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Abstract. In this paper, we analyze the generalized self-shrinking gen-
erator newly proposed in [8]. Some properties of this generator are de-
scribed and an equivalent definition is derived, after which two attacks
are developed to evaluate its security. The first attack is an improved
clock-guessing attack using short keystream with the filter function (vec-
tor G) known. The complexity of this attack is O(20.694n), where n is
the length of the LFSR used in the generator. This attack shows that
the generalized self-shrinking generator can not be more secure than the
self-shrinking generator, although much more computations may be re-
quired by it. Our second attack is a fast correlation attack with the filter
function (vector G) unknown. We can restore both the initial state of the
LFSR with arbitrary weight feedback polynomial and the filter function
(vector G) with complexity much lower than the exhaustive search. For
example, for a generator with 61-stage LFSR, given a keystream segment
of 217.1 bits, the complexity is around 256, which is much lower than 2122,
the complexity of the exhaustive search.

Keywords: Stream cipher, Self-shrinking generator, Clock control, Fast
correlation attack, Linear feedback shift register.

1 Introduction

The generalized self-shrinking generator is a simple keystream generator newly
proposed in [8]. It uses one LFSR to generate a binary keystream. This new gen-
erator can be regarded as a specialization of shrinking generator and a general-
ization of self-shrinking generator. It is proved that the family of such generated
keystream has good pseudorandomness in cryptographic sense [8]. However, it
is still open whether such a generator can be used as a stream cipher or not. In
this paper, we try to answer the open problem being proposed by the designers
of the generalized self-shrinking generator [8].

The definition of the generalized self-shrinking generator is as follows:
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Definition 1. ([8]) Let a = · · · , a−2, a−1, a0, a1, a2, · · · be an m-sequence over
GF (2), G = (g0, g1, · · · , gn−1) ∈ GF (2)n. Construct sequence v = · · · , v−2,
v−1, v0, v1, v2, · · · such that vk = g0ak +g1ak−1 + · · ·+gn−1ak−n+1, for each k. If
ak = 1, output vk, otherwise discard vk, thus we get a generalized self-shrinking
keystream denoted by b(G) = b0, b1, b2, · · ·. The keystream family B(a) = {b(G),
G ∈ GF (2)n} is called the family of generalized self-shrinking keystream se-
quences based on m-sequence a.

To evaluate the security of the generalized self-shrinking generator, we first de-
scribe some properties of this generator and give an equivalent definition which is
suitable for hardware implementation. Based on these properties and the equiva-
lent definition, we propose two attacks. One is an improved clock-guessing attack
assuming that the vector G is known. This attack generalizes the original version
in [13] by making it applicable to the linear combination case. Comparison with
the general time/memory/data tradeoff attack shows our attack has its advan-
tages. In addition, we point out that for some special cases of this generator,
there are more efficient attacks. In the case that the vector G is unknown to the
attacker, we present a fast correlation attack that could recover both the initial
state of the LFSR and the vector G.

This paper is organized as follows. In Section 2, we analyze some properties
of the generalized self-shrinking generator and give an equivalent definition. The
algorithm given in Section 3 deals with the case that the vector G is known to
the cryptanalyst. The discussions on some special insecure cases of the generator
are also presented. In Section 4, a novel fast correlation attack is developed for
the generalized self-shrinking with the vector G unknown. Section 5 concludes
this paper.

2 Some Properties
of the Generalized Self-shrinking Generator

In this section, we will describe some properties of the generalized self-shrinking
generator. First, by investigating the general structure of this generator, an uni-
fied upper bound of the linear complexity of each keystream belonging to the
family B(a) is derived. Then an equivalent definition of this generator is obtained
based on a long division algorithm.

From Definition 1, it is straightforward to obtain the following lemma.

Lemma 1. For each sequence v defined by vector G in Definition 1, there exists
an integer τ such that vk = ak+τ holds, for each k.

From this lemma, we know that the sequence v is just a shifted equivalent version
of a. The vector G plays the role of a controller in determining the exact shift
value. There is a one-to-one mapping between the shift values and the vector
Gs. Hence, we have the following theorem.

Theorem 1. Keeping the notations as above, the linear complexity of a gener-
alized self-shrinking keystream is at most 2n−1 − (n − 2).
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The proof of this theorem is omitted here due to the lack of space. It is available
in the full version of this paper. The direct consequence of this theorem is that
to resist the Berlekamp-Massey algorithm based attack, the length of the LFSR
used in the generalized self-shrinking generator should better be larger than 40.

