
E. Dawson, A. Clark, and C. Boyd (Eds.): ACISP 2000, LNCS 1841, 97-111, 2000.
© Springer Verlag Berlin Heidelberg 2000

Cryptanalysis of the −m Permutation Protection
Schemes

Hongjun Wu, Feng Bao, Dingfeng Ye, and Robert H. Deng

Kent Ridge Digital Labs
21 Heng Mui Keng Terrace

Singpore 119613
{hongjun, baofeng, dfye, deng}@krdl.org.sg

Abstract. Anderson and Kuhn have proposed the EEPROM modification attack
to recover the secret key stored in the EEPROM. At ACISP’98, Fung and Gray
proposed an −m permutation protection scheme against the EEPROM
modification attack. At ACISP’99, Fung and Gray pointed out that in their
original scheme, a secret key with too small or too large Hamming weight could
be recovered easily. Then they proposed a revised −m permutation protection
scheme and claimed that their revised scheme does not leak any information of
the secret key. In this paper, we break completely both the original and the
revised −m permutation protection schemes. The original scheme is broken
with about n2log2 devices from the same batch and about

nmn ××+)2log3(2
 probes (n is the length of the secret key and m is the

amount of permutations). The revised −m permutation protection scheme is
more vulnerable than the original one. It could be broken with only one device
and about 3/3nm × probes.

1 Introduction

The design of tamperproof device is an important issue in the applications of
cryptographic systems. There are basically two types of attacks against the
tamperproof devices. The direct attack is to reverse engineer the device with advanced
hardware technology. Another type of attacks is to force the device to produce
computational errors. Boneh, DeMillo and Lipton have developed such an attack
against tamperproof device [4]. In their attack random errors are introduced into the
data on the device. The random errors cause a corresponding erroneous output that
can be used to deduce the key. This attack is simple but powerful and is able to break
the devices using RSA. A similar attack was reported independently by Bao, Deng et.
al. who showed how to attack the RSA, El Gamal and Schnorr Signature schemes [2].
Biham and Shamir later introduced the Differential Fault Analysis or DFA [3]. DFA
can be applied to recover a block cipher key from a sealed tamperproof device. To
resist these fault-related attacks the device needs to perform fault checking before
outputting the encrypted (or decrypted, signed) result.

Anderson and Kuhn introduced the EEPROM modification attack that is quite
general and practical. In their attack, an attacker is assumed to be able to write

98 H. Wu et al.

arbitrary values to arbitrary locations of the EEPROM, where the secret key is stored,
but cannot read a value from the EEPROM. This is because the cost of writing a value
to EEPROM is much lower than that of reading a value from EEPROM, i.e., the
writing can be done with the low-cost equipment, such as microprobes, while the
reading requires much more expensive equipment, such as an electro-optical probe.

To protect the device against the EEPROM modification attack, Fung and Gray
proposed a cascaded −m permutation scheme that uses an −×)(nm bit encoding for

an bit−n key [5]. Each batch of devices employs the same permutations (i.e.,
encoding). The permutation wiring is secret and it is assumed that the attacker has no
equipment to reveal the wiring. Fung and Gray claimed that the attack on the

−m permutation scheme requires)(mnO probes to compromise the key. In [6], Fung

and Gray pointed out that if the Hamming weight of a key is too small or too large,
the key could be recovered easily. Then they introduced the revised scheme in which
random numbers are introduced to hide the information about the Hamming weight of
the secret key.

In this paper, we show that both the original and the revised schemes are not
secure. For the original scheme, there exists an attack that could recover the m
permutations with about n2log2 devices from the same batch and about

nmn ××+)2log3(2 probes. The −m permutation scheme achieves only linear

growth of complexity with a linear growth of the amount of permutations.
In the revised scheme, m random numbers are introduced into each device to hide

the information of the Hamming weight of the secret key. However, these random
numbers leak the information about the secret permutations. By modifying these
random numbers, we could recover the mappings between those permutations, i.e., the

−m permutation scheme could be reduced to one permutation scheme. Thus with

only one device, we break the revised −m permutation scheme with 3/3nm ×
probes. Since only one device is needed in this attack, we consider that the revised
scheme is more vulnerable than the original scheme. We try to strengthen the revised
scheme by eliminating the flaw introduced by the random numbers. However, there
still exist an attack that could recover those m permutations with about nm × devices

from the same batch and about 2)(5.3 nm × probes.

