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Abstract.  Knudsen and Berson have applied truncated differential attack on 
5 round SAFER K-64 successfully.  However, their attack is not efficient 
when applied on 5 round SAFER SK-64 (with the modified key schedule) 
and can not be applied on 6 round SAFER. 

In this paper, we improve the truncated differential attack on SAFER by 
using better truncated differential and additional filtering method.  Our 
attack on 5 round SAFER (both SAFER K-64 and SAFER SK-64) can find 
the secret key much faster than by exhaustive search.  Also, the number of 
chosen plaintexts required are less than those needed in Knudsen and 
Bersonís attack.  Our attack on 6 round SAFER (both SAFER K-64 and 
SAFER SK-64) can find the secret key faster than by exhaustive search.    

1   Introduction 

In [6], Massey proposed an encryption algorithm, SAFER K-64.  It is an iterated block 
cipher with 64-bit block size.  The suggested number of rounds is minimum 6 and 
maximum 10 [6,7]. Knudsen discovered a weakness in the key schedule of SAFER and 
suggested a modified version [3].   Later, this new key schedule was adopted by 
Massey which resulted in SAFER SK-64 [8].  Also, Massey suggested 8 rounds to be 
used for SAFER with 64-bit key. The other variants of SAFER with 128-bit key are 
SAFER K-128 and SAFER SK-128 corresponding to SAFER K-64 and SAFER SK-
64, respectively. 

Evidence was given in [7] that SAFER is secure against differential cryptanalysis 
[1] after 5 rounds.  In [2], SAFER is shown to be secure against linear cryptanalysis [9] 
after 2 rounds.  In [5], Knudsen and Berson applied truncated differential cryptanalysis 
[6] on 5 round SAFER K-64 successfully.  Their result showed that the secret key of 5 
round SAFER K-64 can be found much faster than by exhaustive search.  However, 
their attack is not efficient when applied on 5 round SAFER SK-64.  Also, their attack 
cannot be extended to attack 6 round SAFER since too many wrong pairs are not 
filtered out.   

In this paper, we improve the truncated differential cryptanalysis and apply it on 5 
round and 6 round SAFER. We propose better truncated differential and additional 
filtering method in our attacks.  For 5 round SAFER (both SAFER K-64 and SAFER 
SK-64), our truncated differential is with probability of about 2-69 in average and about 
238 chosen plaintexts (a large reduction in the amount of chosen plaintexts) are needed 
to find the secret key.  This attack runs in time similar to 246 encryptions of 5-round 
SAFER. For 6 round SAFER, our truncated differential has a probability of about 2-84 
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and about 253 chosen plaintexts are needed.  This attack runs in time similar to 261 
encryptions of 6-round SAFER. 

The paper is organised as follows.  Section 2 briefly reviews the SAFER 
algorithms.  Section 3 introduces Knudsen and Bersonís truncated differential attack on 
5 round SAFER K-64.  In Section 4, we present our attack on 5 round SAFER.  Our 
attacks on 6 round SAFER are given in Section 5.  Section 6 discusses the strength of 7 
round SAFER and Section 7 concludes the paper. 

2   Description of SAFER 

SAFER K-64 is an iterated block cipher with both block and key sizes of 64 bits and 
with all the operations done on bytes.  The key is expanded to 2r + 1 round keys each 
of 8 bytes, where the round number r was suggested to be 6 [6] and then 8 [8], 
respectively.  Each round takes 8 bytes of text input and two round keys each of 8 
bytes.  Each round consists of 4 layers as shown in Fig. 1.   

The first layer consists of xoríing or adding modulo 256 with the first round key.  
In the second layer, the 8 bytes pass through two permutations or S-boxes:  

, and the inverse of

=)(aX
256mod)257mod45( a X ,  for 

 and  = 128.  The third layer consists of adding modulo 256 or xoríing 
with the second round key.  The final layer is the Pseudo-Hadamard Transformation 
(PHT).  It is defined by three layers of the 2-PHT: 

257mod)(log)( 45 aaL =
0≠a )0(L
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where each coordinate is taken modulo 256. After the last round, an output 
transformation is applied, which consists of xoríing or adding modulo 256 with the last 
round key and is the same as the first layer of the round operation.   We call this the 
last half round in the rest of the paper. 

