
Chosen Ciphertext Attack on a New Class of
Self-Synchronizing Stream Ciphers�

Bin Zhang1,2, Hongjun Wu1, Dengguo Feng2, and Feng Bao1

1 Institute for Infocomm Research, Singapore
2 State Key Laboratory of Information Security,

Graduate School of the Chinese Academy of Sciences,
Beijing 100039, P.R. China

zhangbin@mails.gscas.ac.cn
{hongjun, baofeng}@i2r.a-star.edu.sg

Abstract. At Indocrypt’2002, Arnault et al. proposed a new class of
self-synchronizing stream ciphers combining LFSR and FCSR architec-
tures. It was claimed to be resistant to known attacks. In this paper, we
show that such a self-synchronizing stream cipher is extremely vulner-
able to chosen ciphertext attack. We can restore the secret keys easily
from one chosen ciphertext with little computation. For the parameters
given in the original design, it takes less than one second to restore the
secret keys on a Pentium 4 processor.

Keywords: Stream cipher, Self-synchronizing, 2-adic expansion, Feed-
back shift register.

1 Introduction

Stream ciphers are an important class of encryption algorithms in practice. In
general, they are classified into two kinds: synchronous stream ciphers and self-
synchronous stream ciphers [5]. In a self-synchronizing stream cipher, each plain-
text bit affects the entire following ciphertext through some mechanism, which
makes it more likely to be resistant against attacks based on plaintext statistical
properties. Since several ciphertext bits may be incorrectly decrypted when a
bit modification occurs in the ciphertext, such a mechanism provides additional
security against active attacks.

In [1], a new class of self-synchronous stream ciphers was proposed which
exploits the concatenation of LFSR and FCSR. The main idea behind such a
design is to confuse the GF (2) linearity with the 2-adic linearity so that neither
of the synthesis algorithms (Berlekamp-Massey type algorithms) can work in this
case. However, as we will show in this paper, such a simple design is extremely
weak under chosen ciphertext attack. By choosing one ciphertext, we can recover

� Supported by National Natural Science Foundation of China (Grant No. 60273027),
National Key Foundation Research 973 project (Grant No. G1999035802) and Na-
tional Science Fund for Distinguished Young Scholars (Grant No. 60025205).

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 73–83, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

74 B. Zhang et al.

the secret keys with little computation. Assume both LFSR and FCSR are of
length 89, as suggested by the authors [1], we can recover both the structures in
1 second on a Pentium 4 processor.

This paper is organized as follows. In Section 2, we will give an introduction
to the self-synchronizing stream cipher together with some backgrounds. Our
attack on this cipher is given in Section 3 and detailed experimental results are
also included in this section. Finally, some conclusions are given in Section 4.

2 The Self-Synchronizing Stream Cipher

In this section, we will first review some backgrounds including 2-adic arithmetic
and the Galois representations of LFSR and FCSR. Then a detailed description
of the self-synchronizing stream cipher is presented.

2.1 2-Adic Arithmetic, Galois Representations of LFSR and FCSR

A 2-adic integer is a formal power series s =
∑∞

i=0 si2i with si ∈ {0, 1}. We
denote the set of 2-adic integers by Z2. The addition and multiplication in Z2
is done according to 2i + 2i = 2i+1 for all i ≥ 0, i.e. taking the carry to the
higher order term. Thus the addition inverse of 1 is

∑∞
i=0 2i = −1 and if a 2-adic

integer s = 2r +
∑∞

i=r+1 si2i, its addition inverse is −s = 2r +
∑∞

i=r+1(1− si)2i.
A feedback with carry shift register (FCSR) is a device for the fast generation

of pseudorandom sequence with good statistical properties and large period. Like
LFSR, FCSR also has two architectures: Fibonacci structure and Galois struc-
ture [3]. The Galois architecture is more efficient due to the parallel computation
of feedbacks. As in [1], we only consider the Galois structure in this paper.

Lemma 1 characterizes the eventually periodic binary sequences in terms of
2-adic integers.