A fairly simple and efficient scheme to defeat the EEPROM modification attack is
proposed in this paper. By restricting the Hamming weight of the key to be half of n ,
only one permutation is needed.

This paper is organized as follows. The EEPROM modification attack is introduced
in Section 2. Fung and Gray’s original and revised −m permutation protection
schemes are introduced in Section 3. We break the original and the revised

−m permutation scheme in Section 4 and Section 5, respectively. In Section 6, we
break the strengthened version of the revised scheme. Section 7 gives our simple and
efficient protection scheme. Section 8 concludes the paper.

Cryptanalysis of the m – Permutation Protection Schemes 99

2 The EEPROM Modification Attack

In [1], Anderson and Kuhn proposed the EEPROM modification attack. It is a
physical attack in which two microprobing needles are used to set or clear target bits
in order to infer them. It is assumed that EEPROM bits cannot be read directly since
the equipment required is much more expensive than the microprobing needles. In the
EEPROM modification attack, if one bit of the secret key is set correctly, there would
be no error in the output of the device; otherwise, error occurs. The secret key can
thus be determined bit by bit.

Anderson and Kuhn’s attack in [1] is with respect to a DES key. The more general
attack described by Fung and Gray [5] is given below:

1 to0for n-i =
set the thi bit to 1;
operate the device;
if the device gives the correct output, then conclude
that the bit is 1; otherwise, conclude that the bit is 0
and reset it to 0.

In addition to requiring only low-cost equipment, this attack can be carried out with
very few probing actions. In particular, it takes 1.5 n probes on the average to recover
an bit−n key.

3 The −m Permutation Protection Schemes

The −m permutation schemes [5,6] provide a physical encoding (m permutations) of
keys, along with a logical chip design and hiding the permutation wiring beneath the
surface of the chip. The m permutations are considered as the „batch key“ which is
known only to the manufacturers and to those who are legitimately programming the
device. For example, the devices may be manufactured in batches of 10,000 devices
all with the same batch key. A single customer purchases a batch of devices and is
given the batch key so that he can program secret keys into the cards.

There are several assumptions made. Firstly, the attacker is assumed to be a „clever
outsider with moderately sophisticated equipment". Secondly, the encoded key is
assumed to be stored in EEPROM and that the attacker cannot read the EEPROM
directly. Finally, it is assumed that the attacker is not able to see the exact wiring (i. e.,
the batch key) of the devices. The following notations are used in the rest of this
paper:

K : The actual key bit vector with length of n bits. It is to be used by
the card in encrypting, signing, etc.

P : The physical key bit vector with length of p bits. It is the actual bit

pattern stored in the EEPROM.
 :π A permutation function, 1}- , 2, 1, {0,1}- , 2, 1, {0, : nn ⋅⋅⋅→⋅⋅⋅π

100 H. Wu et al.

 :1−π The inverse function of the permutation π
Element of :π An element of the permutation table))(,(ii π (}1 , ,1 ,0{ −⋅⋅⋅∈ ni).

 :)(Kπ It denotes the permuted result of K under the operation of π , i.e.,

10for)())(()(−≤≤= niKK iiππ , where iK)(denotes the value of

the thi bit of K .

3.1 One-Permutation Scheme [5]

In this approach, the manufacturer chooses a random permutation of the n -bit key as
the batch key and works as follows:

Scheme 1. One-permutation Scheme

1. The device manufacturer chooses randomly a permutation π
2. Set)(KP π=
3. The wiring implements the inverse of π
4. The device reads K from P since KKP == −−))(()(11 πππ .

The attacker can find the value of P as described in Section 2. Then the permutation
p can be determined as follows. The attacker first sets P as a vector with Hamming
weight one, then operates the device to obtain an output. The value of K can be
determined since the Hamming weight of K is also one due to the fact that

)(1 PK −= π . Thus one element of π is known. Repeat this process for 1−n times,

the permutation p can be determined with about n3 probes.

3.2 −m Permutation Protection Scheme [5]

In the −m permutation scheme, the manufacturer chooses m random permutations of
the bit−n key as the batch key and works as follows:

Scheme 2. −m permutation protection scheme

1. The device manufacturer chooses m permutations: 110 , , , −⋅⋅⋅ mπππ
10for 1}- , 2, 1, {0,1}- , 2, 1, {0, : −≤≤⋅⋅⋅→⋅⋅⋅ ninniπ

2. Let 110 |...|| −= mPPPP , where | denotes concatenation and)(KP ii π= .

3. The wiring implements the inverse of those m permutations.
4. The device reads 0K from 0P , 1K from 1P , …, 1−mK from 1−mP .