The PHT -transformation is simply described by a matrix M [6].  Let the input be 
a vector v = [v1,v2, ... v8], then the output is obtained by v⋅M.  M and its inverse 

1−M are given, respectively, by 
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Fig. 1.  One round of SAFER 

The 8-byte key is expanded to 12 +r  round keys each of 8 bytes.  The original 
key schedule works as follows.  Let be an 8-byte key.  The round key 
byte j in round i is denoted as .  The round key bytes are derived as follows: 

),..., 81 kk(K =
jiK ,

  
  for j = 1,2,...8:   jjj ktK == ,1,1

  for i = 2,...,2r + 1,  
for j  = 1,2,...8:  t  3,1, <<= − jiji t

( biastK +=for j  = 1,2,...8:   256mod]),[,, jijiji

where ë<<3í is a bitwise rotation 3 positions to the left and 
, where is the exponentiation permutation. ]]9[[],[ jiXXjibias += X

Knudsen suggested a modified key schedule for SAFER to eliminate the key 
schedule weakness found by him [3].  Later, this key schedule was adopted for SAFER 
by Massey in [8]. The original SAFER is now called SAFER K-64 and the one with 
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the modified key schedule is called SAFER SK-64.  The new key schedule is given 
below. 

 

   ii kk 8
19 =⊕=

for j = 1,2,...9:   jj kt =,1

    for j = 1,2,...8:  jj tK ,1,1 =
  for i = 2,..., 2r + 1:  

for j = 1,2,...9: t  3,1, <<= − jiji t
for j = 1,2,...8: 

 256mod]),[( 1)9mod2(,, jibiastK jiiji += +−+
 
The 128-bit version of SAFER differs from the 64-bit version SAFER in the 

suggested number of rounds which is 10 and in the key schedule [7].  The key schedule 
consists of two sub-schedules each dealing with 64-bit key separately.  The odd 
number round keys are taken from the first sub-schedule and the even number round 
keys from the second.  A 128-bit schedule is compatible with its 64-bit version if the 
two 64-bit key halves input to the key schedule are equal. 

3   Knudsen and Berson�s Truncated Differential Attack on SAFER  

Knudsen introduced the concept of truncated differential attack in [4].  Truncated 
differential is a differential that predicts only parts of an n-bit value.   Knudsen and 
Berson applied truncated differential attack on 5 round SAFER K-64 successfully [5].  
Their attack can find the key in time much faster than by exhaustive search.  One 
version of their attack needs about 245 chosen plaintexts and runs in time similar to 246 
encryptions of 5-round SAFER.  Another version of their attack needs about 246 chosen 
plaintexts and runs in time similar to 235 encryptions of 5-round SAFER.  We introduce 
their truncated differential attack on SAFER below.  

3.1  Truncated Differential of SAFER 

The notation of ìexpanded viewî from [7] is used to denote a one round differential by 
three tuples of each 8 entries.  The first tuple indicates the difference in the 8 bytes of 
the inputs to the round, the second tuple indicates the difference of the bytes before the 
PHT -transformation and the third tuple indicates the difference of the bytes after the 
PHT -transformation, i.e. the difference of the outputs of the round (it is also the 
difference of the inputs of the next round).  A difference of two bytes (  is defined 
as  

),ba

256mod)( ba − . 
 

The one round truncated differential is obtained from the properties of the PHT -
transformation and S boxes ( and .  The properties of the X )L PHT -transformation 



 Improved Truncated Differential Attacks on SAFER 137 

is obtained from the matrix M.  These properties are also listed in the six tables (table 4 
to table 10) of [7].  The properties of the S boxes and  used in obtaining the 
round differential are listed in table 3 of [6].   Knudsen and Berson listed the one round 
truncated differentials (together with the probability) for SAFER with inputs different 
in less than or equal to four bytes in table 2 and table 3 of [5].  For example, the 
following one round truncated differential is with probability 2

X( )L

-24: 

*V ~V∆

 
[0, 0, a, b, 0, 0, c, d], [0, 0, e, -e, 0, 0, -e, e], [e, 0, 0, 0, e, 0, 0, 0] 

 
It is denoted simply as 

3478 → 15, p = 2-24 

where 3478 denotes that the inputs are different at the bytes 3, 4, 7 and 8 and where 15 
denotes that the outputs are different at the bytes 1 and 5. 

 One round truncated differentials can be concatenated to get  truncated 
differentials of more than one round.  For examples, the following one round truncated 
differentials  

3478 → 15,       p = 2-24            and         15 → 1357,        p = 2-8 

are concatenated to get a two round truncated differential  

3478 → 15 → 1357, p = 2-32 

However, when the one round truncated differentials are concatenated, its 
feasibility need be considered.  This problem has been mentioned in [7].  Specifically, 
we note that the input difference of 128 to the S boxes cannot result in output 
difference of 128.  Thus some one round truncated differential like 24→24 cannot be 
concatenated with itself.  It is also noted that the input difference of 128 to the 
exponential permutation X results in odd output difference.  Thus some one round 
differentials like 5→78 and 78→3478 cannot be concatenated. 

