Generalized Graph Signal Processing

Feng Ji Wee Peng Tay

Nanyang Technological University

November 2019

Graph signal processing

• Signal f on a graph G = (V, E): $f : V \mapsto \mathbb{C}$

- Examples: sensor networks, social networks, transportation networks, ...
- Exploits the underlying graph structure (correlations between nodes) to perform signal processing and inference.

イロト イヨト イヨト イヨト

Graph signal processing

• Signal f on a graph G = (V, E): $f : V \mapsto \mathbb{C}$

- Examples: sensor networks, social networks, transportation networks, ...
- Exploits the underlying graph structure (correlations between nodes) to perform signal processing and inference.
- Main idea: represent f using basis Φ associated with graph shift operator $A_G = \Phi \Lambda \Phi^*$ (adjacency, Laplacian, etc. that captures the local graph structure).

$$\mathsf{GFT:}\; \widehat{f} = \Phi^* f$$

Graph signal processing

• Signal f on a graph G = (V, E): $f : V \mapsto \mathbb{C}$

- Examples: sensor networks, social networks, transportation networks, ...
- Exploits the underlying graph structure (correlations between nodes) to perform signal processing and inference.
- Main idea: represent f using basis Φ associated with graph shift operator $A_G = \Phi \Lambda \Phi^*$ (adjacency, Laplacian, etc. that captures the local graph structure).

GFT:
$$\hat{f} = \Phi^* f \stackrel{[1]}{=} (\langle f, \phi \rangle_{\mathbb{C}^n})_{\phi \in \Phi}$$

^[1] B. Girault, A. Ortega, and S. S. Narayanan, "Irregularity-aware graph Fourier transforms," IEEE Transactions on Signal Processing, vol. 66, no. 21, pp. 5746–5761, Nov. 2018.

Time-vertex GSP

• [2]: $f(v, \cdot) \in \mathbb{C}^T$ for each $v \in V$, $T < \infty$, is a discrete time series with common time indices (e.g., synchronous uniform sampling at every vertex).

^[2] F. Grassi, A. Loukas, N. Perraudin, and B. Ricaud, "A time-vertex signal processing framework: Scalable processing and meaningful representations for time-series on graphs," IEEE Trans. Signal Process., vol. 66, no. 3, pp. 817–829, Feb. 2018.

Time-vertex GSP

• [2]: $f(v, \cdot) \in \mathbb{C}^T$ for each $v \in V$, $T < \infty$, is a discrete time series with common time indices (e.g., synchronous uniform sampling at every vertex).

• For each $v \in V$, can apply DFT on $f(v, \cdot)$:

$$\mathsf{DFT}(f(v,\cdot)) = \Xi^* \operatorname{vec}(f(v,\cdot)),$$

where Ξ^* is the DFT matrix.

^[2] F. Grassi, A. Loukas, N. Perraudin, and B. Ricaud, "A time-vertex signal processing framework: Scalable processing and meaningful representations for time-series on graphs," *IEEE Trans. Signal Process.*, vol. 66, no. 3, pp. 817–829, Feb: 2018.

Time-vertex GSP

• [2]: $f(v, \cdot) \in \mathbb{C}^T$ for each $v \in V$, $T < \infty$, is a discrete time series with common time indices (e.g., synchronous uniform sampling at every vertex).

• For each $v \in V$, can apply DFT on $f(v, \cdot)$:

$$\mathsf{DFT}(f(v,\cdot)) = \Xi^* \operatorname{vec}(f(v,\cdot)),$$

where Ξ^* is the DFT matrix.

• Joint time-vertex Fourier transform: view f = (f(v, t)) as a matrix,

TV-transform:
$$\hat{f} = \Phi^* f \overline{\Xi}$$
.

^[2] F. Grassi, A. Loukas, N. Perraudin, and B. Ricaud, "A time-vertex signal processing framework: Scalable processing and meaningful representations for time-series on graphs," *IEEE Trans. Signal Process.*, vol. 66, no. 3, pp. 817–829, Feb::2018.