 If 110 ... −=== mKKK is not true, the device gives an error message.

Cryptanalysis of the m – Permutation Protection Schemes 101

The attack to break the one-permutation scheme could not be applied directly to the
−m permutation scheme since without knowing the secret permutations, the modified

values of iP can pass the detection with negligible probability.

As pointed out by Fung and Gray, some secret key with small Hamming weight
could be recovered easily [5]. To eliminate such weakness, Fung and Gray proposed
the revised −m permutation scheme [6] to hide the information about the Hamming
weight of the secret key by introducing m random numbers into each device. The
revised scheme is given in the next subsection.

3.3 The Revised −m Permutation Protection Scheme

In the revised −m permutation scheme, m random numbers are introduced into each
device.

Scheme 3. Revised −m permutation protection scheme

1. Choose m as an odd number.
2. The device manufacturer chooses m permutations 110 , , , −⋅⋅⋅ mπππ
 as the secret information (batch key) for a batch of devices.

10for 1}- , 2, 1, {0,1}- , 2, 1, {0, : −≤≤⋅⋅⋅→⋅⋅⋅ ninniπ
3. Randomly choose m −n bit words

110
 , , ,

−
⋅⋅⋅

mDDD KKK for each

 device.
4. Store in the device 110 |...|| −= mPPPP where

))()((
mod2mod1 mod2mod1 mimi DmiDmiii KKKP

++ ++ ⊕⊕= πππ
5. Store in the device

110
|...||

−
=

mDDDD PPPP where
ii DD KKP ⊕= .

6. The wiring implements the inverse of those m permutations.

7. The device decodes the key as)(1
1

0
ii

m

i

PK −
−

=
⊕= π

8. The device then computes

)()((
mod1mod1

1
1

0
/\ KPPK

miDmiii

m

i
and ⊕⊕=

++
−

−

=

ππ))(
mod2mod2 KP

miDmi ⊕⊕
++π

)()((
mod1mod1

1
1

0
/\ KPPK

miDmiii

m

i
or ⊕⊕=

++
−

−

=

ππ))(
mod2mod2 KP

miDmi ⊕⊕
++π

where /\ and \/ indicates logical AND and OR respectively.
If KKK orand == , then the device uses K in the crypto

application; else return an error message.

In the revised scheme (Scheme 3), the Hamming weight of the secret key is unknown
after P and DP being recovered under the EEPROM modification attack. Fung and

Gray claimed that the attacker has only a probability of)1(2 −− n to guess the −n bit key

102 H. Wu et al.

K since the m permutations are unknown to the attacker. However, as we will
present in Section 5, there exists an attack that can recover those permutations with
only one device and about 3/3nm × probes. Once those permutations are recovered,
the whole batch of devices is broken and the secret keys can be determined easily.

4 Cryptanalysis of the Original −m Permutation Protection
Scheme

Fung and Gray have pointed out a weakness in their original −m permutation
protection scheme that some keys with small or large Hamming weight could be
recovered easily. In this section, we present an attack to break completely the original
scheme with about n2log2 devices from the same batch and about nnm 2log3 ×××
probes. Our attack consists of two steps. In the first step, we determine the mappings
between those m permutations by analyzing n2log2 devices, i.e., we reduce the

−m protection scheme to one-permutation scheme. In the second step, we recover the
remaining permutation. We start with the first step.

Assume that about n2log2 devices from the same batch are available and the

values of P)|...||(110 −= mPPPP in these devices are determined already by applying

the EEPROM modification attack. The amount of probes needed here is about
nnm 2log3 ××× . We denote i

jP as the value of jP in the thi device.

We know that)(0

1

0

i

j

i

j PP −= ππ o since)(i

j

i

j KP π= and =iP0)(0

iKπ (iK is the

secret key in the thi device). The permutation 1

0

−ππ oj is determined as follows.