3.2   Knudsen and Berson�s Truncated Differential Attack on 5 Round SAFER       
K-64 

Before introducing Knudsen and Bersonís truncated differential attack on 5 round 
SAFER, the proposition 4 in [7] is given below: 

  
Proposition 1.  For byte differences  and VV ⊕=∆ *VV −= , 

a) V∆~  = 0 if and only if = 0; V∆
~

b) V∆  = 128 if and only if = 128; V∆
~

c) V∆  is odd if and only if  is odd. V∆
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Knudsen and Bersonís attack on 5 round SAFER K-64 uses the following 4-round 
truncated differential with input difference 

 
[a, 0, 0, b, c, 0, 0, d] 

 
and output difference [0, 0, 0, 128, 0, 0, 0, 0].  There are four differentials in this 
truncated differential which are listed below. The first two differentials are with 
probability of 2-71.68.  The last two differentials are each of probability 2-72.19, not 2-71.7 
as stated in [5].  However, this small error does not affect Knudsen and Bersonís attack 
too much.   
 

  1458 → 1357 → 1357 → 13 → 4                    (2) 
  1458 → 2468 → 1357 → 13 → 4                    (3) 
  1458 → 1357 → 2468 → 13 → 4                    (4) 
  1458 → 2468 → 2468 → 13 → 4                    (5)    
                   

The probabilities in the first two rounds are each of 2-16 and the probability in the third 
round is 2-24.  Now we look at the differential in the fourth round.  For the first two 
differentials, the differential in the fourth round is    
 

 [2v, 0, v, 0, 0, 0, 0, 0],  [128, 0, 128, 0, 0, 0, 0, 0],  [0, 0, 0, 128, 0, 0, 0, 0] 
 

This round has probability 2-15.68, which can be found by direct calculation.  However, 
for the last two differentials, the differential in the forth round is  
 

[v, 0, v, 0, 0, 0, 0, 0],  [128, 0, 128, 0, 0, 0, 0, 0],  [0, 0, 0, 128, 0, 0, 0, 0] 
 
This round has a probability of 2-16.19, which is also found by direct calculation.  So the 
probabilities are each of 2-71.68 for the first two differentials and 2-72.19 for the last two 
differentials.  The probability for the 4-round differential is thus 2-69.9, not 2-69.7 as 
stated in [5].  This 4-round differential is concatenated with the fifth round differential 
 

 [0, 0, 0, 128, 0, 0, 0, 0],  [0, 0, 0, x, 0, 0, 0, 0],  [2x, x, 2x, x, 2x, x, 2x, x] 
 

where the value of x is odd.  This differential has probability 1 since the input 
difference 128 to the exponential permutation table always yields an odd output 
difference. 

 After the final output transformation consisting of byte wise xoríing and addíing 
with the last round key, the output difference is: 

 
[z1, x, 2x, z2, z3, x, 2x, z4]         (6) 
 

where x is odd, z1 and z3 are even number while z2 and z4 are odd number according to 
c) of proposition 1. 

The probability for this truncated differential is 2-69.9.  About 270 pairs are needed to 
get one right pair.  Every structure consisting of 232 chosen plaintexts yields about 

 ≈ 22/))12(2( 3232 −× 63 pairs with the desired input difference.  128 such structures 
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are required to get one right pair, a total of 239 plaintexts.  This analysis can be 
performed on each structure and thus the memory requirements are 232 64-bits 
quantities. 

The filtering processes are carried out at the last half round and the first round.  The 
filtering at the last half round is carried out firstly.  Note that the difference at the 
second byte of the ciphertexts (denoted as x) should be odd.  The differences in bytes 
3, 6 and 7 have values 2x, x and 2x, respectively.  The differences at the first and fifth 
bytes are even and the difference at the forth and eighth bytes are odd.   After 
considering these, all but one out of 229 pairs are discarded.  241 pairs are left and each 
of the pair suggests 16 values of the bytes 1, 4, 5 and 8 of the last round key.   Next, the 
filtering process is carried out at the first round.  After checking whether the suggested 
key yields the desired difference at the output of the first round, every pair suggests 
about 16×2-15 = 2-11 values of 4 key bytes 1, 4, 5 and 8.  Totally, 241 pairs suggest 230 
values of the four bytes of the key.  An exhaustive key search at this point can be done 
in time about 1/2×230×232 = 261.  By repeating the attack 64 times (using 245 chosen 
plaintexts), the complexity is reduced to 246.  The complexity is reduced further to 235 
if the attack is repeated 128 times by using 246 chosen plaintexts.  

