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ABSTRACT the infection sources. One of the first works to address the

We consider the problem of identifying an infection sourceInfecuon source identification problem is [10], who coresid

based only on an observed set of infected nodes in a network Susceptible-Infected (SI) model, where susceptible siode

) : . . may getinfected, while infected nodes do not recover. A min-
assuming that the infection process follows a Susceptlble|Fnum distance centrality (DC) based estimator was proposed
Infected-Susceptible (SIS) model. We derive an estimator y brop

L : . . tfo identify the most likely infection source. Subsequently
based on estimating the most likely infection source assoch_:L 12] considers the problem of identifying multiple iofe
ated with the most likely infection path. Simulation resudh ' : P ! ying muttipie |

regular trees suggest that our estimator performs consiigte tion sources under the SI model, while [13] studies the sing|

better than the minimum distance centrality based hearisti infection source identification problem for _the Suscegtibl
Infected-Recovered (SIR) model, where an infected node may

Index Terms— Infection source estimation, SIS model, recover but can never be infected again. A computationally
security, social networks. efficient sample path based estimator was proposed in [13] to
1. INTRODUCTION estimate the infection source. However, as alluded toerarli

We do not have immunity against bacterial diseases liké'€ assumption that a recovered node can never be infected
typhoid fever, Methicillin-resistant Staphylococcus eus ~@dain is false in a lot of practical examples. _
(MRSA), and tuberculosis. An infected individual can be- In this paper, we study the single infection source estima-
come infected again with the same disease even after reco@n Problem for an SIS model. We assume that we only ob-
ering from it. The spread of such diseases are often model&§"ve one snapshot of the infection spreading process & som
using a Susceptible-Infected-Susceptible (SIS) moded][1, point in time, and derive an estimator that finds the source
In a discrete time SIS model, at each time step, the indivédua Node associated with the most likely infection process that
who have the disease areiiffectedstate, and those individ- Yields the obgerved sna.pshot. The estimator we derive is.the
uals who may potentially get infected at the next time step@me as thatin [13], which considers an SIR model, showing
by currently infected individuals are said to basceptible  thatthe proposed estimator is relatively robust to the tipee
An infected individual may recover from the disease and gefnd infection and recovery process of the nodes. This is some
infected again at subsequent time steps [3]. A computesviryVhat surprising as the two models are significantly differen
spreading in a computer network without effective antisgir /e @lso note that the optimality proofs of our estimatoretiff
counter-measures can also be modeled using a SIS model$ignificantly from that in [13]. Simulation results suggeit
a computer that has been cleaned of its infection may gé,{urestimatorpen‘orms better than the minimum distance cen
may also be modeled in some cases using SIS models. 25 2 data-_drlven proxy to flnqllng the most “|nfluen_t|al” node
individual on Twitter [5] may be influenced by the opinion or IN @n SIS infection network, in contrast to [4], which deter-
posting of someone she is following, thereby becoming “in-Mines the influential nodes based on the expected number of
fected” with the same opinion. She can subsequently chand@fécted nodes. _ . _
her opinion and become “uninfected” again. In all these ex-  1he rest of this paper is organized as follows. In Section
amples, we may want to identify or estimate a subset of noded We present the SIS model and problem formulation. In
in the network that first started the infection. In the casa of S€ction 3, we describe our source estimator, and present sim
disease, identification of the infection sources or indesesa Ulation results in Section 4 to evaluate the performanckef t
aids epidemiological studies, while tracing of the soures Proposed estimator on regular trees. Finally we conclude an
a computer malware helps to track down the perpetrators. Summarize in Section 5.

Existing works related to infection spreading in a network 2. PROBLEM FORMULATION
have primarily focused on the parameters of the diffusi@n pr Consider an undirected gragh= (V, E), where each node
cess such as the outbreak thresholds and the effect of hetwds either infected or uninfected. If a node is infected, we le
structures [6-9]. Little work has been done on identifyingthe state of the node be 1, and 0 otherwise. We assume that



time is divided into discrete time slots, and the state ofdeno 3.1. Most likely infection path

v in time slot? is given by X, [t]. Attime¢ = 0, we as-  \ye start with two definitions, the first of which is borrowed
sume that there is only one infected nodec V, whichwe o [13].