Consider two nn ×)log2(2 binary matrices M and N with the thi row i

j

i PM =

and ii PN 0= . We note that)(1

0

i

j

i NM −= ππ o , i.e., M is obtained by exchanging

the columns of N under the permutation 1

0

−ππ oj . Clearly, if all the columns of N

are different, the permutation 1

0

−ππ oj can be determined uniquely. Assume that all

the keys are randomly generated, then the columns of the matrix N are n random

elements in a set with 2n elements. From the birthday paradox, the probability that
all these elements are different is about 0.61 (for almost all the key length

409640 ≤≤ n). Thus the permutations 1

0

−ππ oj)10(−≤< mj could be uniquely

determined with about n2log2 devices with probability about 0.61. If a few elements

of the permutations 1

0

−ππ oj)10(−≤< mj could not be recovered (i.e., some

columns of the matrix N are with the same value), some key bits would be unknown.
However, those key bits can be determined easily by exhaustive search. In the rest of
this section, we simply assume that 1

0

−ππ oj)10(−≤< mj are uniquely determined

already. Then there is only one unknown permutation left, i.e., if we can find 0π , we

will know all the iπ since =iπ 0

1

0)(πππ oo −
i . We give below the details to recover

0π .

Cryptanalysis of the m – Permutation Protection Schemes 103

To recover 0π , we need to write a key with Hamming weight one into the device

correctly so that)()()(1

1

11

1

10

1

0 −
−

−
−− =⋅⋅⋅== mm PPP πππ . If 0P is set as an −n bit word

with Hamming weight one, then iP could be determined easily since)(0

1

0 PP ii

−= ππ o

and 1

0

−ππ oi is known already. Thus we are able to write any key with Hamming

weight one into the device. Once knowing the device output, the value of the key with
Hamming weight one could be determined. Since)(00 KP π= , one element of 0π is

determined. Set the bit with value 1 at different positions in 0P and repeat the attack,

we could recover 0π with about nm ××2 probes.

From 0π and 1

0

−ππ oi)1,,1(−⋅⋅⋅= mi , we know all the permutations and thus can

break the −m protection scheme. About n2log2 devices are needed in this attack

and the total amount of probes needed is about nmnnm ×+×× 2log3 2

= nmn ××+)2log3(2 .

The attack in this section needs about n2log2 devices from the same batch. In

case devices from a number of batches are well mixed, a simple method could be used
to group those devices. We write the P of one device into all the devices, then those
devices that operate properly belong to the same batch.

5 Cryptanalysis of the Revised −m Permutation Protection
Scheme

In the revised scheme, m random numbers are introduced into each device to hide the
information of the Hamming weight of the secret key. However, the revised scheme is
in fact more vulnerable than the original one since those random numbers leak the
information about the permutations. With only one device, those permutations could
be recovered with about 3/3nm × probes. Similar to the attack in Section 4, the
attack in this section consists of two steps. The first step of the attack is to reduce the

−m protection scheme to one-permutation scheme by modifying the random
numbers. The second step is to recover the remaining permutation. We start with the
first step.

Assume that the values of P and DP in a device are determined already by

applying the EEPROM modification attack. We note that those m numbers
iDK

)1,,1,0(−⋅⋅⋅= mi in the revised scheme are randomly chosen. Obviously, if we

replace any
iDK with another random number, the value of the secret key K will not

be affected and the device will operate properly. Suppose we want to modify the thj

bit of a particular random number
iDK . This bit is denoted as

jiDK
,

. We know that this

bit appears only in
iDP , miP mod1− and miP mod2− since

ii DD KKP ⊕= , (1)

104 H. Wu et al.

))()((
mod1mod1mod1mod1 mii DmiDimimi KKKP

++−− ⊕⊕= πππ (2)

))()((
mod1mod1mod2mod2 imi DiDmimimi KKKP πππ ⊕⊕=

−−−− (3)

Modifying the bit
jiDK

,
 in

iDP is trivial since we only need to invert the value of

jiDP
,

. Modifying
jiDK

,
 in miP mod1− and miP mod2− without knowing the permutation

imi ππ omod1− and imi ππ omod2− requires about 2/2n trials on average. Thus with about
2n probes, we could modify the value of

jiDK
,

 successfully (If it is not modified

correctly, the device gives error message). If the values of
jiDP

,
, jiP ′− mod,1 and jiP ′′− mod,2

are modified and the device operates properly, we know from (1), (2) and (3) that

jjimi
′=−)(mod1 ππ o , jjimi

′′=−)(mod2 ππ o

We thus determined one element of imi ππ omod1− and imi ππ omod2− . Repeat this attack

for the rest bits of
iDK , imi ππ omod1− and imi ππ omod2− are recovered with about ∑