Time-vertex GSP

• [2]: $f(v, \cdot) \in \mathbb{C}^T$ for each $v \in V$, $T < \infty$, is a discrete time series with common time indices (e.g., synchronous uniform sampling at every vertex).

• For each $v \in V$, can apply DFT on $f(v, \cdot)$:

$$\mathsf{DFT}(f(v,\cdot)) = \Xi^* \operatorname{vec}(f(v,\cdot)),$$

where Ξ^* is the DFT matrix.

• Joint time-vertex Fourier transform: view f = (f(v, t)) as a matrix,

TV-transform:
$$\hat{f} = \Phi^* f \overline{\Xi}$$
.

• A representation in the basis $\Phi \otimes \Xi$.

• Missing samples.

- Missing samples.
- If vertex domain dimension = 2, can reconstruct.

イロト イヨト イヨト イヨト

- Missing samples.
- If vertex domain dimension = 2, can reconstruct.

イロト イヨト イヨト イヨト

- Missing samples.
- If vertex domain dimension = 2, can reconstruct.
- However, asynchronous sampling (e.g., sensor networks) ... now impossible to reconstruct the signal.

イロト イヨト イヨト イヨ

Generalized GSP

• Signal at each vertex is from an infinite dimensional separable Hilbert space $\mathcal{H} = L^2(\Omega, \mu).$

イロト イヨト イヨト イヨト

Generalized GSP

- Signal at each vertex is from an infinite dimensional separable Hilbert space $\mathcal{H} = L^2(\Omega, \mu).$
- Maybe non-bandlimited in Ω direction (Shannon-Nyquist: impossible to represent as discrete time series).

イロト イヨト イヨト イヨ

Generalized GSP

- Signal at each vertex is from an infinite dimensional separable Hilbert space $\mathcal{H} = L^2(\Omega, \mu).$
- Maybe non-bandlimited in Ω direction (Shannon-Nyquist: impossible to represent as discrete time series).
- Non-synchronous sampling (time indices are not same for different vertices).

イロト イヨト イヨト イヨ

Generalized GSP

- Signal at each vertex is from an infinite dimensional separable Hilbert space $\mathcal{H} = L^2(\Omega, \mu).$
- Maybe non-bandlimited in Ω direction (Shannon-Nyquist: impossible to represent as discrete time series).
- Non-synchronous sampling (time indices are not same for different vertices).
- Allows joint modeling of f(v, x) over $v \in V$, $x \in \mathcal{H}$.

The rest of this talk...

1 Generalized Graph Signals and \mathcal{F} -Transform

2 Sampling Theorem

3 Filtering

Details in

F. Ji and W. P. Tay, "A Hilbert space theory of generalized graph signal processing," *IEEE Trans. Signal Process.*, 2019, accepted. [Online]. Available: https://arxiv.org/abs/1904.11655.

Outline

2 Sampling Theorem

3 Filtering

• Tensor product
$$\mathbb{C}^n \otimes \mathcal{H} = \left\{ \sum_{i=1}^n v_i \otimes h_i \right\}$$
 with

$$v_1 \otimes h + v_2 \otimes h = (v_1 + v_2) \otimes h;$$

$$v \otimes h_1 + v \otimes h_2 = v \otimes (h_1 + h_2);$$

• Tensor product
$$\mathbb{C}^n \otimes \mathcal{H} = \left\{ \sum_{i=1}^n v_i \otimes h_i \right\}$$
 with
(a) $v_1 \otimes h + v_2 \otimes h = (v_1 + v_2) \otimes h;$
(b) $v \otimes h_1 + v \otimes h_2 = v \otimes (h_1 + h_2);$
(c) $rv \otimes h = v \otimes rh$ for $r \in \mathbb{C}$.

• Inner product $\langle \cdot, \cdot \rangle_{\mathbb{C}^n \otimes \mathcal{H}}$ induced (linearly) by:

$$\langle v_1 \otimes h_1, v_2 \otimes h_2 \rangle_{\mathbb{C}^n \otimes \mathcal{H}} = \langle v_1, v_2 \rangle_{\mathbb{C}^n} \langle h_1, h_2 \rangle_{\mathcal{H}}.$$

 $\mathbb{C}^n \otimes \mathcal{H}$ is a Hilbert space.