According to Definition 1, vk is determined by the state (ak−n+1, · · · , ak−1, ak)
of sequence a and vector G. It is troublesome to generate an element of sequence
v at the initial moment, since we have to store an (n − 1)-step earlier state of
a. In the following, we will present a linear polynomial time algorithm which is
a recursive long division of polynomials to represent the kth term of sequence v
as a linear combination of a different basis of the sequence a.

Denote by X the left shift operator on m-sequence a, i.e. X{ak} = {ak+1}
for each k. Let f(x) = 1 + c1x + c2x

2 + · · · + cn−1x
n−1 + xn be the feedback

polynomial of sequence a. It is easy to see that for each k

an+k =
n∑

i=1

cian+k−i =
n−1∑

i=0

c∗i ai+k (1)

holds where c∗i denote the coefficients of the reciprocal polynomial f∗(x) of f(x),
i.e. c∗i = cn−i with cn = c0 = 1. Moreover, we have f∗(X){a} =

∑
c∗i X

i{a} = 0
where 0 is the all-zero sequence.

Keeping in mind that {1, X, X2, · · · , X2n−2} is a cyclic group, X2n−1−i =
X−i holds. Sequence v can be rewritten as: {vk} = g0{ak}+ g1X

−1{ak}+ · · ·+
gn−1X

−n+1{ak}. From Lemma 1, there exists an integer τ such that {vk} =
Xτ{ak}, for each vector G. In terms of feedback polynomial, the following two
congruence of polynomials hold:

g0 + g1X
−1 + · · · + gn−1X

−n+1 ≡ Xτ mod f∗(x), (2)

Xτ ≡ g′0 + g′1X
1 + · · · + g′n−1X

n−1 mod f∗(x), (3)

where both vectors (g0, g1, · · · , gn−1) and (g′0, g
′
1, · · · , g′n−1) belong to GF (2)n.

(2) and (3) indicate that there exists a vector (g′0, g
′
1, · · · , g′n−1) ∈ GF (2)n such

that {vk} = g′0{ak}+g′1X1{ak}+ · · ·+g′n−1X
n−1{ak} , i.e. vk = g′0ak +g′1ak+1+

· · · + g′n−1ak+n−1 holds. Furthermore, the above process is obviously invertible
which implies that we actually get an equivalent definition of the generalized
self-shrinking generator.

Definition 2. Let a = a0, a1, a2, · · · be an m-sequence over GF (2), vector G′ =
(g′0, g

′
1, · · · , g′n−1) ∈ GF (2)n. Construct sequence v = v0, v1, v2, · · · such that

vk = g′0ak+g′1ak+1+· · ·+g′n−1ak+n−1, for each k, as shown in Figure 1. If ak = 1,
output vk, otherwise discard vk, we also get a generalized self-shrinking keystream
denoted by b(G′) = b′0, b

′
1, b

′
2, · · ·. The keystream family B(a) = {b(G′), G′ ∈

GF (2)n} is also called the family of generalized self-shrinking keystream se-
quences based on m-sequence a.

Although Lemma 1 reveals that there exists a τ satisfying {vk} = Xτ{ak},
it is of great importance to note that when transforming from one definition to
the other, it is unnecessary to find out the value of τ . In the following, we will
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Fig. 1. Equivalent definition of the generalized self-shrinking generator

develop a long division algorithm to fulfill this task without knowing τ . First
consider the following example.

Example 1. Let f(x) = 1 + x6 + x7 be the feedback polynomial of sequence
a, its reciprocal polynomial is f∗(x) = 1 + x + x7. Choose the vector G to be
(1, 0, 0, 1, 0, 0, 1). From Definition 1, we have vk = ak + ak−3 + ak−6. We use the
following long division algorithm to get vector G′.

1 + x + x7

x−6 + x−5 + x−4
)
x−6 + x−3 + 1
x−6 + x−5 + x
x−5 + x−3 + 1 + x
x−5 + x−4 + x2

x−4 + x−3 + 1 + x + x2

x−4 + x−3 + x3

1 + x + x2 + x3

.