=

n

i

i
2

2

probes. Similar attack can be applied to recover the permutations imi ππ omod1− and

imi ππ omod2−)1,,1,0(−⋅⋅⋅= mi . From these permutations, 1

0

−ππ oi)1,,1(−⋅⋅⋅= mi are

obtained as follows:

1
2021

1

21

1

mod11mod1

1

0

1

221

1
2

1
1

1
1

1
mod1mod1

1

1

1

21

1

1

1

0

)()(

)()()()(

)4()(

)()(

)()()(
0

−

−
−−

−
+−+

−−

−
−

−
−

−
−

−
++

−−
−−

−
−

−

⋅⋅⋅
=

⋅⋅⋅
=

⋅⋅⋅=

ππππ
ππππππππ

ππππ
ππππππππ

ππππππππ

ooo

ooooooo

ooo

ooooooo

ooooo

iiiimiimii

iiiiimimii

iiiii

After 1

0

−ππ oi)1,,1(−⋅⋅⋅= mi being recovered, only 0π remains to be recovered.

To recover 0π , we need to write a key with Hamming weight one into the device

correctly, i.e., the values of K and)1,,1,0(−⋅⋅⋅= miK
iD should be set correctly in P

and DP . We deal first with K . We choose K as an −n bit word with Hamming

weight one. It appears in)1,,1,0(−⋅⋅⋅= miPi and)1,,1,0(−⋅⋅⋅= miP
iD . The value of

K in
iDP is K itself since)1,,1,0(−⋅⋅⋅=⊕= miKKP

ii DD . But 0K , the value of K

in 0P , is unknown since)(00 KK π= and 0π is unknown. We randomly set 0K as an

−n bit word with Hamming weight one. The probability that =0K)(0 Kπ is 1−n .

After setting the value of K in 0P , the value of K in iP could be determined since

)()(0

1

0 KKK iii

−== πππ o and 1

0

−ππ oi is known from (4). Thus the values of K in

P and DP are determined with probability 1−n . We then deal with the random

Cryptanalysis of the m – Permutation Protection Schemes 105

numbers)1,,1,0(−⋅⋅⋅= miK
iD . The simplest way is to set their values as zero. Then

their values in P and DP are zero. Now, we are able to write a key with Hamming

weight one into a device with success rate 1−n . Once the device operates properly, we
know that the key is written successfully into the device. If that happens and the bit

jK and jK ′
0 are with value one, then)(0 jj π=′ , i.e., one element of 0π is recovered.

The amount of probes needed is about nm × . Repeat this attack, we could finally

recover 0π with about ∑
=

×
n

i

im
2

 probes.

After recovering 0π and 1

0

−ππ oi)1,,1(−⋅⋅⋅= mi , we break the revised −m

protection scheme completely. Only one device is needed in this attack and the total

amount of probes needed is about ≈×+× ∑∑
==

n

i

n

i

imim
22

2 3/3nm × .

In the next section, we will discuss whether the revised protection scheme could be
strengthened or not. Our analysis gives negative result.

6 Is It Possible to Strengthen the Revised Scheme

The attack in Section 5 is based essentially on the fact that each random number
appears at only three locations in the EEPROM. The mappings between the
permutation tables could be determined by modifying one by one the bit of those
random numbers. To resist the attack in Section 5, each random number should appear
at far more than three locations in the EEPROM. For example, the iP in the revised

scheme can be modified as

)()()((
mod8mod2mod1 mod8mod2mod1 mimimi DmiDmiDmiii KKKKP

+++ +++ ⊕⋅⋅⋅⊕⊕= ππππ ,

then each random number appears at eight positions in the EEPROM. However, the
revised scheme strengthened in this way is still not secure. We can recover those
permutation tables if about nm × devices from the same batch are available. In the
rest of this section, we present a new attack to break only Scheme 3, but the same
attack can be applied to the scheme where each random number appears at a number
of locations in the EEPROM.

Assume that about nm × devices from the same batch are available and the values
of P)|...||(110 −= mPPPP and DP)|...||(

110 −
=

mDDDD PPPP in these devices are

determined already by applying the EEPROM modification attack. The amount of
probes needed here is about 2)(3 mn× . We denote iP and i

DP as the values of P and

DP in the thi device, respectively.