In the filtering process at the last half round, sorting n items requires about n  
simple operations.  A method is given in [5] to reduce the time requirements for the 
first filtering process.    Let a ciphertext be denoted  which is hashed to 

  .  The ciphertexts with the same hash value are 
candidates for a right pair after the first filtering process.  Thus, the complexity is 
reduced to n simple operations. 

nlog

),...,( 81 cc
,2( 23 cc − ,26 cc − )2 27 cc −

4   Improved Attack on 5 Round SAFER 

Knudsen and Bersonís attack is able to find out the secret key of 5 round SAFER K-64 
much faster than by exhaustive search.  However, when it is used to attack 5 round 
SAFER SK-64, the suggested key by each pair is 56 bits and it is infeasible to keep a 
counter for each 56-bit key and repeat the attack.  Knudsen and Berson left their attack 
on 5 round SAFER SK-64 as an open problem [5].  In the following, we improve 
Knudsen and Bersonís attack on 5 round SAFER SK-64 by using better truncated 
differential and additional filtering process.  Our truncated differential attack on 5 
round SAFER SK-64 needs about 238 chosen plaintexts and runs in time similar to 246 
encryptions of 5-round SAFER.  A similar attack can be applied to 5 round SAFER K-
64 and the same result can be obtained.  Compared with one version of Knudsen and  
Bersonís attack on 5 round SAFER K-64 that requires about 245 chosen plaintexts and 
runs in time similar to 246 encryptions of 5 round SAFER, our attack uses much less 
chosen plaintexts (reduced by a factor of about 27) and runs in about the same time (if 
the filtering time is not considered).   

4.1    Attack on 5 Round SAFER SK-64 

Our attack on 5 round SAFER SK-64 uses the following 4-round truncated differential 
with input difference 
 

[0, 0, 0, 0, a, b, c, d] 
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and output difference [0, 0, 0, 0, 0, 0, 128, 0].  There are 8 differentials (see (7)-(14)) in 
this 5-round truncated differential.  The probabilities are about 2-71.7 for half of the 
differentials, and are about 2-72 for another half of the differentials. 
 

  5678 → 12 → 1256 → 15 → 7                        (7) 
  5678 → 12 → 3478 → 15 → 7                        (8) 
  5678 → 34 → 1256 → 15 → 7                        (9) 
  5678 → 34 → 3478 → 15 → 7                        (10) 
  5678 → 56 → 1256 → 15 → 7                        (11) 
  5678 → 56 → 3478 → 15 → 7                        (12) 
  5678 → 78 → 1256 → 15 → 7                        (13) 
  5678 → 78 → 3478 → 15 → 7                        (14) 

 
The probabilities in the first round and the third round are each of 2-24 and the 
probability in the second round is 2-8.  Now we look at the differential in the fourth 
round.  For those differentials with 1256 → 15 at the third round, the differential in the 
fourth round is    
 

 [2v, 0, 0, 0, v, 0, 0, 0],  [128, 0, 0, 0, 128, 0, 0, 0],  [0, 0, 0, 0, 0, 0, 128, 0] 
 

The probability for this round differential varies slightly with values of key and is 
about 2-16 on average.   For those differentials with 3478 → 15 at the third round, the 
differential in the forth round is  
 

[v, 0, 0, 0, v, 0, 0, 0],  [128, 0, 0, 0, 128, 0, 0, 0],  [0, 0, 0, 0, 0, 0, 128, 0] 
 

The probability for this round differential also varies with values of the key and is 
larger than 2-15.7 on average.  So the probabilities are each of 2-72 for half of the 
differentials and 2-71.7 for another half of the differentials.  The probability for the 4-
round differential is thus larger than 2-68.9 on average.  This 4-round differential is 
concatenated with the fifth round differential 
 

 [0, 0, 0, 0, 0, 0, 128, 0],  [0, 0, 0, 0, 0, 0, x, 0],  [2x, 2x, x, x, 2x, 2x, x, x] 
 

This differential has probability 1. 
 After the final output transformation consisting of byte wise xoríing and addíing 

with the last round key, the output difference is: 
 

[z1, 2x, x, z2, z3, 2x, x, z4]                     (15) 
 

where z1 and z3 are even numbers while the least significant bits of z2 and z4 are the 
same as that of x according to c) of Proposition 1. 