From the last remainder, we know that G′ = (1, 1, 1, 1, 0, 0, 0), i.e. vk =
ak + ak+1 + ak+2 + ak+3.

When transforming from Definition 2 to Definition 1, a similar long division
algorithm can be used. For space limitation, we omit it here.

In general, let

G0(x) = G(x) = gn−1x
−(n−1) + gn−2x

−(n−2) + · · · + g1x
−1 + g0

Gi(x) = gn−ix
−(n−i)f∗(x) + Gi−1(x) i.e. Gi(x) ≡ Gi−1(x) mod f∗(x).

It is obvious that G(x) ≡ Gi(x) mod f∗(x) holds. Associated with the equation
(2) and (3), this fact implies that after finitely many steps, equation (3) will
be ultimately reached. Since there are some gi may take 0, it is unnecessary to
take the above procedures step-by-step, as shown in the above toy example. In
nature, this is a long division algorithm which can be carried out recursively.

Complexity of the Algorithm. Noting that the recursive procedures will end
whenever the remainder Gi(x) is a polynomial with all its monomials possessing
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degrees from 0 to n − 1, the complexity of the long division algorithm is O(n),
i.e. linear polynomial time complexity.

The advantage of Definition 2 over Definition 1 mainly lies in the convenience
of hardware implementation. Besides, it facilitates the instant verification of
linear dependency in the following attack in section 3.2.

The following theorem shows a weakness in the design of the generalized
self-shrinking generator.

Theorem 2. Given the initial state of sequence v, we can efficiently recover
both the initial state of a and the vector G even for LFSR of length up to 128.

Proof. Since we have v in possession, from Definition 2, we get





v0 = g′0a0 + g′1a1 + · · · + g′n−1an−1

v1 = g′0a1 + g′1a2 + · · · + g′n−1an

...
vn−1 = g′0an−1 + g′1an + · · · + g′n−1a2n−2 .

...

(4)

This is a system of 2n-variable equations of degree 2, which is very vulnerable
to algebraic attack [6, 7, 1]. In fact, to restore the 2n variables (a0, a1, · · · , an−1)
and (g′0, g

′
1, · · · , g′n−1), all we have to do is to solve a linear system of T =(

2n
2

)
= n · (2n − 1) variables by Linearization method, noting a2

i = ai and
(g′i)

2 = g′i. Given m = T keystream bits, we can solve this linear system by
Gaussian reduction taking 7 · T log27/64 CPU clocks. For n = 40, it amounts to
about 230 CPU clock cycles which takes only about 1 second on a Pentium 4
PC. For n = 100, 237 CPU clock cycles. For n = 128, 239 CPU clock cycles. This
completes the proof.

3 An Improved Clock-Guessing Attack
with the Vector G Known

Now we are ready to present our attack on the generalized self-shrinking gener-
ator with the vector G known. Note that amongst the vectors G ∈ GF (2)n, the
four trivial vectors (0, 0, · · · , 0), (1, 0, ·· ·, 0), (0, 1, · · · , 1), (1, 1, · · · , 1) which result
in keystreams with periods of length 1 or 2 should be avoided when implement-
ing the generator in practice. We first consider some special cases, after which
our general attack is presented.

3.1 Some Special Cases

It is easy to see that X2n−1−1{a1, a3, · · ·} = {a0, a2, · · ·}, for m-sequence a. Since
gcd(2, 2n−1−1) = 1, 2i (mod2n−1) go through every element of {0, 1, · · · , 2n−2}.
Both {a0, a2, · · ·} and {a1, a3, · · ·} are shift equivalence to a. This fact implies
that the vector G corresponding to the shift value 2n−1 − 1 actually defines a
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special case of the generator in which the sequence a and v can be combined
in such a way as {v0, a0, v1, a1, · · ·}, so that the resulting sequence can repro-
duce the keystream generated by a and v in a self-shrinking manner. Therefore,
the original clock-guessing attack in [13] and the classical time/memory/data
tradeoff attack can be applied to the resulting sequence, for the BSW sampling
in [2] can be easily determined to be 2−n/4. However, in the general case, it
appears to be difficult to determine the BSW sampling [2] of the generalized
self-shrinking generator. Except the expensive trial and error method, it seems
unfeasible to efficiently enumerate all the special states even with the algebraic
attack techniques.

