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Abstract. Rijmen and Preneel recently proposed for the first time a
family of trapdoor
block ciphers [8]. In this family of ciphers, a trapdoor
is hidden in S-boxes and is claimed to be undetectable in [8] for properly
chosen parameters. Given the trapdoor,
the secret key (used for encryption and decryption) can be recovered
easily by applying Matsui’s linear cryptanalysis [6].
In this paper, we break this family of trapdoor block ciphers by develo-
ping an attack on the S-boxes. We show how to find the trapdoor in the
S-boxes and demonstrate that it is impossible to adjust the parameters
of the S-boxes such that detecting the trapdoor is difficult meanwhile
finding the secret key by trapdoor information is easy.

1 Introduction

In cryptography, design of secure trapdoor one-way functions has long been a
challenging problem. Many previous proposals have been broken and the exi-
sting ”secure” ones are mostly based on the few conjectures of hard problems in
number theory.

Recently, Rijmen and Preneel proposed a family of trapdoor block ciphers
[8] which we will call RP trapdoor ciphers. In such ciphers, a trapdoor is built
into S-boxes. Knowledge of the trapdoor allows one to determine the correlation
between output bits of the cipher’s round function. This correlation is in turn
used to find the secret key by performing Matsui’s linear cryptanalysis on a
small amount of known plaintexts [6]. In [8], it was claimed that the trapdoor
with properly chosen parameters is undetectable and RP trapdoor ciphers may
be used for public key encryption.

In this paper, we break RP trapdoor block ciphers by developing an attack
on the trapdoor S-boxes. We first demonstrate that the trapdoor can be found
from the S-boxes. We then show that RP trapdoor block ciphers can not be
made secure by adjusting system parameters, since it is not possible for such
ciphers to meet the following two contradicting requirements simultaneously: 1)
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be resistance to our attack and, 2) be computationally efficient in finding the
secret key using linear cryptanalysis once the trapdoor is known.

This paper is organized as follows. The trapdoor S-boxes and RP trapdoor
ciphers are briefly reviewed in Section 2. In Section 3, we present our attack to
RP trapdoor ciphers (more precisely, to the trapdoor S-boxes). In Section 4, we
show that it is not possible to construct secure RP trapdoor ciphers by adjusting
system parameters. We conclude the paper in Section 5.

2 RP Trapdoor Ciphers

RP trapdoor ciphers make use of the ”type II” linear relations as defined in [7]:
correlations that exist between output bits of a cipher’s round function/S-boxes.
Knowledge of the trapdoor reveals the correlations and allows linear cryptanal-
ysis being carried out to determine the secret key from some known plaintexts.

2.1 Trapdoor m × n S-Boxes

The trapdoor in RP trapdoor ciphers is built into S-boxes. An m × n S-box has
m-dimensional and n-dimensional Boolean vectors as its inputs and outputs,
respectively. It can be represented by 2m n-dimensional Boolean vectors, i.e.,
S = {v0, v1, · · · , v2m−1}. For input x ∈ {0, 1, · · · , 2m − 1}, the output of the
S-box is defined as S(x) = vx where x can be treated as an m-dimensional
vector. In the following, we denote the jth bit of vi as vi[j]. That is, vi =<
vi[1], vi[2], · · · , vi[n] >.

In a RP trapdoor cipher, the trapdoor m×n S-box is constructed as follows.
First, choose a non-zero n-dimensional Boolean vector β =< β[1], β[2], . . . , β[n] >
and let β[q] = 1. Then randomly choose the values of vi[j] for i = 0, 1, ..., 2m − 1
and j = 1, ..., q − 1, q +1, ..., n. Finally, set the values of vi[q], i = 0, 1, ..., 2m − 1,
such that

β[1]vi[1] ⊕ · · · ⊕ β[q]vi[q] ⊕ · · · ⊕ β[n]vi[n] = vi · β = 0 (1)

holds with probability pT (which has a value very close to 1). Equation (1) is
equivalent to a correlation

cT = 2pT − 1

between the constant zero function and β · S(x). The trapdoor is the Boolean
vector β. It was claimed in [8] that finding β from published S-boxes is difficult
for suitable parameters, say, m = 10, n = 80 and pT = 1 − 2−5. RP trapdoor
ciphers are designed on this supposition.

2.2 Trapdoor Ciphers

RP trapdoor ciphers are based on the Feistel structure [4]. In a Feistel block
cipher with 2n-bit block size and r rounds, plaintext and ciphertext consist of
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two n-bit halves denoted as L0, R0 and Lr, Rr respectively. Each round operates
as follows:

Ri = Li−1 ⊕ F (Ki ⊕ Ri−1)
Li = Ri−1

for i = 1, 2, ..., r

where Ki is the ith round subkey and F is the round function. Note that after
the last round, the swapping of the halves is undone to make encryption and
decryption similar.