Lemma 1. [3] Let S2 =
∑∞

i=0 si2i be the 2-adic integer corresponding to a
binary sequence S = {si}i≥0. S is eventually periodic if and only if there exists
two integers p and q in Z such that S2 = p/q with q odd, see Figure 1. Further,
S is strictly periodic if and only if pq ≤ 0 and |p| ≤ |q|.

• • ••

+ + + + 0p1p2−rp
1−rp

1q
2q

1−rqrq

rp
L

Fig. 1. Galois representation of a FCSR

The 2-adic division of p/q is fulfilled by a FCSR using Galois architecture.
Without loss of generality, we always assume p =

∑r
i=0 pi2i +pr+12r+1 + · · · ≥ 0

and q = 1 − ∑r
i=1 qi2i < 0 with pi and qi ∈ {0, 1}. In Figure 1, � denotes the

Chosen Ciphertext Attack 75

addition with carry, i.e. the output of a � b is a ⊕ b ⊕ cn−1 and the carry is
cn = ab ⊕ acn−1 ⊕ bcn−1. � is the binary multiplication. The period of S is the
smallest integer t such that 2t ≡ 1 (modq).

Similarly, the Galois representation of a LFSR is shown in Figure 2, where the
input of the circuit is S(x) =

∑∞
i=0 six

i and the output is S′(x) = S(x)/Q(x),
with Q(x) = 1 +

∑r
i=1 qix

i and ⊕ being Xor.

• • ••

0s1s2−rs1−rs

1q
2q

1−rqrq

rs
L ⊕⊕⊕⊕

Fig. 2. Galois representation of a LFSR

2.2 Description of the Self-Synchronizing Stream Cipher

The structure of this cipher is a concatenation of one LFSR and one FCSR, as
shown in Figure 3. An irreducible primitive polynomial Q(x) of prime degree k is

)(/ xQ q/

LFSR FCSR

S 'S ''S

Fig. 3. The self-synchronizing stream cipher

used as the feedback polynomial of the LFSR. A negative prime q for the FCSR
divisor box is of size k satisfying |q| = 2u+1 with u a prime congruent to 1 mod-
ulo 4 and gcd(|q|−1, 2k−1) = 1, where |·| denotes the absolute value. For practi-
cal applications, the authors of [1] suggest k = 89. Initialize LFSR and FCSR ran-
domly and denote the message to be encrypted by S, the encryption scheme is:
1. Compute S′(x) = S(x)/Q(x) by the LFSR divisor-box.
2. Convert S′(x) into the 2-adic integer S′(2).
3. Compute the ciphertext S′′ = S′(2)/q by the FCSR divisor-box.

Upon decrypting, without loss of generality, initialize all the LFSR and FCSR
cells (including the carries) to be zero. The corresponding decryption scheme is:
1. Compute S′(2) = qS′′(2).
2. Convert S′(2) into the formal power series S′(x).
3. Compute the plaintext S by S(x) = Q(x)S′(x).

The decryption circuits are only generally discussed in [1], no concrete circuit
is given in that paper. It is claimed in [1] that this cipher is fast and secure against
known attacks. However, as we will show below, this self-synchronizing stream
cipher is far away from security.

76 B. Zhang et al.

3 Our Attack

In this section, we will show that this self-synchronizing stream cipher is very
vulnerable to chosen ciphertext attack. Subsection 3.1 gives the circuits fulfilling
multiplication by q and Q(x), respectively. Our attack is given in subsection 3.2.
The experimental results are given in subsection 3.3 in detail.

3.1 The Multiplication Circuits

Without loss of generality, we propose the following two circuits to fulfill the
multiplication by q and Q(x), respectively. The only purpose of this section is
to show that the proposed stream cipher can actually decrypt the ciphertext.