The probability for this differential is about 2-68.9.  About 269 pairs are needed to get 
one right pair.  Every structure consisting of 232 chosen plaintexts yields about 263 pairs 
with the desired input difference.  64 such structures are required to get one right pair, 
a total of 238 plaintexts.  The analysis can be performed on each structure and thus the 
memory requirements are 232 64-bit quantities.  
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The filtering processes are carried out at the last half round, the first round and the 
fifth round.  The filtering process at the last half round is very similar to that in 
Knudsen and Bersonís attack except that the value of x may be odd and even.  After 
this filtering process, 241 pairs are left.  Each pair suggests 16 values for the bytes 1,4,5 
and 8 of the last round key (K11,1 K11,4 K11,5 K11,8).  It is the same as to say that 16 values 
are suggested for k2, k5, k6 and k9 according to the key schedule of SAFER SK-64.  Next 
we carry out the filtering process at the first round.  For each of these 16 values, the 
check in the first round of differentials will give us about 2-6 values of the key bytes k5, 
k6, k7 and k8.  Thus, each remaining pair suggests 16×2-6 = 2-2 values for the key bytes 
k2, k5, k6, k7, k8 and k9.  The remaining 241 pairs suggest 239 values for these 6 key bytes. 
We denote each remaining pair with one of its suggested 48-bit key as a unit.  We are 
left with 239 units after the filtering processes at the last half round and at the first 
round. An exhaustive key search at this point can be done in time about ½ × 239 × 216 = 
254.   However, an additional filtering process at the fifth round will reduce the 
complexity of the key search by a factor of 28.  This additional filtering process is the 
major improvement of our filtering processes compared with that of Knudsen and 
Berson.  Before introducing this filtering process at the fifth round, we first present the 
following theorem.  

 
Theorem 1.  Consider the following two equations ( X denotes the exponential 
permuation)  

128][][ =⊕′−⊕ KVXKVX  
VVV ′−=∆   

Then each pair ( ∆ ,V K ) suggests one value of V on average.  
 

Proof: The result is obtained by direct calculation.                           
 
In applying Theorem 1, all the solutions ,V∆( K ,V  are precomputed, so that 

table lookup can be used to find out the value of V quickly once the values of 
and

)

V∆ K are given.   
 For the fifth round, the value at the seventh byte of the input to the PHT-

transformation is expressed as  
 

)(2)()(2)( 4,1143,1132,1121,111 KcKcKcKcV ⊕+−−−−⊕=     

        (16) )(4)(2)(4)(2 8,1187,1176,1165,115 KcKcKcKc ⊕−−+−+⊕−
 
This expression is obtained by using the expression of 1−M , see (1).  If the value of 

is known, (16) reveals 8-bit information of the key.  Since the key bytes kV 2, k5, k6, k7, 

k8 and k9 are suggested already, the values of (     ) 
are suggested.  So (16) can be written as 

1,11K 4,11 KK 5,11 6,11K 7,11K 8,11K

 
                             (17) TKK =+ 3,112,112
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where T is calculated from 
 

)(2)(22)(( 5,1154,114321,111 KcKcccKcVT ⊕−⊕+−−⊕−=  

           (18) ))(4)(2)(4 8,1187,1176,116 KcKcKc ⊕−−+−+
 
Next we carry out the filtering process at the fifth round.  We are left with 239 units 

after the filtering processes at the last half round and at the first round.  For each unit, 
we know the values of x (the output difference at the third byte) and (which is 

derived from k
7,10K

7 according to the key schedule of SAFER SK-64), they are the and V∆
K  in Theorem 1, respectively (the S box L in the encryption becomes S box X in the 
decryption).  So each unit suggests one value of V on average according to Theorem 1.  
The value of V is used to calculate the value of T in (18).  From (17), we can predict 
8-bit value for the key .  Thus, each unit suggests 22,11K 3,11K 8 values for the 64-bit 

key and 239 units suggest 239 × 28 = 247 values for the 64 bit key.  The rest of the key 
can be found out by exhaustive key search in time about ½ × 247 = 246 encryptions of 5-
round SAFER. 

Compared with Knudsen and Bersonís attack on 5 round SAFER K-64, the 
truncated differential used in our attack is better.  Consider one of the truncated 
differentials in Knudsen and Beronís attack 

 
1458 → 1357 → 1357 → 13 → 4 
 

The probabilities of the truncated differential for the first round and second round are 
each of 2-16.  So the probability of the truncated differential for the first two rounds is 2-

32.  The filtering process at the first round has the filtering power of about 216 (which 
means that it is able to discard all but one out of 216 suggested keys).  Letís consider 
one of the truncated differentials used in our attack 

 
5678 → 12 → 1256 → 15 → 7. 
 