call the infection source. At the beginning of a time dlpt

let the set of all infected nodes and their neighborsge.  Definition 1. Let d(v,u) denote the length of the shortest
We call these the susceptible nodes as they may become ipath between andu, which is also called the distance be-
fected by the end of time slat while those nodes not in tweenv andu. Define the largest distance betweeand any
S(t) remains uninfected with probability one. Lete (0,1)  infected node to be,

be the probability that any node € S(¢) becomes infected _

at the end of time slot, i.e.,, P(X,[t + 1] = 1) = ¢ if d(v, Vr) = Iu%%}fd(“vu)-

v € S(t). We also assume that the susceptible nodes be- -

come infected independently of each other. For anyJset We calld(v, V) the infection eccentricity of node. Fur-
let X ;[t] = {X,[t] : v € J} be the collection of the states of thermore, the nodes with minimum infection eccentricity ar
nodes inJ, and letXy[0,t] = {X,[7] : 0 < 7 < t,v € V}  defined as Jordan infection centerslaf

denote an infectiopathfrom time0 to . Definition 2. For eachv € V andt € 7, let X{,[0,¢] € X,

At some time slott, we observe the set of all infected to be the most likely infection path up to tirhegiven that
nodesV;, which we assume to be non-empty. We do not as: y P P < v

sume that we know the elapsed timeThe problem of iden- Is the infection source, i.e.,
tifying the infection source can be formulated as a maximum XU[0,t] =arg  max P(Xy[0,1] | s* =v).
likelihood (ML) estimation problem by treating the infemti Xy [0,t]ex,
sources™ and the elapsed timeas parameters to be estimated. . ot
We want to identify the nodé,;;, € V and the timef,,;, ~ For any set/, and0 < i < j <, we letX;"[i, j] be the
that maximizes the likelihood of the observed infection seft@tes of nodes i during time slots to j, in the infection
V1, given by path X{,[0, t].

. - . We use the following notations throughout this paper.

(SML,tML):argmax ]P)(Xv[o,t] | S :1}),
vev Xv[oz,t]:exu e Given anyv € V, let V,(h) to be the set of nodels

. . . . h li .
where X, is the set of all possible infection paths starting Ops away from

with v and resulting inV7, and P(Xy[0,t] | s* = v) is e For any treeG and a pair of nodes,v € G, let
the likelihood of X/[0, ¢] given that the infection source is T.(v; G) be the subtree aff rooted at node: with the
v. Unlike the infection sources identifying problem for Si first link in the path fromu to v removed.

model [10-12], finding the ML estimator for the SIS model is ) _ )
very challenging as the set of nodes that had been infected be 1€ following lemma provides an important property, the
fore timet is a superset of the observig. This implies that, Proof of which is omitted due to space constraints.

unlike the SI model, the most likely infection source may not eyyma 1. Suppose that € V is the infection source. For
be inV7. In the following, we propose an approximation by 5 ghserved set of infected nodés let H be the minimum
finding the source node associated with the most likely infecqnected subgraph @f that containsV; andv. Then, for

tion path. anyt € T,, and anyu € H\{v}, the first infection time’ of
3. INFECTION PATH BASED ESTIMATION FOR u is bounded by
REGULAR TREES
. o ty € [d(v,u),t =  max d(u,x)], (2)
Assume that the underlying netwoék is an infinite regular z €Ty (v;iH)
tree. We propose as the infection source estimate the node ) _ _ ) ot
associated with the most likely infection process: Furthermore, in the most likely infection patfy,[0, ¢] (Def-

inition 2), the first infection time fox is given by
§ = arg max max P(Xv[0,t] | s" =v), (1) -
vEV tETy, Xv [0, t]€Xy th=t— max d(u,z). (3)
z€T, (v;H)
whereT, is the set of all feasible observation timeg iis the

infection source. The same estimator has also been used for Lemma 1 shows that to find the most likely infection path

the SIR model in [13]. The estimatdrin (1) can be found conditioned orv being the infection source, we should choose
in two steps. For each € V as the infection source, we de- the the first infection time for any non-source node to be as
termine the most likely infection path induced byeing the late as possible.

infection source. Then, we findas the node that maximizes
the likelihood of the most likely infection path found in the
first step.

Lemma 2. Given a non-empty set of infected nodlgssup-
pose that is the infection source. Then,



(1) the setof all feasible observation time§is= [d(v, V1), oc); Lemma 3. Let H be the minimum connected subgraphGof
that containd/;, and lett” = d(v, V7) for anyv € H. Then,
for any pair of neighboring nodesandv in H with t¥ < t*,

we have

(2) P(X{[0,t]) is monotonically decreasing inc 7,; and

(3) the most likely elapsed time conditionedwbeing the

infection source is given by = d(v, V7). PX2[0, 1)) > P(XE[0, %))
VIiYs VIYs .