• • ••

++ + +

1q
2q

1−kq
kq

''
0

''
1 ,ssL

Fig. 4. Multiplication circuit with q being the multiplier

• • •• 1Q2Q1−kQkQ

⊕⊕⊕ ⊕

'
0

'
1,ssL

Fig. 5. Multiplication circuit with Q(x) being the multiplier

In Figures 4 and 5, q = 1 − ∑k
i=1 qi2i and Q(x) = 1 +

∑k
i=1 Qix

i are the
secret parameters used in the cipher. Upon decrypting, let all the cells in Figures
4 and 5 (including the carries) be zero. From (1), the inputs corresponding to
the k cells in Figure 4 are the addition inverses of the ciphertext, while the input
corresponding to rightmost � is the ciphertext itself. We denote the inverse
operation by a hollow circle in Figure 4.

(s′′
0 + s′′

1 · 21 + s′′
2 · 22 + · · ·)(1 − q1 · 21 − q2 · 22 − · · · − qk · 2k)

= −(s′′
0 + s′′

1 · 21 + s′′
2 · 22 + · · ·)(q1 · 21 + q2 · 22 + · · · + qk · 2k − 1)

= −(s′′
0 + s′′

1 · 21 + s′′
2 · 22 + · · ·)(q1 · 21 + q2 · 22 + · · · + qk · 2k) + (s′′

0 + s′′
1 · 21

+s′′
2 · 22 + · · ·).

(1)

Chosen Ciphertext Attack 77

3.2 A Chosen Ciphertext Attack

The basic idea of our attack is that if we choose a special ciphertext fed into the
decryption circuits such that the corresponding decrypted message (including a
preamble) is of finite length, then we can retrieve the secret keys q and Q(x) by
simple factoring the polynomial corresponding to the decrypted message over
GF (2) [2, 6].

Since the secret q is a negative prime, the decrypted message is of finite
length if the ciphertext fed into the decryption circuits is a binary string with
the following form:

(∗, ∗, · · · , ∗︸ ︷︷ ︸
A

, 1, 1, · · · , 1, 1︸ ︷︷ ︸
B

), (2)

where A is a randomly-chosen binary prefix of certain length and B is a all-
1 string of certain length. We use a randomly-chosen string A to disguise the
subsequent all-1 string. (3) confirms the validity of the above chosen ciphertext.

(s′′
0 + s′′

1 · 21 + · · · + s′′
l · 2l + 1 · 2l+1 + 1 · 2l+2 + · · ·)q

= (s′′
0 + s′′

1 · 21 + · · · + s′′
l · 2l)q

+(1 · 2l+1 + 1 · 2l+2 + · · ·)q

= (s′′
0 + s′′

1 · 21 + · · · + s′′
l · 2l)q +

2l+1

1 − 2
q

= (s′′
0 + s′′

1 · 21 + · · · + s′′
l · 2l)q + 2l+1 · (−q)

→ D(x),
(3)

where A = (s′′
0 , s′′

1 , · · · , s′′
l) is of length l. From (3), (s′′

0 + s′′
1 · 21 + · · ·+ s′′

l · 2l)q +
2l+1 · (−q) corresponds to a polynomial D(x) of finite degree. Therefore, the
polynomial corresponding to the decrypted message is D(x)Q(x) ∈ GF (2)[x].
According to [6], the following lemma holds.

Lemma 2. [6] A univariate polynomial of degree n over the finite field GF (pk),
where p is a small, fixed prime, can be factored with a deterministic algorithm
whose running time is O((nk)2).

From our experimental results, the degree of D(x)Q(x) is less than 300.
Hence, the complexity of factoring D(x)Q(x) over GF (2) is only O(216).

Upon factoring the decrypted message, we get both Q(x) and D(x). Let
D(x) = d0+d1x

1+d2x
2+· · ·+dhxh. Keeping in mind that D(x) is the polynomial

representation of (s′′
0 + s′′

1 · 21 + · · · + s′′
l · 2l)q + 2l+1 · (−q), d0 + d1 · 21 + d2 ·

22 + · · · + dh · 2h has an integer factor (−q). Therefore, factoring the integer
d0 + d1 · 21 + d2 · 22 + · · · + dh · 2h retrieves the secret q. Since 289 ≤ (−q) ≤ 290,
(−q) is an integer with at most 28 decimal digits which can be recovered easily by
factoring d0+d1 ·21+d2 ·22+· · ·+dh ·2h using the number field sieve algorithm [4].