The probabilities for the first round and second round are 2-24 and 2-8 respectively. So 
the probability of the truncated differential for the first two rounds is 2-32.  This 
probability is the same as that of Knudsen and Berosn.  But the filtering process at the 
first round has the filtering power of about 224, about 28 times larger than that in 
Knudsen and Bersonís attack.  So we see that the differential in our attack increases the 
filtering power at the first round by a factor of about 28 while keeping the probabilities 
almost the same as that in Knudsen and Bersonís attack (when we consider only one of 
the differentials).   

An additional filtering process at the fifth round is also used in our attack.  A 
similar filtering process can be applied in Knudsen and Bersonís attack and can 
increase the filtering power by a factor of about 27.    
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4.2    5 Round SAFER K-64, SAFER K-128 and SAFER SK-128 

Our attack on 5 round SAFER K-64 is very similar to that on 5 round SAFER SK-64.  
The same differential is used and the same result is obtained.  Our attack is much better 
than the attack on 5 round SAFER K-64 in [5] as mentioned at the beginning of this 
section.  

For 5 round SAFER K-128, the attack in [5] is better than of ours.  Applying our 
attack to 5 round SAFER K-128 directly, 238 chosen plaintexts suggest 263 values for 
80 bits of the key.  The filtering process is much tedious and it is infeasible to repeat 
the attack since the memory requirement is too large.   

For 5 round SAFER SK-128, our attack seems better than the attack in [5] since 
here our truncated differential and the filtering process can predict 17 bits information 
of the 128-bit key while Knudsen and Bersonís attack can determine only two bits of 
the key.  However, both our attack and the attack in [5] cannot be carried out in 
reasonable time.  

5 Attack on 6 Round SAFER  

Knudsen and Bersonís attack is not successful to 6 round SAFER [5].  We improve 
their attack by using similar methods as we used in attacking 5 round SAFER.  Our 
differential attack on 6 round SAFER (SAFER K-64 and SAFER SK-64) needs about 
253 chosen plaintexts and runs in time similar to 261 encryptions of 6-round SAFER.  

5.1   Attack on 6 Round SAFER-K64 

Consider the following 5-round truncated differential with input difference 
 

[0, 0, a, b, 0, 0, c, d] 
 

and output difference [0, 0, 0, 128, 0, 0, 0, 0].  There are 16 differentials in this 
truncated differential.  The probabilities are 2-87.68 for half of the differentials, and are 2-

88.19 for another half of the differentials. These probabilities are determined in a very 
similar way as in Section 3.2.  These differentials are 

 

  3478 → 15 → 1357 → 1357 → 13 → 4   (19) 
  3478 → 15 → 1357 → 2468 → 13 → 4    (20) 
  3478 → 15 → 2468 → 1357 → 13 → 4    (21) 
  3478 → 15 → 2468 → 2468 → 13 → 4    (22) 
  3478 → 48 → 1357 → 1357 → 13 → 4    (23) 
  3478 → 48 → 1357 → 2468 → 13 → 4    (24) 
  3478 → 48 → 2468 → 1357 → 13 → 4    (25) 
  3478 → 48 → 2468 → 2468 → 13 → 4    (26) 
  3478 → 26 → 1357 → 1357 → 13 → 4    (27) 
  3478 → 26 → 1357 → 2468 → 13 → 4    (28) 
  3478 → 26 → 2468 → 1357 → 13 → 4    (29) 
  3478 → 26 → 2468 → 2468 → 13 → 4    (30) 
  3478 → 37 → 1357 → 1357 → 13 → 4    (31) 
  3478 → 37 → 1357 → 2468 → 13 → 4    (32) 
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  3478 → 37 → 2468 → 1357 → 13 → 4    (33) 
  3478 → 37 → 2468 → 2468 → 13 → 4    (34) 
 

The 6 round differential is 
 

 [0, 0, 0, 128, 0, 0, 0, 0], [0, 0, 0, x, 0, 0, 0, 0], [2x, x, 2x, x, 2x, x, 2x, x], 
 

where the value of x is odd. This differential has probability 1 since an input difference 
128 to the exponentiation permutation always yields an odd output difference.  
Therefore we obtain a 6 round truncated differential with input difference [0, 0, a, b, 0, 
0, c, d] and output difference [2x, x, 2x, x, 2x, x, 2x, x] for odd x and with a probability 
16 × 2-87.9 = 2-83.9. 