Proof. We first prove claim (1). The infection can propagate
at most one hop further from the source nadm one time Proof. Denote the first infection time of in the infection
slot. If ¢ < d(v,V7), the infection can not reach the nodesPathX{[0,¢"] ast,. We first show that, = 1in the infection
V,(d(v, V7)), and therefore, itis not possible fo (d(v, V7)) Path X [0, ¢"]. Conditioned on node being the infection
to become infected. This proves claim (1). source, the infection can propagate at mttst ¢t/ hops away
Next, we show claim (2). Fix @ € 7,. We compare from nodev within the subtre€’, (u; /). From Proposition
XU[0,4] with XU[0,+ 1]. We first show that the source 1(2), if t; > 1, we haved(v,l) = t* — 1 > t* — 1y, for
node v is susceptible at time slot 1 i&y[0,¢+ 1], ie. [ = argmaxscy; d(u,z). In other words, the infection can
v € S(1). This is true because if ¢ S(1), thenv and all  Notreach nodé whichis a contradiction. Therefore, we must

of its neighboring nodes are uninfected at time slot 1, i.e.havet] = 1in the infection pathX [0, t*].

X‘i;;t(Jlr)l {v}[l] = 0. This implies that the set of infected Using the same arguments as in the proof oI Lemma 2,
nodesV’; is empty aw is the only source in the network. This one can show thak* [2,¢“] corresponds toX{" [1,¢"],
contradicts our assumption that at least one node is irdecte with X{j’t(“l)\{v}[l] =0andX®!"[1] = 0. We then obtain
Since X,[0,t] € &,, from Lemma 1, we have that :
ot dsta (' [1,t] andX " T 1] = 0 ufQ, g ut'ry pu
Xy [2,t 4 1] corresponds t& ¢ [1, ] v (1 =0, P(XE[0,6%)  P(X{" [2,64) P[] = 1)
so thatX v **1[1] = 1, yielding PX[0,t7])  P(XUTL, 1)) v
P(XP[0,t + 1 P(XU 1] = 0) - P(XY 0[] =0
( V[O’t]) :q(l — q)'vﬂ(l)| <1
(X2, 4 1]
(XU, 1) whereP(Xy:""[2,1)) = B(Xy:""[1, ")) becausexyy* 1, ]
=q(1—¢)/V"®I <1, @ = Xp' [0,¢Y]. The proof for Lemma 3 is now completel

We have the following result based on Lemma 2 and

where |V, (1)| denotes the number of elements in the Seﬁ_emmaS

Vo(1), and P(X7"2,t +1]) = P(X{'[1,t]) because
Xyt +1] = X('0,¢]. From (4) we can see that Theorem 1. If V; is an observed infection set in an infinite
P(X7[0,]) is monotonically decreasing agcreases, which  tree, the estimator ifil) is given by
proves claim (2). The last claim now follows from claim (2),
and the proof for Lemma 2 is now complete. O § € arg mi‘r} d(v, V7), (5)

ve

3.2. Source associated with the most likely infection path i.e., the infection source associated with the most likeflgd-

Proposition 1. Let H be the minimum connected sub- tion path is a Jordan infection center (cf. Definition 1).

graph of G that containsV;. Suppose that and v are  Proof. It is easy to see that if; is a tree, then there are at

neighboring nodes Nt with d(v,Vr) < d(u,Vr). Let  mosttwo Jordan infection centers figr. In addition, if there

| = argmaxzey; d(u,z), then we have are indeed two Jordan infection centers, they are neighbor-

(1) 1 € T (us H); ing nodes [13]. With out loss of generality, we assume there
h is only one Jordan infection centér (When there are two

(2) t* =d(v,l) =t" - 1. Jordan infection centers, we can treat them as a singleavirtu
. - node.) For any node, € H\{3}, we denote the path frotk
Proof. Note thatt* = d(u, Vi) = d(u,l) by Lemma 2(3).  tg y, as[3,v;,vs, - ,vi] , wherek > 1. We want to show

