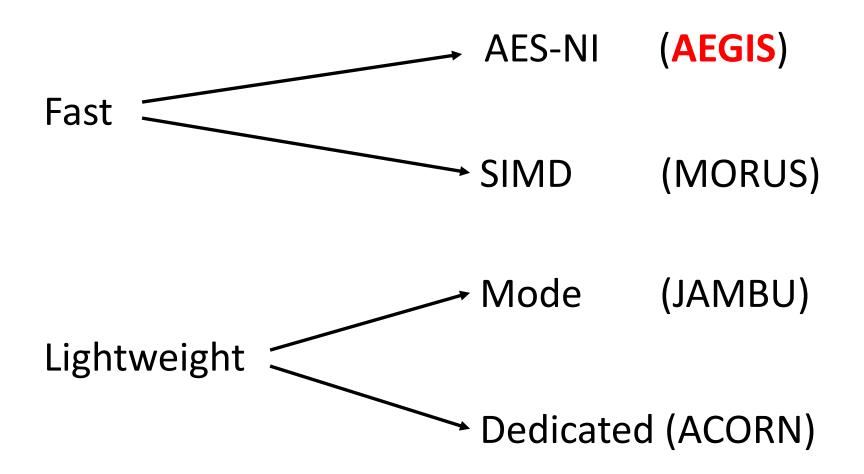
# **AEGIS** A Fast Authenticated Encryption Algorithm


#### Hongjun Wu Bart Preneel

Nanyang Technological University KU Leuven and iMinds



#### AEGIS: A shield carried by Athena and Zeus

**Different Design Approaches:** 

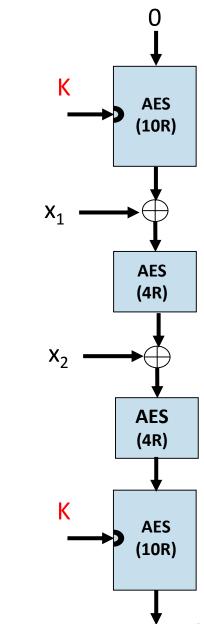


# No tweak for the second and third rounds

### **AEGIS: Main features**

- Simple
- Fast
  - AEGIS-128L is 0.25 clock cycles/byte on Intel Skylake (long messages)
    - Fully use the pipeline of AES-NI
- Nonce is used only once

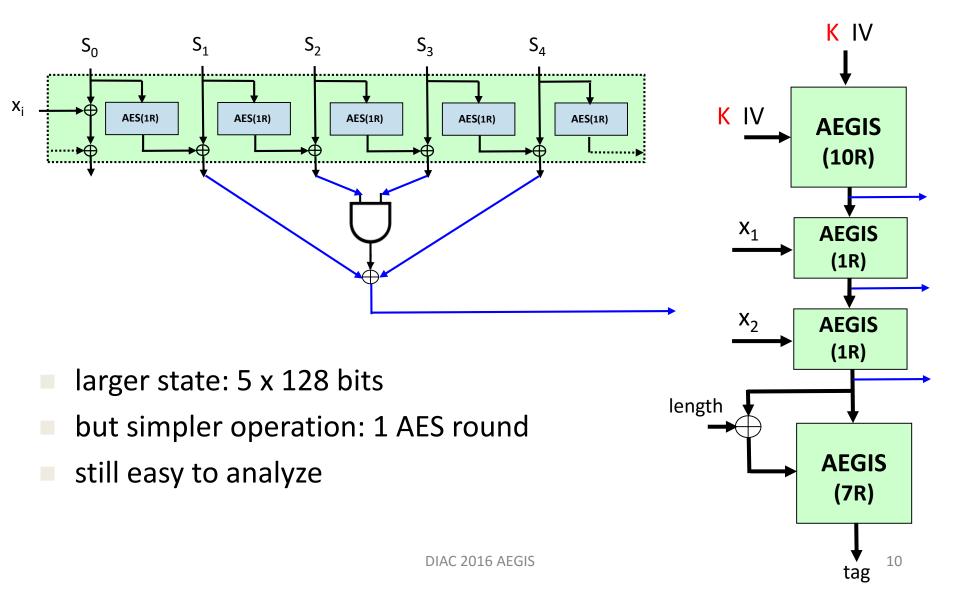
#### AEGIS


- AEGIS-128L
  - 128-bit key, 1024-bit state
- AEGIS-128
  - 128-bit key, 640-bit state
- AEGIS-256
  - 256-bit key, 768-bit state
- Tag: 128-bit