We need about 284 pairs to get one right pair.  We can use structures of each 232 
plaintexts yielding 263 pairs with the desired difference in the inputs.  Therefore about 
221 structures are needed, a total of 253 plaintexts.  We can perform our analysis on 
each structure and thus the memory requirements are 232 64-bit quantities.   

 
After the final transformation in SAFER, the output difference is 

 
[z1, x, 2x, z2, z3, x, 2x, z4]           (35)

  
where x is odd and z1 and z3 are even numbers while z2 and z4 are odd numbers. 

The filtering processes are carried out at the last half round, the first round and the 
sixth round.  Firstly, we carry out the filtering process at the last half round.  This is the 
same as that in Knudsen and Bersonís attack on 5 round SAFER K-64.  255 pairs are 
left and each pair suggests 16 values for the bytes 1, 4, 5 and 8 of the last round key.  
Next we carry out the filtering process at the first round.  For each of these 16 values, 
the check in the first round of differentials will give us about 2-6 values of the key bytes 
k3, k4, k7 and k8.  Thus, each remaining pair suggests 16×2-6 = 2-2 values for the key 
bytes k1, k3, k4, k5, k7 and k8.  Hence, 255 pairs suggest 253 values for these 6 key bytes. 
We denote each pair with one of its suggested 48 bit key as a unit.  We are left with 253 
units.  Then we carry out the filtering process at the sixth round.  It will increase the 
filtering power by a factor of 27.  Before the discussion of this filtering process, we 
introduce the following theorem. 

 
Theorem 2.  Consider the following two equations where denotes the logarithmic 
permutation: 

L

                           128][][ =′− VLVL
      VVV ′−=∆

Then each odd value of suggests two values of V .  V∆
 

Proof: The result can be obtained by direct calculation.               
 
To use this theorem efficiently, all the solutions ( ,V ) are listed in a table so 

that table lookup can be used to find V quickly when is given. 
V∆
V∆

 For the fifth round, the fourth byte of the output of the S box is expressed as  
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     V  −⊕+−−−−⊕= )(2)(2)()(( 4,1343,1332,1321,131 KcKcKcKc

4,128,1387,1376,1365,135 ))(4)(4)(2)(2 KKcKcKcKc −⊕−−+−+⊕       (36) 
 
If the value of V is known, (36) indicates 8 bits information of the key.  Since the key 
bytes k1, k3, k4, k5, k7 and k8 are suggested already, the values of (   

  ) are suggested.  So (36) can be written as 
1,13K 3,13K 4,13K

5,13K 7,13K 8,13K
 

                               (37) TKK =− 6,132,13 2
 
where T is calculated as 
 

        T  )(2)(22)(( 4,1343,13321,1314,12 KcKccKcKV ⊕+−−−⊕−+=
                 (38) ))(4)(42)(2 8,1387,13765,135 KcKccKc ⊕−−++⊕−
 
Now, we carry out the filtering process at the sixth round.  We are left with 253 

units after the filtering process at the last half round and the filtering process at the first 
round.  For each unit, we know the values of x (the output difference at the third byte), 
it is in Theorem 2 (we note that the S boxV∆ X in encryption is the S box in 
decryption). So each unit suggests two values of V .  The value of V is used to 
calculate the value of 

L

T in (38).  Each value of W suggests 28 values for the key 
and .  Thus, each unit suggests 22,13K 6,13K 9 values for the 64-bit key and  253 units 

suggests 253 × 29 = 262 values for the 64 bit key.  The rest of the key can be found by 
exhaustive search in time about ½ × 262 = 261 encryptions of 6-round SAFER. 

5.2   Attack on 6 round SAFER SK-64 

To attack 6 round SAFER SK-64, we use the same truncated differential and similar 
filtering process as that in the attack of 6 round SAFER K-64.  This attack needs about 
253 chosen plaintexts and runs in time similar to 261 encryptions of 6-round SAFER.  
The result is the same as that obtained in the attack on 6 round SAFER K-64.  