Next, consider using vector G′ = (0, 1, 0, · · · , 0) in the generator . In this case,
every run in the keystream having the pattern {1, 1, · · · , 1, 0} reveals that the
corresponding elements in a are the pattern {1, 1, · · · , 1, 0}, which leaks enough
information for us to recover the corresponding initial state. Some similar cases
are the vectors (0, 0, 1, 0, · · · , 0), (0, 1, 1, 0, · · · , 0) and so on. In all these cases,
some special patterns such as {1, 1, · · · , 1}, {0, 1, · · · , 1}, . . . , in the keystream
always leak too much information, implying that for real applications, the vector
G used in this generator must be carefully chosen.

3.2 The General Attack

Instead of examining the vectors one-by-one as above, we propose a general
attack to evaluate the security of the generalized self-shrinking generator with
G known. This attack is an improved version of the clock-guessing attack in
[13]. We generalize it to the linear combination case. The attack process can be

Fig. 2. The Modified Guess Tree

represented by a tree as shown in Figure 2. The development of the modified
guess tree is as follows: at the initial moment, we always have a0 = 1, aτ = b0 as
we only want to recover the equivalent state that generates the same keystream
as the true one. This is represented by the root of the tree. From then on, on
guessing one more bit of a, we obtain two different types of linear equations:
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1. A linear equation ai = 1 or 0 follows every guess denoted by type 1.
2. If ai = 1, get a second type equation aτ+i = bj, where the value of j is

dependent on the path we choose.

Our aim is to have n independent linear equations to restore the initial state.
During the growth process of the guess tree, we may encounter two cases except
the linearly independent case: the new equation may be linear consistency with
the old ones or contradict to the old ones. Whenever we meet a contradiction,
ignore the current branch and go backtracking. As soon as we get n linearly
independent equations, stop the growth and solve the equation system and derive
a candidate key. Then test this key by running the generator with this initial
value, if the candidate keystream matches the known segment of keystream, we
accept it.

We must stress here that we simply write aτ , aτ+1, · · · only for the sake of
simplicity and limited space in the figure. Actually, we need not find out this
τ . What we have to do is just using the long division algorithm discussed in
Section 2 to obtain an equivalent vector G′ = (g′0, · · · , g′n−1) satisfying equation
(3) which will facilitate the instant verification of the linear relationship of the
linear equation system.

From the attacker’s point of view, the vector G is of great importance because
it will make the whole attack work. Without the knowledge of G, we will not
be able to determine whether or not the newly added equation in Figure 2 is
linearly dependent upon known linear equations. If there exists a method by
which we can determine the linear relationship among the linear equations with
the vector G unknown, a similar clock-guessing attack using this method can be
developed with the vector G unknown. However, we did not find such a method.

As in the original attack [13], we need the notions of well-formed and mal-
formed tree. First label the nodes in the guess tree as follows: each node is labeled
by a number of linearly independent equations still needed to solve the equation
system. Tl denotes a guess tree that l linearly independent equations are still
needed in the root to solve the equation system. Note that in Figure 2, l = n−2.
When a leaf of the tree takes the label 0 or −1, the growth stops.

Definition 3. ([13]) A well-formed tree T ∗
l is a binary tree such that for every

node that is not a leaf, the following holds: If the label of the node is j, then the
label of its left child is j − 2 and the label of its right child is j − 1. A malformed
tree is an arbitrary guess tree that does not satisfy the above condition.

Lemma 2. ([13]) Let C∗
l denotes the number of leaves of a well-formed guess

tree T ∗
l , Cl denotes the maximum number of leaves in a guess tree that may or

may not be malformed. Then Cl ≤ C∗
l ≤ 20.694l+0.306.

The following theorem gives the time complexity of the improved backtracking
algorithm.

Theorem 3. The total asymptotic running time of the above attack is O(n4 ·
20.694n), that is the same as that on the self-shrinking generator.
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Proof. Notations are kept as above. Note that in Figure 2, for a node of depth i,
we have i + 1 equations of type 1, which means at depth n− 1, we have exactly
n type 1 equations represented using variables a0, a1, · · · , an−1 only. Since these
equations must be linearly independent according to the definition of type 1, we
already have n linearly independent equations of type 1 in each node of depth
n− 1, which can be used to solve the linear equations system to get a candidate
key. We need not to develop the guess tree any more.