Our aim is to write a P′ with Hamming weight one into the device. Fung and Gray
have considered this kind of attack and concluded that it is impossible to apply it to
break their revised scheme [6]. They consider that if a P′ with Hamming weight one
is written into the EEPROM and the value of DP′ is randomly set, then the probability

106 H. Wu et al.

that the device could operate properly (no error message) is negligibly small (about
nm×−2). However, with about nm × devices from the same batch, it is possible to

construct a right pair (P′ , DP′) (a right pair means that with which the device operates

properly and gives no error message). The method to construct such a pair is given
below.

Algorithm 1. This algorithm is to construct a pair (,P′
DP′) for any given P′ . It

needs nm × devices from the same batch.

1. Form two mnmn × binary matrices M and N with the thi column
Ti

i PM)(= and Ti

Di PN)(= .

2. Solve the linear equations TT PxM ′=⋅ . Let TT

D xNP)(⋅=′ .

3. The pair (,P′
DP′) is the one we need.

Then we need to show: 1) the equation TT PxM ′=⋅ could be solved, i.e., the matrix
M is invertible with large probability, 2) with the pair (,P′

DP′) generated in

Algorithm 1, the device operates properly.
To show that the Matrix M is invertible with large probability, we start with the

following theorem.

Theorem 1. In Scheme 3 (the revised protection scheme), assume that all the keys
and random numbers in the devices are generated independently and randomly.
Choose nm × devices from the same batch. Form an mnmn × binary matrix M ,

with the thi column Ti

i PM)(= . Then the matrix M is a random matrix.

The proof of Theorem 1 is given in the Appendix. In theorem 1, we deal only with
Scheme3. But the same result could be obtained if each random number appears at
more than three locations in the EEPROM.

From Theorem 1, we know matrix M is randomly generated. So it is invertible with
probability about 0.29. With slightly more than nm × devices, an invertible matrix
M could be formed. So the pair (,P′

DP′) in Algorithm 1 can be obtained.

Then we show below that with the pair (,P′
DP′) generated in Algorithm 1, the

device operates properly.

Theorem 2. In Scheme 3, choose any n devices from the same batch. Let

i
n

i

PP ⊕
−

=

=′
1

0

 and i
n

i
D DPP ⊕

−

=

=′
1

0

. If P′ and DP′ are written into the device, the device will

operate properly (no error message is given).

Cryptanalysis of the m – Permutation Protection Schemes 107

Proof. Since i
n

i

PP ⊕
−

=

=′
1

0

 and i
n

i
D DPP ⊕

−

=

=′
1

0

, it is equivalent to encode a key i
n

i

KK ⊕
−

=

=′
1

0

with m random numbers i
n

i
D jD

j
KK ⊕

−

=

=′
1

0

)1,,1,0(−⋅⋅⋅= mj . Thus, the key K ′ will be

decoded correctly and the device will operate properly.

From the discussion above, we know that from slightly more than nm × devices, a
right pair (,P′

DP′) in which the Hamming weight of P′ is one could be obtained

easily. Once we obtained such a pair, we could recover one element of those
permutation tables as follows. Suppose only the bit jiP,

′ in P′ is with value one.

From Scheme 3, we know that the key K ′ is decoded as)(1
1

0
ll

m

l

PK ′=′ −
−

=
⊕π)(1

ii P′= −π .

So the Hamming weight of K ′ is only one. By analyzing the output of the device, the
value of K ′ can be determined. Suppose the bit with value one in K ′ is jK ′′ , then

)(1 jj i

−=′ π , i.e., one element of iπ is recovered. Set the non-zero bit at other

positions in P′ and repeat this attack, we can finally recover all the permutation
tables. The amount of probes needed is about =×)5.0(mnmn 2)(5.0 nm ×× .

The attack in this section thus break the revised protection scheme even if the scheme
allows each random number appearing at more than three locations. It needs slightly
more than nm × devices from the same batch. The total amount of probes needed is

about 222)(5.3)(5.0)(3 mnmnmn ×=×+× .

7 How to Prevent the EEPROM Modification Attack

We now know that all the −m permutation schemes are not secure. The flaw in those
schemes is that those m permutations could be reduced to one permutation. We note
that all the attacks in this paper have one common step: a key with Hamming weight
one is written into the EEPROM to recover the permutation table element by element.
To hide the permutation, we believe that the most essential way is to disallow a key
with too small (or too large) Hamming weight being written into the device. Based on
this observation, we give below a fairly simple and efficient scheme to resist the
EEPROM modification attack.