The filtering processes carried out at the last half round is the same as that in the 
attack of 6 round SAFER K-64.  After this filtering process, about 255 pairs are left, 
each pair suggests 16 values for the bytes 1, 4, 5 and 8 of the last round key.  It is the 
same as to say that 16 values of k2 k4, k7 and k8 are suggested by each remaining pair.  
The filtering processes at the first round and the sixth round are different from those in 
Section 5.1 due to the difference in key schedules.  Next, we carry out the filtering 
process at the first round.  For each of these 16 values, the check in the first round of 
differentials will give us about 2-14 values of the key bytes k3, k4, k7 and k8.  Thus, each 
remaining pair suggests 16×2-14 = 2-10 values for the key bytes k2, k3, k4, k7, k8.  The 
remaining 255 pairs suggest 245 values for these 5 key bytes. We denote each pair with 
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one of its suggested 40-bit key as a unit.  We are left with 245 units.  Then we carry out 
the filtering process at the sixth round.  

Since the key bytes k2, k3, k4, k7 and k8 are suggested already, the values of (  

  ) are suggested.  So (36) can be written as 
1,13K

4,13K 5,13K 8,13K
                      (39) TKKKKK =−−−+ 4,127,136,133,132,13 422
 

where T is calculated as 
 

  )(22)(( 4,134321,131 KcccKcVT ⊕+−−⊕−=
                     (40) ))(442)(2 8,138765,135 KcccKc ⊕−++⊕−
 

Also, we note that  
 

          (41) 843219 .... kkkkkk ⊕⊕⊕⊕⊕=
 
Now, we continue with the filtering process.  We are left with 245 units.  For each unit, 
we know the value of x (the output difference at the second byte), it is the in 
Theorem 2. So each unit suggests two values of V .  The value of V is used to 
calculate the value of 

V∆

T in (40).  For each value of T , we can solve for 216 values of 
k1, k5 and k6 (It can be done simply through table lookup as explained later).  Thus, 
each unit suggests 217 values for the 64-bit key and  245 units suggests 245 × 217 = 262 
values for the 64-bit key.  The rest of the key can be found out by exhaustive search in 
time about ½ × 262 = 261 encryptions of 6-round SAFER.  This result is the same as that 
obtained in the attack on 6 round SAFER K-64. 

In the filtering process at the sixth round, we need to find the value of k1, k5 and k6 
when the value of T is given.  It can be done in short time through table lookup.  From 
(39), (41) and the information that (     ) are derived 
from (k

4,12K 2,13K 3,13K 6,13K 7,13K
6 k5 k6 k9 k1) respectively, we can precompute the values of k1, k5 and k6 for all 

the values of T and list the results in a table.  In the filtering process, once the value of 
T is known, we can obtain the related 216 values through table lookup.  Thus, this 
filtering process can be implemented in relatively short time. 

6   7 Round SAFER 

For 7 round SAFER, we apply the similar truncated differential as that in the attack on 
6 round SAFER.  It has input difference [0, 0, a, b, 0, 0, c, d] and output difference [2x, 
x, 2x, x, 2x, x, 2x, x] with a probability of about 2-99.  To get a right pair, 268 chosen 
plaintexts are required.  Thus, it is impossible to carry out our attack.   
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7   Conclusion 

In this paper, we improved the truncated differential attack on 5 round SAFER SK-64.  
We also carried out attacks on 6 round SAFER K-64 and SAFER SK-64.  Our attack 
on 5 round SAFER SK-64 can find out the secret key in time much faster than by 
exhaustive search.  Also, our attack uses less chosen plaintexts compared with 
Knudsen and Bersonís attack.  Our attack on 6 round SAFER runs in time faster than 
by exhaustive search.  However, our attack is not efficient when applied to 7 round 
SAFER.  We strongly believe that 8 round SAFER is invulnerable to our attacks. 
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Appendix  

For the attack of 5 round SAFER SK-64, we illustrate one of the differentials to show 
the detail of the truncated differential.  This example differential is    

5678 → 12 → 1256 → 15 → 7 
1st round:    [0, 0, 0, 0, a, b, c, d], [0, 0, 0, 0, e, -e, -e, e], [e, e, 0, 0, 0, 0, 0, 0],      p = 2-24  
2nd round:   [e, e, 0, 0, 0, 0, 0, 0], [f, -f, 0, 0, 0, 0, 0, 0], [4f, 2f, 0, 0, 2f, f, 0, 0],    p = 2-8  
3rd round:   [4f, 2f, 0, 0, 2f, f, 0, 0], [g, -g, 0, 0, -g, g, 0, 0], [2g, 0, 0, 0, g, 0, 0, 0],   p = 2-24 
4th round:   [2g, 0, 0, 0, g, 0, 0, 0], [128, 0, 0, 0, 128, 0, 0, 0], [0, 0, 0, 0, 0, 0, 128, 0], 
The probability for this round varies with the key and is larger than 2-15.7 in average. 
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