Let Nn denote the number of nodes in the modified guess tree and Cn denote
the number of leaves in such a guess tree. Taking malformed branches into con-
sideration, the following certainly holds: (the depth of the guess tree is at most
n and there are Cn leaves)

Nn ≤ n · Cn. (5)

By Lemma 2, we have Nn ∈ O(n · 20.694n). Since the operation of testing the
linear dependency of new equations has complexity O(n3), we conclude that
the total asymptotic running time of the above attack is O(n4 · 20.694n). This
completes the proof.

Note that our improved algorithm reserves the parallel feature of the original
one, which implies that k processors can reduce the complexity by a factor of k.
Besides, the following table shows that the generalized attack is comparable to
the classical time/memory/data tradeoff attack [2]. We assume a LFSR of length
61 for the generalized self-shrinking generator, as suggested for the shrinking
generator in [9].

Table 1. Rough comparison of attacks on the example generalized self-shrinking gen-
erator

Pre-pro. Time Memory Data length
Our attack 0 242 242 ≈ 61

[2] 241 241 − 261 220 220

In Table 1, we choose the point P = T = N2/3, M = D = N1/3 on the
tradeoff curve TM2D2 = N2 (D2 ≤ T ≤ N) where N is the size of key space, P
is the pre-processing time, T is the attack time, M is the random access memory
available to the attacker, and D is the data. From this table, we can see that
our attack is better than that in [2] in two aspects: small amount of required
keystream and no pre-processing, while at the cost of larger amount of memory.
Note that the pre-processing stage of the tradeoff attack on the generalized self-
shrinking generator is even more time-consuming, for it is difficult to use the
BSW sampling [2] in this case. In addition, it is known that the BDD-based
cryptanalysis [10] has a little better bound of 20.656n, however, the BDD-based
cryptanalysis is too memory consumptive compared with the above attack. From
above, we suggest that when the vector G is open, the key length should exceed
100 bits.
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4 A Fast Correlation Attack with the Vector G Unknown

In this section, we present a novel fast correlation attack on the generalized self-
shrinking generator without the knowledge of G. From Theorem 2, in order to
crack the whole system, we only need to recover the sequence v, i.e. restore the
initial state of the LFSR generating v.

Actually, our attack exploits a carefully detected correlation between v and
a new sequence v̂ constructed from the keystream b(G). Then a one-pass fast
correlation attack is applied to sequence v̂ to recover its initial state. A similar
attack is proposed in another paper to attack the shrinking generator. Though
there is some doubts that in the case of the generalized self-shrinking generator,
sequence a and v may not be statistically independent, our experimental results
do conform the validity of our attack.

4.1 Construction Stage

For simplicity, we assume that both sequence a and v are comprised of inde-
pendent uniformly distributed random variables. Consider the probability that
bk equals vr (k ≤ r). If we regard the event that ai = 1 as success, then the
event that bk equals vr is equivalent to the event that the kth success of se-
quence a occurs at the rth trial. Therefore the probability that bk equals vr is:
P (bk = vr) =

(
r
k

)
(1
2 )r+1. On the other hand, if vr appears in the keystream, we

have vr = b∑r−1
i=0 ai

. When r grows large, the distribution of the sum
∑r−1

i=0 ai can

be approximated by the Normal Distribution, i.e.
∑r−1

i=0 ai �→ N(r/2,
√

r/4).

Fig. 3. The interval that vr probably lies in

For arbitrary probability p, there exists a α such that whenever vr appears
in the keystream b(G), the following equation holds:

P (
r−1∑

i=0

ai ∈ Ir/2) = p, (6)

where Ir/2 = [r/2−α
√

r/4, r/2+α
√

r/4]. Without loss of generality, we assume
the interval Ir/2 includes odd number of integers. We formally define the intuitive
notion of imbalance as follows.
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Definition 4. Let A0 = {bi|i ∈ Ir/2, bi = 0}, A1 = {bi|i ∈ Ir/2, bi = 1}, the
imbalance of the interval Ir/2, Imb(Ir/2), is defined as |A1| − |A0| where | · | is
the cardinality of a set. If Imb(Ir/2) �= 0, this interval is said to be imbalanced.
See Figure 3.

From the above imbalance, we make a straightforward majority poll to con-
struct a new sequence v̂.
Construction Method. Following Definition 4, if Imb(Ir/2) > 0, let v̂r = 1.
Otherwise, let v̂r = 0.