Scheme 4. This scheme protects an bit−n secret key against the EEPROM
modification attack with the use of only one bit−n permutation. It is the
strengthened version of the one-permutation scheme given in Subsection 3.1.

1. Choose a permutation π as the batch key.
2. Choose the secret key K with Hamming weight 2/n .
3. Let)(KP π= and write P into the EEPROM.

4. The wiring implements the inverse of π .

108 H. Wu et al.

5. The device reads K from P . If the Hamming weight of K is 2/n , K
is accepted; otherwise, the device gives error message.

The value of P could be recovered by applying the EEPROM modification attack.
However the permutation π could not be recovered. The reason is that the output of
π (the value of P) is known, but the input of π (the value of K) is unknown. By
applying the EEPROM modification attack, the secret key could only be recovered by

exhaustive search and the complexity is

×

2/
5.0

n

n
. For 128=n , the complexity is

about 17.1222 and it is sufficient to defeat the exhaustive key search. We thus believe
that Scheme 4 is sufficient to resist the EEPROM modification attack. However, it
should be noted that any compromise of the secret key degrades the security of the
devices of the same batch.

As pointed out by the anonymous referee, some public key cryptosystems such as
RSA do not allow the Hamming weight to be controlled. Scheme 4 could not be used
to protect the private keys in these cryptosystems. To resist the EEPROM
modification attack, we recommend the use of a hash function. The one-permutation
scheme in Subsection 3.1 is used to protect the key together with its hashed value. The
device hashes the key and compares the result with the hashed value stored in the
EEPROM. If these two values are equal, the key is used in the crypto applications;
otherwise, the device gives error message.

8 Conclusion

In this paper, we showed that Fung and Gray’s original and revised −m permutation
schemes are not secure. We then proposed a very simple and efficient scheme to resist
the EEPROM modification attack by allowing only the key with Hamming weight

2/n being written into the device.

Acknowledgement

We would like to thank the anonymous referees of ACISP 2000 for their helpful
comments.

References

1. R. Anderson and M. Kuhn, "Low Cost Attacks on Tamper Resistant Devices", in
Security protocols: International Workshop’97, LNCS 1361, Springer-Verlag,
pp.125-136, 1997.

Cryptanalysis of the m – Permutation Protection Schemes 109

2. F. Bao, R.H. Deng, Y. Han, A. Jeng, A.D. Narasimhaly and T. Ngair, "Breaking
Public Key Crystosystems on Tamper Resistant Devices in the Presence of
Transient Faults", in Security Protocols: International Workshop’97, LNCS
1361, Springer-Verlag, 1997.

3. E. Biham and A. Shamir, "Differential Fault Analysis of Secret Key
Cryptosystems", in Advances in Cryptology - Crypto’97, LNCS 1294, Springer-
Verlag, pp. 513-525, 1997.

4. D. Boneh, R.A. Demillo and RJ Lipton, "On the Importance of Checking
Cryptographic Protocols for Faults", in Advances in Cryptology - Eurocrypt’97,
LNCS 1233, Springer-Verlag, pp. 37-51, 1997.

5. W.W. Fung and J.W. Gray, "Protection Against EEPROM Modification
Attacks", in Information Security and Privacy - Proc. of ACISP’98, LNCS 1438,
Springer-Verlag, pp. 250-260, 1998.

6. W.W. Fung and J.W. Gray, "On m-permutation Protection Scheme Against
Modification Attack", in Information Security and Privacy - Proc. of ACISP’99,
LNCS 1587, Springer-Verlag, pp. 77-87, 1999.

Appendix. Proof of Theorem 1

Lemma 1. Consider the operation over)2(GF . Let 1N and 2N be two nm ×
)(nm ≤ binary matrices. If 1N is with rank m and each element of 2N is generated

independently and randomly, then TNN)(21 ⋅ is randomly generated.

Proof. Select m linearly independent columns from 1N and form an mm × matrix

1N ′ . The remaining columns form a matrix 1N ′′ . Select any m columns from 2N

and form an mm × matrix 2N ′ . The remaining columns form a matrix 2N ′′ . Clearly,

the matrix TNN)(21
′⋅′ is randomly generated since 1N ′ is an invertible matrix and 2N ′

is a random matrix. The matrix =⋅ TNN)(21 +′⋅′ TNN)(21

TNN)(21
′′⋅′′ , where TNN)(21

′⋅′

and TNN)(21
′′⋅′′ are two independent matrices since 2N ′ and 2N ′′ are independent from

each other. So the matrix TNN)(21 ⋅ is randomly generated.