In [8], variants on both CAST [5] and LOKI91 [3] were studied. In this paper,
we only consider trapdoor CAST ciphers since all the discussions here can be
extended to trapdoor LOKI91 ciphers directly.

The CAST family of ciphers are 64-bit Feistel ciphers. Its round function F is
based on four 8 × 32 S-boxes (i.e., for m = 8, n = 32), which have components
that are either randomly chosen or are bent functions [1]. Mathematically, the
round function is given by

F (x) = S1(x1) ⊕ S2(x2) ⊕ S3(x3) ⊕ S4(x4)

where x, the 32-bit input, is the concatenation of 4 bytes x = x1||x2||x3||x4 and
where S1, ..., S4 are four 8 × 32 S-boxes.

In a trapdoor CAST cipher, the four S-boxes use the same trapdoor β but
possibly with different values of pT , denoted as p

(1)
T , ..., p

(4)
T . The following rela-

tion holds

β · F (x) = β · S1(x1) ⊕ β · S2(x2) ⊕ β · S3(x3) ⊕ β · S4(x4)

Hence the round function correlates with the constant zero function with a cor-
relation equal to

cF =
4∏

i=1

c
(i)
T

It was stated in [8] that CAST should be extended in a natural way to a
128-bit block cipher by using 8 × 64 S-boxes. This, it claimed, will make the
trapdoor undetectable. Unfortunately, this claim is false as we will show in the
next section.

3 Attack on RP Trapdoor Ciphers

In this section, we show that the trapdoor in a RP trapdoor cipher can be found
easily and directly from the S-boxes.

RP trapdoor ciphers as described in the last section has l = n
m S-boxes, each

consisting of 2m n-dimensional Boolean vectors. By way of their construction as
presented in Section 2.1, we know that vectors in S-boxes are randomly chosen;
therefore, the total number of distinguishing vectors in the l S-boxes, denoted
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by N , should be very close to l2m. We also know each S-box is associated with
a probability p

(i)
T . Let

pT =
∑l

i=1 p
(i)
T

l

denote the average of these probabilities.
Let all the N distinguishing vectors in the l S-boxes be denoted as {v1, v2, · · · ,

vN}. From Section 2.1 we know that the trapdoor β satisfies

vi · β = 0

for i = 1, 2, ..., N with probability pT . Hence, the problem of finding the trapdoor
is to find a β such that




v1[1] v1[2] · · · v1[n]
v2[1] v2[2] · · · v2[n]

...
...

. . .
...

vN [1] vN [2] · · · vN [n]







β[1]
β[2]

...
β[n]


 =




α[1]
α[2]

...
α[N ]




for any Boolean vector α =< α[1], α[2], · · · , α[N ] >
of Hamming weight approximately equal to N(1 − pT )

(2)

The following algorithm is used to determine the trapdoor β directly from the l
S-boxes.

Algorithm 1.

Step 1. Choose n vectors, denoted as vi1 , vi2 , · · · , vin
, randomly from v1, v2, · · · ,

vN .
Step 2. Solve the n equations for xβ :

vik
· xβ = 0

for k = 1, 2, ..., n
Step 3. If non-zero solutions do not exist, go to Step 1. If solutions, say

β1, β2, ..., βt, are found, check whether they satisfy (2). If some βj does sa-
tisfy (2), then it is the trapdoor β we are looking for; otherwise, go to Step
1.

Observations

1. If we happen to choose vi1 , vi2 , · · · , vin
in Step 1 such that vik

· β = 0 has
non-zero solutions for k = 1, 2, ..., n, then β must be among these solutions.
By checking them one by one against (2), we can find this β.

2. If we can find another β′(6= β) also satisfying (2), this β′ can also be used
as trapdoor information in linear attack for finding the secret key.

3. Since vi · β = 0 with probability pT , such “lucky choice” happens with
probability about (pT )n. Hence, it is guaranteed to find a trapdoor with this
probability. (The probability in fact should be Cn

NpT
/Cn

N . This number is
very close to (pT )n when N is much larger than n and pT is close to 1. Here
Cn

N denotes the number of ways of choosing n objects from N objects.)
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4. The number of solutions t won’t be very large. This is because the vectors
of the S-boxes are randomly chosen except for one bit(at bit position q),
therefore, the rank of the matrix in (2) is close to n with large probability.