Although sequence a and v share the same feedback polynomial, experimen-
tal results do show that sequence v̂ constructed as above satisfying P (v̂i = vi) =
1
2 + ε with ε > 0 as expected whether the initial states of a and v are chosen
randomly or not. Hence it is safe to assume that sequence a and v are statis-
tically independent purely random sources. The following theorem confirms the
statement above precisely.

Theorem 4. There is a correlation weakness between sequence v and v̂ which
is given by

P (v̂r = vr) =
1
2

+
1

22e

(
2e

e

)
p

4
=

1
2

+ εr. (7)

where 2e+1 satisfying e = �(α√r− 1)/2	, is the closest odd integer to α
√

r and
p = 1√

2π

∫ α

−α
e−x2/2dx is the probability in (6).

The proof of this theorem is omitted here due to space limitations. It is available
in the extended version of this paper.

First note that 0.5 < P (v̂r = vr) ≤ 0.75, where the upper bound is achieved
when r = 0. Theorem 4 is in accordance with our assumption before. Besides,
experimental results confirm that in the generalized self-shrinking case, the cor-
relation weakness stated in Theorem 4 actually exists. In order to maximize the
bias εr, we use Mathematica to find out the optimum values of α resulting in the
maximums of εr, for the expression function εr = 1

22e

(
2e
e

)
p
4 is an irregular func-

tion, the classical methods to search for the extreme value fail in this case. We

use the following two instructions: Findminimum[− (2e
e )

22e

∫ a
−a

e−x2/2dx

4
√

2π
, {a, 0, 5}], for

0 ≤ r ≤ 243 or Findminimum[− (2e
e )

22e

∫
a
−a

e−x2/2dx

4
√

2π
, {a, 1, 5}], for r ≥ 244. Table 2

shows the results of the search for N = 80000 keystream bits. We get these values
on a Pentium 4 PC in about three hours. The average value of α is 1.36868. Table
2 shows that the optimum values mainly lie in the interval (1.3, 1.5). It is of great
importance to note that the pre-computation of the optimum values of α would
be applicable to arbitrary LFSR due to the random assumption. With these op-
timum values, we can construct sequence v̂ possessing good enough correlation

Table 2. The distribution of the optimum values of α

Domain (1.0, 1.1) (1.1, 1.2) (1.2, 1.3) (1.3, 1.4) (1.4, 1.5) (1.5, 1.6) others
No. 248 3139 4308 40386 31315 365 239
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to sequence v. Table 3 shows the average biases found with these optimum α
both in theory and in experiments.

Table 3. The average biases found with the optimum values of α

N 400 4000 40000 80000 140000
ε(theory) 0.0541859 0.0252652 0.0135484 0.0113329 0.00982376
ε(found) 0.04500 0.0205 0.013200 0.012150 0.008793

It is obvious that the correlations do exist. The practical average values of ε
are found according to: 0.5+ε = (number of coincidence bits between v̂ and v)/
N . The actual values of ε in Table 3 are found based on a generalized self-
shrinking generator with the following primitive polynomial as the feedback
polynomial of the LFSR: fA(x) = 1 + x + x3 + x5 + x9 + x11 + x12 + x17 +
x19 + x21 + x25 + x27 + x29 + x32 + x33 + x38 + x40 [4, 12, 11].

4.2 Attack Stage

Based on the correlations found in section 4.1, we use the one-pass correlation
attack [4] to recover the initial state of v from v̂. Actually, any fast correlation
attack can be applied to v̂. Since the attack in [4] is the most efficient so far as
we know, we follow it in our attack.

As other fast correlation attacks, it also consists of two stages: pre-processing
stage for the construction of a large number of appropriate parity-check equations
and processing stage in which a majority poll is conducted for each bit under
consideration. Precisely speaking, a partial exhaustive search is taken over the
first B bits of the initial state of a length-n LFSR and make a majority poll
for each of D bits including other n−B bits of the initial state, hoping at least
n−B bits can be correctly recovered. In the following, we will give a brief review
of the attack, for the details of the formulae and the notations, please see the
Appendix A.