A full description of our attack is as follows.

1. Choose a string as shown in (2) and feed it into the decryption circuits.

78 B. Zhang et al.

2. Convert the decrypted message into polynomial form and factor it to get
Q(x) and D(x).

3. Transform D(x) into the integer form and factor the integer to recover q.

The complexity of our attack is very low for the parameter k = 89. See
Subsection 3.3.

3.3 Experimental Results

We have implemented the above attack on a Pentium 4 processor, see Appendix
A for the C source codes. The parameters of this self-synchronizing stream cipher
are chosen as follows.

Q(x) = x89 + x6 + x5 + x3 + 1, q = −618970052618499608724417827, (4)

where Q(x) is a primitive polynomial of degree 89 and q is a negative prime
satisfying the following three conditions:

1. 289 ≤ (−q) ≤ 290.
2. gcd(618970052618499608724417826, 289 − 1) = 1.
3. |q| = 2u + 1 with u = 309485026309249804362208913 is a prime congruent

to 1 modulo 4.

These three conditions are used to verify the candidate keys obtained from
the attack. We choose a 600-bit ciphertext as follow.

A = (1010111010101000110100110011001001110001) || B = (11 · · · 11), (5)

where A is a randomly-chosen string of length 40 and B is a all-1 string of length
560. Feed the above chosen ciphertext into the decryption circuits and get the
result. The polynomial corresponding to the decrypted message is x216 + x215 +
x214 +x210 +x209 +x207 +x206 +x203 +x202 +x199 +x198 +x196 +x194 +x192 +
x190 +x183 +x181 +x179 +x178 +x176 +x174 +x173 +x167 +x166 +x165 +x163 +
x159 +x155 +x153 +x149 +x148 +x147 +x145 +x144 +x143 +x140 +x139 +x136 +
x133 +x132 +x131 +x128 +x126 +x123 +x122 +x120 +x118 +x113 +x111 +x110 +
x105 + x104 + x103 + x101 + x100 + x99 + x98 + x96 + x95 + x92 + x91 + x89 + x88 +
x85 + x78 + x75 + x74 + x73 + x72 + x71 + x67 + x64 + x61 + x60 + x59 + x56 +
x52 + x51 + x49 + x42 + x40 + x35 + x34 + x32 + x29 + x6 + x5 + x3 + 1. It takes
0.203 seconds to factor the above polynomial using Mathematica. The result is
(1 + x + x4 + x5 + x6)(1 + x7 + x9 + x11 + x13 + x14 + x15)(1 + x + x2 + x5 +
x8 + x9 + x11 + x16 + x17 + x19 + x20 + x21 + x24 + x25 + x26)(1 + x3 + x8 + x9 +
x10 + x11 + x15 + x17 + x18 + x22 + x24 + x25 + x29 + x30 + x31 + x32 + x33)(1 +
x4 + x5 + x6 + x8 + x9 + x13 + x15 + x19 + x20 + x22 + x23 + x24 + x26 + x27 +
x30 + x31 + x33 + x34 + x35 + x36 + x37 + x40 + x42 + x43 + x44 + x45 + x46 +
x47)(1+x3 +x5 +x6 +x89). Expand the factors other than x89 +x6 +x5 +x3 +1
and let x = 2. The result is 302266531961499475785005717448795619329. By
Mathematica, it takes 0.219 seconds to factor this integer. The result is 32 · 23 ·
8839 ·266899 ·618970052618499608724417827. Therefore, the total time required
to restore Q(x) and q is about 0.422 seconds.

Chosen Ciphertext Attack 79

Some Remarks. A pseudorandom generator with a similar structure was also
proposed in [1]. Since our attack only work in the chosen ciphertext scenario,
the security of that generator is not influenced by our attack.