Lemma 2. An)1(+× mm binary matrix M , if 11,, == +iiii MM for 20 −≤≤ mi ,

1,1 =− mmM and all the other elements are with value 0, i.e., M is in the following

form:

110 H. Wu et al.

=

100000

011000

001100

000110

000011

L

L

MMOOMMM

L

L

L

M (A.1)

Then the rank of M is m .

Proof. Consider the last m columns of M . They form an mm × triangular matrix

M ′ . 1)det(
1

0
, =′=′ ∏

−

=

m

i
iiMM , i.e., the rank of M ′ is m . So the rank of M is m .

Lemma 3. For an mm × binary matrix M , if 1, =jiM for jiji =|),{(, or mj = or

mi = } and the other elements are with value 0, i.e., M is in the following form:

=

11111

11000

10100

10010

10001

L

MOMMMM

L

L

L

L

M (A.2)

Then the rank of M is m if and only if m is an odd number.

Proof. Denote an ii × matrix M in the form of (A.2) as iiM × . The following

relationship holds:

)det(1)det()1()1(iiii MM ×+×+ += .

Since 1)det(11 =×M , we know that 2 mod)det(mM = . So if and only if m is an odd

number, 1)det(=M , i.e., the rank of M is m .

Theorem 1. In Scheme 3 (the revised protection scheme), assume that all the keys
and random numbers in the devices are generated independently and randomly.
Choose nm × devices from the same batch. Form an mnmn × binary matrix M ,

with the thi column Ti

i PM)(= . The matrix M is randomly generated.

Proof. Let i

jr)0 ,10(mjnmi ≤≤−×≤≤ be −n bit binary numbers, =i

jr

)(
mod1mod1

i

Dmj mj
K

++π for 1−≤ mj and ii

m Kr = (where i

D mj
K

mod1+
 is the th1+j random

Cryptanalysis of the m – Permutation Protection Schemes 111

number in the thi device and iK is the key in the thi device. Assume i

D mj
K

mod1+
 and

iK are generated independently and randomly, so i
jr)0 ,10(mjnmi ≤≤−×≤≤

are generated independently and randomly.
Let i

js)10 ,10(−≤≤−×≤≤ njnmi be −+)1(m bit binary numbers, the thk bit

of i

js is determined from i

nkmjnnkmjkmj

i

kj rs mod)1(,/))mod)1(()1((, ++×++×−++×= , i.e., i

js

)0 ,10(njnmi <≤−×≤≤ are the permuted result from i

jr ,10(−×≤≤ nmi

)0 mj ≤≤ . Clearly, the elements i

kjs , are generated independently and randomly.

Form an mnnm ×+)1(matrix S with j

mimmiiji sS 1mod,1/)1mod(, +++−= . Since every

element of S is generated independently and randomly, the probability that TS with
rank mn is about

Form an nmmn)1(+× matrix T and an mnmn × matrix P :

=

1

1

1

1

1

0000

0000

0000

0000

0000

T

T

T

T

T

T

L

MOMMMM

L

L

L

L

=

1

1

1

1

1

0000

0000

0000

0000

0000

P

P

P

P

P

P

L

MOMMMM

L

L

L

L

where 1T is an)1(+× mm binary matrix in the form of (A.1) and 1P is an mm ×
matrix in the form of (A.2). From Lemma 2 and 3, it is easy to see that both P and
T are with rank mn .

Define an mnmn × matrix M ′ as STPM ⋅⋅=′ . From Lemma 1, we know that
M ′ is randomly generated since P and T are with rank mn and S is randomly
generated.

The matrix M formed in Scheme 3 could be considered as being formed by
exchanging the columns of M ′ . So the matrix M is randomly generated.

	1 Introduction
	2 The EEPROM Modification Attack
	3 The m - Permutation Protection Schemes
	3.1 One-Permutation Scheme [5]
	3.2 m - Permutation Protection Scheme [5]
	3.3 The Revised m - Permutation Protection Scheme

	4 Cryptanalysis of the Original m - Permutation Protection Scheme
	5 Cryptanalysis of the Revised m - Permutation Protection Scheme
	6 Is It Possible to Strengthen the Revised Scheme
	7 How to Prevent the EEPROM Modification Attack
	8 Conclusion
	Acknowledgement
	References
	Appendix. Proof of Theorem 1