The parity-check equations used in this attack are of the form: xi = xm1 ⊕
. . . ⊕ xmk−1 ⊕ ∑B−1

j=0 cjxj where mj (1 ≤ j ≤ k − 1) denote arbitrary indices
of the keystream bits zi and the last sum represents a partial exhaustive search
over (x0, · · · , xB−1). At the processing stage, after regrouping the parity-check
equations that contain the same pattern of B − B1 initial bits, using Walsh
transform to evaluate the parity-check equations for a given bit, i.e. when ω =
[xB1 , xB1+1, · · · , xB−1], Fi(ω) =

∑
(−1)t1i ⊕t2i is just the difference between the

number of predicted 0 and the number of predicted 1, where t1i = zm1 ⊕ · · · ⊕
zmk−1 ⊕ ∑B1−1

j=0 cjxj and t2i =
∑B−1

j=B1
cjxj . Then for each of the D considered

bits, if Fi(ω) > θ, let xi = 0. If Fi(ω) < −θ, let xi = 1, where θ is the decision
threshold. In order to have at least n − B correctly recovered bits, a check
procedure is used which requires an exhaustive search on all subsets of size
n − B among n − B + δ recovered bits.
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Now we use the above attack to analyze a generalized self-shrinking generator
with a 61-stage LFSR. We choose the parameters as follows: bias is 0.008793,
D = 36, k = 5, δ = 3, B = 46, N = 140000 ≈ 217.1. According to the formulae in
Appendix A, the pre-processing time for constructing parity-check equations of
weight 5 is O(243), the success probability is 99.9% and the total complexity of
the processing stage is O(256). From Theorem 2, for n = 61, the complexity of
recovering the initial state of a and the vector G is negligible compared to above
complexity, so the overall complexity is also O(256).

Comparing this correlation attack with the improved clock-guessing attack,
we can see that the knowledge of G facilitates the cryptanalysis of the gener-
ator. For a generator with a 61-stage LFSR, when we know the vector G, the
complexity of the attack in section 3.2 is O(242) with no pre-processing; while
without knowing G, the complexity of the second attack is O(256) with O(243)
pre-processing.

5 Conclusion

In this paper, we analyze the security of the generalized self-shrinking generator.
Some properties and weaknesses of this generator are pointed out and an equiva-
lent definition suitable for hardware implementation is derived. The two attacks
presented in this paper show that it is necessary to keep the vector G secret, for
the generalized self-shrinking generator actually does not provide higher security
than the self-shrinking generator with the vector G open.
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A Notations and Formulae
of a One-Pass Fast Correlation Attack

1. P (zi = xi) = 1
2 (1 + ε), zi denotes the keystream bit.

2. N is the length of the keystream.
3. n is the length of the LFSR.
4. B is the number of bits partially exhausitive searched.
5. D is the number of bits under consideration.
6. k is the weight of the parity-check equations.
7. q = 1

2 (1 + εk−1) is the probability that one parity-check equation yielding
the correct prediction.

8. Ω is the expected number of weight k parity-check equations for each con-
sidered bit.

9. δ is the number of bits that predicted other than the n − B bits.
10. P1 =

∑Ω
j=Ω−t(1 − q)Ω−jqj

(
Ω
j

)
is the probability that at least Ω − t parity-

check equations give the correct result, where t is the smallest integer satis-
fying D · P1 ≥ n − B + δ.

11. θ is the threshold such that θ = Ω − 2t.
12. P2 =

∑Ω
j=Ω−t(1 − q)jqΩ−j

(
Ω
j

)
is the probability that at least Ω − t parity-

check equations give the wrong result.
13. Pv = P1/(P1 + P2) is the probability that a bit is correctly predicted with

at least Ω − t parity-check equations give the same prediction.
14. Psucc =

∑δ
j=0

(
n−B+δ

j

)
Pn−B+δ−j

v (1 − Pv)j is the probability that at most δ
bits are wrong among the n − B + δ predicted bits.

15. E = 1
2Ω−1

∑Ω
j=Ω−t

(
Ω
j

)
is the probability that a wrong guess yields at least

Ω − t identical predictions for a given bit.
16. Perr =

∑D
j=n−B+δ

(
D
j

)
Ej(1 − E)D−j is the probability that false alarm oc-

curs.
17. O(2BDlog2Ω + (1 + Perr(2B − 1))

(
n−B+δ

δ

)
1
ε2 ) is the total complexity of the

processing stage.
18. When k = 5, the time complexity of pre-processing stage is O(DN2logN).

The memory complexity is O(N).
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