Now let’s look at a trapdoor CAST cipher with 128-bit block size (n = 64)
and pT = 1 − 2−5 (this value of pT was given in [8] as an example to illustrate
the strength of the RP trapdoor cipher). The value of (pT )n is about 0.1311. By
repeating Steps 1 and 2 of the algorithm 32 times, we expect to get the value of
β with probability 98.89%. This example shows clearly that RP trapdoor block
ciphers are very vulnerable under our attack.

4 The Impossibility of Designing Secure RP Trapdoor
Ciphers

In Section 3, we developed an attack to RP trapdoor ciphers. We demonstrated
that the trapdoor can be determined easily from S-boxes. In this section, we
show that it is impossible to design secure practical RP trapdoor ciphers.

We observe that there is a tradeoff between resisting our attack (i.e., Algo-
rithm 1) and the effort required to find the secret key from trapdoor using linear
cryptanalysis. This tradeoff can be adjusted by selecting system parameters r
(number of rounds), m, n, and pT . The smaller (pT − 0.5) is, the more difficult
it is to succeed in Algorithm 1, but at the same time, the more difficult it is
to find the secret key from the given trapdoor using linear cryptanalysis. Also,
large values of m and n increases the computational complexity of Algorithm
1 , as well as that of S-boxes. To simplify our notations and without loss of
generability, in the following we assume that p

(1)
T = p

(2)
T = · · · = p

(l)
T .

Two basic requirements must be met in the design of a practical secure block
cipher:

Requirement 1. The block cipher should be secure in the sense that it resists
all the known attacks.

Requirement 2. The block cipher should be practical in the sense that the
program size should not be too large.

To design a practical secure trapdoor cipher, two more requirements must
be met:

Requirement 3. The trapdoor should is secure in the sense that it is hard to
find the trapdoor even if its general form is known.

Requirement 4. The trapdoor should be practical in the sense that the secret
key can be found easily once the trapdoor is given.

We now show that it is not possible to design a RP trapdoor cipher to satisfy
the above four requirements simultaneously. We do this by showing that if a
RP trapdoor cipher meets the first three requirements, then it can not meet the
fourth requirement.
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To satisfy the first requirement, the round number can not be too small.
Thus, we expect that

r ≥ 8 (3)

To satisfy the second requirement, the total size of S-boxes is expected to be
less than 128 Megabytes (i.e., 230 bits). It is the same as to say that

n

m
(n2m) ≤ 230 (4)

To satisfy the third requirement, we expect the following relation holds:

(pT )n ≤ 2−64 (5)

For a RP trapdoor cipher that satisfies conditions (4), (5) and (6) simul-
taneously, we evaluate the amount of known plaintexts required to carry out
a successful linear cryptanalysis according to Matsui’s algorithm 2 in [6]. The
minimum numbers of plaintexts with respect to different value of m are listed
in Table 1.

m Number of plaintexts required m Number of plaintexts required
6 2175 15 274

7 2150 16 270

8 2132 17 267

9 2118 18 265

10 2107 19 264

11 297 20 265

12 290 21 278

13 284 22 2126

14 278 23 not exist since pT < 0.5

Table 1. The number of known plaintexts required to carry out the linear cryptanalysis
for a RP trapdoor cipher satisfying the first three requirements.

From table 1, we see that too many plaintexts are required to carried out the
linear cryptanalysis based on knowledge of the trapdoor in order to discover the
secret key. Although there may be some other methods to reduce the amount
of known plaintexts (e.g., reducing the round number or increasing the size of
S-boxes to a certain value), we believe that the number of known plaintexts
required to carry out a successful linear cryptanalysis is still very large. Thus,
we are forced to conclude that it is impossible to design practical secure RP
trapdoor block ciphers.
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5 Conclusions

Security of RP trapdoor block ciphers lies on the undetectability of a trapdoor
built into S-boxes. It was claimed in [8] that it is hard to obtain the trapdoor
from S-boxes and therefore RP trapdoor ciphers can be used for public key
encryption. In this paper, we showed how to break such ciphers by finding the
trapdoor directly from S-boxes. We demonstrated our attack to RP trapdoor
ciphers based on ”type II” linear relations.

In addition to trapdoors based on ”type II” linear relations, trapdoors that
make use of ”type I” linear relations were also proposed in [8]. ”Type I” linear
relations are defined in [7] as the correlations between input and output bits of
the round function. Unfortunately, this latter type of trapdoors is also vulnerable
to our attack.

Other than hiding linear relations, another method proposed in [8] is to hide
differentials into block ciphers in order to make them vulnerable to differen-
tial cryptanalysis [2]. However, construction of this kind of trapdoors was not
given in [8] and it seems that hiding differentials is more difficult than hiding
linear relations. So far, trapdoors based on hiding differentials remains an open
problem.
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