If I ¢ T,(u; H), we haved(v,l) = d(u,l) +1 = t* +1.  that

From Lemma 2(3), we hawe = d(v, V;) > d(v,l), sot” >

t* + 1, which contradicts the assumption thtat< t“. This ]P’(Xé[o, tﬁ]) > P(X{F[0,t%]). (6)
completes the proof of the first claim, which now implies that

d(v,l) = d(u,l) — 1 =t*“ — 1. From Lemma 2(3), we obtain Fixal € V7 such thati(s,1) = d(, V). Letu denote the
t¥ > d(v,1), so thatt* — 1 < ¥ < ¢*, which gives ug” =  neighboring node of on the path frons to . Consider a node
t* — 1. This completes the proof for the proposition. [ I’, wherel’ = argmax,cy,\r,(s;m) d(3,v). We first show



thatd(s,l’) > d(8,1) — 1. This is true because if(s,!’) <  from [3,5]. We run the OIP algorithm and the DC algorithm
d(s,1) — 2, on the observed graph for the proposed estimator and the DC
B based estimator respectively. Figure 1 shows the detection

d(u, Vi) = max (d(u, 1), d(u, 1)) rate (percentage of times that the estimator correctly finels
= max (d(3,1') + 1,d(5,1) — 1) infection source) of both estimators. We can see that the pro
=d(3,1) — 1. posed estimator has higher detection rate than the DC based

estimator for all kinds of regular trees. Error distancees d
In the last line, we have used the inequality tiig /') +1 < fined as the distance between the estimate and the infection
d(3,1) —2+1 = d(3,1) — 1. We find a node that has ~source. Figure 2 shows the histogram of the error distances
infection eccentricity less than that &fa contradiction. of both estimators for regular trees with degree 4 (simiar r
Note that! could be either in the subtreB, (3; H) or  Sults are obtained for other degrees). We see that the prdpos
not, we shall look into these two possible cases. When  estimator has smaller error distance on average.

T,, (3; H), it is easy to see that(v;, V;) = d(,1) + i for 60
1 <i< k. Whenl € T,,(3; H), suppose thal(v; 1, Vi) < 55 | S —a
d(v;, Vy) for somei € [1,k — 1]. Letl be a node such that &0 /./ "
d(vi,1) = d(v;,Vi). Then, we must havee T, , (vi; H), 8 s
otherwise we have a contradiction. We then have g o ¢ /
- 240 -#-0IP
d(vig1, Vi) = d(vig1,1') = 3 « -+DC
=d,) +i+1 “
> i+ d(s,1) 2 3 degree ’ ¢
> 20+ d(vy, 1)
> d(vs, 1) Fig. 1. Detection rate of optimal infection path (OIP) based

estimator and distance centrality (DC) based estimator for
a contradiction. Therefore, we hawév;, Vi) < d(vit1,Vr) regular trees with various degrees.

fori € [1,k—1]. Furthermore, we hawé(s, V;) < d(v1, V7) o TS
by assumption. By repeatedly applying Lemma 3 and Lemma 50 1 spC
2(3), we can show (6) is true for both cases, and the prooffor
Theorem 1 is now complete. O gm

Theorem 1 shows that the optimal estimator in (1) is given ézo ]
by a Jordan infection center. Note that this is the sametriésul
an SIR infection process is assumed [13]. We have therefore 107
shown that using Jordan infection centers is relativelyusbb O ) 5 s L
to the underlying assumptions governing the infection @ad r error distance
covery of nodes in the network.

4. SIMULATION RESULTS Fig. 2. Histogram of error distances of optimal infection path

. ) ) ] (OIP) based estimator and distance centrality (DC) based es
In this section, we present simulation results on reguésr timator for regular trees with degree 4.

to evaluate the performance of the proposed estimator. An ef
TICIenF algorithm has_ been descrlbgd in [13] tq find the Jordan 5. CONCLUSION
infection center, which we call optimal infection path (QIP

algorithm. We refer the reader to [13] for details of OIP. TheWe have derived an infection source estimator for an SIS
benchmark is the minimum DC based estimator that is provefhodel that identifies the node associated with the most/likel
in [10] to be the maximum likelihood infection source estima infection path. We showed that the estimator is a Jordan
tor for regular trees in SI models. infection center. Simulation results on regular treesdat#

In each simulation run, we let the underlying netwetk that our estimator outperforms the minimum distance cen-
be a sufficiently large regular tree, so tidatan be treated as trality based estimator, which is proved to be the maximum
an infinite tree. We set the degree of the regular trees to Hikelihood estimator for the SI model. In this paper, we make
2,3,4,50r 6. For each degree, we perform 1000 simulationthe assumption that there is only one infection source in an
runs. We randomly choose a node as the infection source afidfinite regular tree. However, there may exist multipleeini
let the infection spread out using the SIS model. The indecti tion sources in practical applications [11,12]. Future kvor
probabilityq is chosen uniformly fronf0, 1). We observe the includes identifying multiple infection sources for theSSI
infection graph aftet time slots, where is chosen uniformly modelin a general network.
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