ACORN v2 A Lightweight Authenticated Cipher

Hongjun Wu

Nanyang Technological University

ACORN

Different Design Approaches:

ACORN: design

- ACORN-128
 - Based on **bit-oriented stream cipher**
 - Encryption and authentication share the same state
 - Small state
 - 293-bit (the minimum is 256-bit)
 - IV should not be reused
 - 128-bit key, 128-bit IV, 128-bit tag

ACORN: design

• Tweaks

- Key is introduced into 1664 steps in initialization in v2 (128 steps in v1)
- Initialization: 1792 steps (v2) : 1536 steps (v1)
- Assoc. Data Padding: 256 steps (v2) : 512 steps (v1)
- Message padding: 256 steps (v2) : 512 steps (v1)
- Finalization: 768 steps (v2) : 256 steps (v1)
- Rationale for tweaks: to provide protection against nonce-reuse
 - Non-invertible initialization so that the key cannot be recovered directly from the state (the state can be recovered when nonce is reused in encryption/decryption)
 - More steps in the initialization so as to increase the difficulty of recovering the key from the state

Figure 1.1: The concatenation of 6 LFSRs in ACORN-128. f_i indicates the overall feedback bit for the *i*th step; m_i indicates the message bit for the *i*th step.

- Initialization
 - Key and IV are injected into the state bit by bit
 - Consists of 1792 steps
- Process associated data
 - Each step one bit
 - Padding is fixed as 256 bits: 1 0²⁵⁵ (without padding to fixed length block, so suitable for bit-oriented hardware implementation)
- Process plaintext
 - Each step one bit
 - Padding is fixed as 256 bits: 1 0²⁵⁵
- Finalization
 - Run the cipher for 768 steps
 - The last 128 keystream bits are the tag
- Two control bits are applied to the cipher to separate associated data, plaintext and the finalization

ACORN: Security

- Encryption: Analysis is the same as stream cipher analysis (no security weakness found when nonce is not reused)
- Authentication: with the use of the concatenated LFSRs, the security analysis of authentication can be done much easier
 - To eliminate the difference being injected into the state, the success rate is 2⁻¹⁸⁹

ACORN: Performance

- Hardware
 - Bit-oriented design, suitable for hardware implementation
 - Expected to be slightly more costly than Trivium (hardware area)
 - Fast implementation is possible due to 32 parallel steps
 - Small state-size: 293 bits
 - Energy efficient
 - Simple circuits
 - Encryption and authentication share most of the operations
- Major difference between ACORN and TriviA-ck
 - ACORN's encryption and authentication share the same state and operations
 => smaller state and less computations

ACORN: Performance

• Software speed on Sandy Bridge

64B	128B	256B	512B	1024B	2048B	4096B
72.1	41.5	26.3	18.6	14.7	12.8	11.9

Conclusions

- ACORN
 - A new design very different from the other candidates
 - Lightweight
 - Reasonably fast due to 32 parallel steps
 - ACORN-128 provides 128-bit encryption and authentication security
- ACORN v2
 - Protection against nonce-reuse in encryption/decryption so that the key cannot be directly recovered from the state
- ACORN provides a new approach to design lightweight MAC (using bit-oriented registers)