to the different pi

case, while maintaining the property that it is independent of the feedback
polynomial’s weight.

5 Conclusions

In this paper, we demonstrate a fast correlation attack on the shrinking generator
with fixed connections. Our attack confirms that Golić’s conjecture is correct. In
addition, comparisons with other known attacks reveal that our attack offers a
better trade-off between the required keystream length, success probability and
the complexity.
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A Notations and Formulae
of a One-Pass Fast Correlation Attack

1. P (zi = xi) = 1
2 (1 + ε).

2. N is the length of the keystream.
3. L is the length of the LFSR.
4. B is the number of bits partially exhausitive searched.
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5. D is the number of bits under consideration.
6. k is the weight of the parity-check equations.
7. q = 1

2 (1 + εk−1) is the probability that one parity-check equation yielding
the correct prediction.

8. Ω is the expected number of weight k parity-check equations for each con-
sidered bit.

9. δ is the number of bits that predicted other than the n − B bits.
10. P1 =

∑Ω
j=Ω−t(1 − q)Ω−jqj

(
Ω
j

)
is the probability that at least Ω − t parity-

check equations give the correct result, where t is the smallest integer satis-
fying D · P1 ≥ L − B + δ.

11. θ is the threshold such that θ = Ω − 2t.
12. P2 =

∑Ω
j=Ω−t(1 − q)jqΩ−j

(
Ω
j

)
is the probability that at least Ω − t parity-

check equations give the wrong result.
13. Pv = P1/(P1 + P2) is the probability that a bit is correctly predicted with

at least Ω − t parity-check equations give the same prediction.
14. Psucc =

∑δ
j=0

(
L−B+δ

j

)
PL−B+δ−j

v (1− Pv)j is the probability that at most δ
bits are wrong among the n − B + δ predicted bits.

15. E = 1
2Ω−1

∑Ω
j=Ω−t

(
Ω
j

)
is the probability that a wrong guess yields at least

Ω − t identical predictions for a given bit.
16. Perr =

∑D
j=L−B+δ

(
D
j

)
Ej(1 − E)D−j is the probability that false alarm oc-

curs.
17. When k = 4, the time complexity of the pre-processing stage is O(N2logN).

When k = 5, the time complexity is O(DN2logN). In both cases, the mem-
ory complexities are O(N).

B Remarks on the Concrete Values in Table 4

The attack in [13] is a divide-and-conquer attack on LFSR S requiring O(2LS L3
A)

operations. For LS ≈ LA = 61, it amounts to 280. The probabilistic attack
proposed in [8] is also an exhaustive attack with complexity around 2LA(4LA)2.
As in [12], here we choose 4LA for unique decoding. For LA = 61, the complexity
is 277. There are three attacks proposed in [12]. Attack A is an exhaustive search
using the decoding algorithm given in that paper. Both attack B and C are based
on searching for specific weak subsequences in the keystream z. The difference
between B and C is that several weak subsequences are required in attack C,
which results in the very long length of the required keystream, i.e. 240. Though
the complexity of C is the lowest, 240, the required keystream length, 240, is
absolutely unrealistic for a LFSR A of length 61. Besides, the decoding algorithm
in [12] has a failure probability 0.34, when its complexity is assumed to be 210.
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