#### **AEGIS: Properties**

- Properties
  - Parallelizable: locally
  - No security reduction but easy to analyze
  - Not resistant to nonce reuse
  - Performance: size/speed tradeoff

## AEGIS


- Design Rationale
  - Inspiration: Pelican MAC
    - [Daemen-Rijmen'05]
    - 128-bit secret state
    - easy to analyze
    - secure up to birthday bound
    - 2.5 times faster than AES
  - Our design: Save the state after each AES round, then construct stream cipher from MAC



#### AEGIS

- Design Rationale (2)
  - Parallel AES round functions in each step so as to fill the AES instruction pipeline
  - AEGIS-128L can make full use of the AES instruction pipeline of Intel Haswell and Skylake processors

**AEGIS-128** 



# **AEGIS: Security**

- Authentication
  - a difference in ciphertext passes through at least 4 AES rounds
    - stronger than Pelican MAC (4 AES rounds) since difference being distributed to at least 4 words
- Encryption
  - AEGIS encryption is a stream cipher with nonlinear state update function
    - differential and linear analysis is precluded

#### AEGIS: Security Randomness of keystream

- Recent results (Minaud, SAC 2014)
  - AEGIS-128
    - 2<sup>130+</sup> keystream bits for distinguishing
  - AEGIS-256
    - 2<sup>180+</sup> keystream bits for distinguishing

### Performance

• Speed on Intel Skylake processor Core i5-6600 (Supercop-2016-08-06) No associated data.

|                | Very Long | 1536B | 64B  |
|----------------|-----------|-------|------|
| AEGIS-128L(EA) | 0.25      | 0.34  | 2.50 |
| AEGIS-128L(DV) | 0.25      | 0.37  | 3.16 |
| AEGIS-128(EA)  | 0.43      | 0.51  | 2.22 |
| AEGIS-128(DV)  | 0.41      | 0.49  | 2.41 |
| AEGIS-256(EA)  | 0.47      | 0.59  | 3.19 |
| AEGIS-256(DV)  | 0.46      | 0.57  | 3.31 |

## Performance

- Compare to the performance of Tiaoxin
  - Tiaoxin extends AEGIS to larger state with more complicated state update function
    - state size of Tiaoxin: 1664 bits (60% more)
    - state size of AEGIS-128L: 1024 bits
  - Larger state size in stream cipher design normally leads to faster speed
  - Long message (on Skylake, Supercop-2016-08-06)
    - Tiaoxin: encryption 0.21 cpb; decryption 0.34 cpb
    - AEGIS-128L: encryption 0.25 cpb; decryption 0.25 cpb
  - 1536-byte message (on Skylake, Supercop-2016-08-06)
    - Tiaoxin: encryption 0.36 cpb; decryption 0.48 cpb
    - AEGIS-128L: encryption 0.34 cpb; decryption 0.37 cpb

# Performance

- Hardware
  - FPGA implementation of AEGIS-128L (Tao Huang)
    - For throughput optimized: 78.3 Gbps, 2424 slices
  - 65 nm ASIC implementation of AEGIS-128
    - (Debjyoti Bhattacharjee, Anupam Chattopadhyay, DIAC 2015)
      - For throughput optimized: 121 Gbps, 173 KGE
      - For Low area optimized: 1.32 Gbps, 18.72 KGE
      - We expect that AEGIS-128L is about twice as fast as AEGIS-128 on ASIC, with larger area (60% more)

#### Discussions

- We restrict the disclosure of plaintext when authentication failed. What would happen if the attacker knows the decrypted plaintext when authentication fails?
  - For AEGIS, the secret key remains strong, so there is little compromise of encryption security (since the attacker can access the decrypted plaintext, the encryption security of a single message is not a concern here)

#### Discussions

- We restrict the disclosure of plaintext when authentication failed. What would happen if the attacker knows the decrypted plaintext when authentication fails?
  - If the communication protocol terminates/restarts when authentication fails, then there is no compromise of authentication security

#### Conclusions

- Simple design
- Fast
  - Software: targeting platforms with AES-NI
  - Also fast in hardware
- Strong in security