4 Conclusion

In this paper, we showed that the proposed self-synchronizing stream cipher is
extremely weak against chosen ciphertext attack. We can restore the secret keys
easily from a 600-bit chosen ciphertext in 1 second on a Pentium 4 processor.
We suggest that this cipher should not be used in practice.

References

1. F. Arnault, T. P. Berger, A. Necer, “A New Class of Stream Ciphers Combining
LFSR and FCSR Architectures”, Progress in Cryptology-INDOCRYPT’2002, LNCS
vol. 2551, Springer-Verlag,(2002), pp. 22-33.

2. Berlekamp, E. R., ”Factoring polynomials over finite fields”, Bell Systems Tech. J.,
46, 1967, pp. 1853-1859.

3. M. Goresky, A. M. Klapper, ”Fibonacci and Galois Representations of Feedback-
With-Carry Shift Registers”, IEEE Transactions on Information Theory, vol. 48,
No. 11, 2002, pp. 2826-2836.

4. A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, J. M. Pollard, “The Number Field
Sieve”, Proceedings of the Twenty Second Annual ACM Symposium on Theory of
Computing, Baltimore, Maryland, May 1990, pp. 14-16.

5. A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography, CRC
Press,1997.

6. V. Shoup, “A fast deterministic algorithm for factoring polynomials over finite fields
of small characteristic”, Proc. 1991 International Symposium on Symbolic and Al-
gebraic Computation, 1991, pp. 14-21.

A A Non-optimized C Implementation of Our Attack

#include "stdio.h"
#include "math.h"
#define SIZE 8000

unsigned char LFSR[89],FCSR[89],carry[89],cipher[SIZE],
re[SIZE],fe[SIZE],inter[SIZE],plain[SIZE],deinter[SIZE];

void main()
{
unsigned char S[256],z[256],G[5]={179,43,228,11,194};
unsigned char RF[90],RL[90],i1,j1,L[90],F[90];
unsigned int i,j,n,k1;

80 B. Zhang et al.

//use RC4 as the random source
for(k1=0;k1<256;k1++)S[k1]=k1;
for(j1=0,k1=0;k1<=255;k1++)
{

j1=j1+S[k1]+G[k1%5];
i1=S[k1];S[k1]=S[j1];S[j1]=i1;

}

for(i1=0,j1=0,k1=0;k1<256;k1++)
{

i1++;j1=j1+S[i1];n=S[i1];S[i1]=S[j1];S[j1]=n;
z[k1]=S[(unsigned char)(S[i1]+S[j1])];

}

//initialization
for(i=0;i<SIZE;i++)

inter[i]=cipher[i]=plain[i]=deinter[i]=re[i]=fe[i]=0;
for(i=0;i<89;i++)

LFSR[i]=FCSR[i]=carry[i]=0;
for(i=0;i<300;i++)

for(j=0;j<8;j++)
{

deinter[8*i+(j%8)]=(z[i]&(1<<j))>>j;
}

//printf("The message is: \n");
//for(i=0;i<300;i++)printf("%x ",deinter[i]);printf("\n");

// for simplicity, we just initial the LFSR
// and FCSR as follows.
LFSR[0]=1;
LFSR[1]=1;
LFSR[45]=1;
//LFSR[3]=1;
LFSR[88]=1;
//FCSR[1]=1;
FCSR[0]=1;
FCSR[29]=1;
//FCSR[3]=1;
FCSR[88]=1;

for(i=0;i<90;i++)
L[i]=F[i]=0;

for(i=0;i<90;i++)
RL[i]=RF[i]=0;

Chosen Ciphertext Attack 81

L[0]=L[3]=L[5]=L[6]=L[89]=1;
F[0]=F[2]=F[5]=F[8]=F[10]=1;
F[11]=F[13]=F[15]=F[18]=F[19]=F[22]=1;
F[26]=F[28]=F[29]=F[42]=F[43]=F[44]=1;
F[47]=F[48]=F[53]=F[55]=F[56]=F[59]=1;
F[62]=F[63]=F[64]=F[89]=1;
for(i=0;i<600;i++)
{

inter[i]=(LFSR[0] & 1);
j1=deinter[i];
for(j=0;j<90;j++)

RL[j]=(L[j] & LFSR[0]);
for(j=0;j<88;j++)

LFSR[j]=RL[j+1]^LFSR[j+1];
LFSR[88]=RL[89]^j1;

}

for(i=0;i<600;i++)
{

j1=inter[i];
cipher[i]=FCSR[0];
for(j=0;j<90;j++)

RF[j]=(F[j] & FCSR[0]);
for(j=0;j<88;j++)
{
FCSR[j]=(FCSR[j+1]+RF[j+1]+carry[j])&1;
carry[j]=
(unsigned char)((FCSR[j+1]+RF[j+1]+carry[j])&(1<<1))>>1;

}
FCSR[88]=(RF[89]+j1+carry[88])&1;
carry[88]=
(unsigned char)((RF[89]+j1+carry[88])&(1<<1))>>1;

}

//printf("The ciphertext is: \n");
//for(i=0;i<300;i++)printf("%x ",cipher[i]);printf("\n");

// our attack
for(i=40;i<600;i++)

cipher[i]=1;
printf("***\n");
for(i=0;i<40;i++)

printf("%x ", cipher[i]);
printf("***\n");

82 B. Zhang et al.

for(i=0;i<600;i++)
re[i]=cipher[i];

i=0;
while (cipher[i]==0) i=i+1;
for(n=i+1;n<600;n++)

cipher[n]=cipher[n]^1;

for(i=0;i<90;i++)
L[i]=F[i]=0;

for(i=0;i<89;i++)
FCSR[i]=carry[i]=0;

for(i=0;i<90;i++)
RL[i]=RF[i]=0;

L[0]=L[3]=L[5]=L[6]=L[89]=1;
F[0]=F[2]=F[5]=F[8]=F[10]=1;
F[11]=F[13]=F[15]=F[18]=F[19]=F[22]=1;
F[26]=F[28]=F[29]=F[42]=F[43]=F[44]=1;
F[47]=F[48]=F[53]=F[55]=F[56]=F[59]=1;
F[62]=F[63]=F[64]=F[89]=1;
for(i=0;i<600;i++)
{

j1=cipher[i];
i1=re[i];
fe[i]=((FCSR[0]+i1+carry[0])&1);
carry[0]=
(unsigned char)((FCSR[0]+i1+carry[0])&(1<<1))>>1;
for(j=1;j<90;j++)

RF[j]=(j1 & F[j]);
for(j=0;j<88;j++)
{
FCSR[j]=(RF[j+1]+FCSR[j+1]+carry[j+1])&1;
carry[j+1]=
(unsigned char)((RF[j+1]+FCSR[j+1]+carry[j+1])&(1<<1))>>1;

}
FCSR[88]=j1;

}

for(i=0;i<89;i++)
LFSR[i]=0;

for(i=0;i<600;i++)
{

j1=fe[i];
plain[i]=((LFSR[0]^j1)&1);
for(j=1;j<90;j++)

Chosen Ciphertext Attack 83

RL[j]=(L[j] & j1);
for(j=0;j<88;j++)

LFSR[j]=(LFSR[j+1]^RL[j+1]);
LFSR[88]=j1;

}

printf("The decrypted message is: \n");
for(i=0;i<300;i++)

printf("%x ",plain[i]);
printf("\n");

}

After getting the result, we can use Mathematica to restore the secret keys.

	Introduction
	The Self-Synchronizing Stream Cipher
	2-Adic Arithmetic, Galois Representations of LFSR and FCSR
	Description of the Self-Synchronizing Stream Cipher

	Our Attack
	The Multiplication Circuits
	A Chosen Ciphertext Attack
	Experimental Results

	Conclusion
	A Non-optimized C Implementation of Our Attack