• Tensor product
$$\mathbb{C}^n \otimes \mathcal{H} = \left\{ \sum_{i=1}^n v_i \otimes h_i \right\}$$
 with

• $v_1 \otimes h + v_2 \otimes h = (v_1 + v_2) \otimes h;$
• $v \otimes h_1 + v \otimes h_2 = v \otimes (h_1 + h_2);$
• $rv \otimes h = v \otimes rh$ for $r \in \mathbb{C}$.

• Inner product $\langle\cdot,\,\cdot\rangle_{\mathbb{C}^n\otimes\mathcal{H}}$ induced (linearly) by:

$$\langle v_1 \otimes h_1, v_2 \otimes h_2 \rangle_{\mathbb{C}^n \otimes \mathcal{H}} = \langle v_1, v_2 \rangle_{\mathbb{C}^n} \langle h_1, h_2 \rangle_{\mathcal{H}}.$$

 $\mathbb{C}^n \otimes \mathcal{H}$ is a Hilbert space.

• Generalized graph signal $f: V \mapsto \mathcal{H}$. $S(G, \mathcal{H})$ - space of graph signals in \mathcal{H} .

• Tensor product
$$\mathbb{C}^n \otimes \mathcal{H} = \left\{ \sum_{i=1}^n v_i \otimes h_i \right\}$$
 with
• $v_1 \otimes h + v_2 \otimes h = (v_1 + v_2) \otimes h;$
• $v \otimes h_1 + v \otimes h_2 = v \otimes (h_1 + h_2);$
• $rv \otimes h = v \otimes rh$ for $r \in \mathbb{C}$.

• Inner product $\langle \cdot, \cdot \rangle_{\mathbb{C}^n \otimes \mathcal{H}}$ induced (linearly) by:

$$\langle v_1 \otimes h_1, v_2 \otimes h_2 \rangle_{\mathbb{C}^n \otimes \mathcal{H}} = \langle v_1, v_2 \rangle_{\mathbb{C}^n} \langle h_1, h_2 \rangle_{\mathcal{H}}.$$

 $\mathbb{C}^n \otimes \mathcal{H}$ is a Hilbert space.

• Generalized graph signal $f: V \mapsto \mathcal{H}$. $S(G, \mathcal{H})$ - space of graph signals in \mathcal{H} .

Lemma

 $S(G, \mathcal{H})$ is a Hilbert space isomorphic to $\mathbb{C}^n \otimes \mathcal{H}$, |V| = n.

• A_G : self-adjoint graph shift operator of G, eigenvectors Φ form orthonormal basis of \mathbb{C}^n

- A_G : self-adjoint graph shift operator of G, eigenvectors Φ form orthonormal basis of \mathbb{C}^n
- A: compact, self-adjoint operator on \mathcal{H} , eigenvectors Ξ of A form orthonormal basis of \mathcal{H} (Hilbert-Schmidt Theorem)

$\mathcal{F}\text{-transform}$

- A_G : self-adjoint graph shift operator of G, eigenvectors Φ form orthonormal basis of \mathbb{C}^n
- A: compact, self-adjoint operator on \mathcal{H} , eigenvectors Ξ of A form orthonormal basis of \mathcal{H} (Hilbert-Schmidt Theorem)
- $\Phi \otimes \Xi$ is a basis for $\mathbb{C}^n \otimes \mathcal{H}$.
- Joint *F*-transform:

 $\mathcal{F}_f(\phi \otimes \xi) = \langle f, \, \phi \otimes \xi \rangle_{\mathbb{C}^n \otimes \mathcal{H}}$

- A_G : self-adjoint graph shift operator of G, eigenvectors Φ form orthonormal basis of \mathbb{C}^n
- A: compact, self-adjoint operator on \mathcal{H} , eigenvectors Ξ of A form orthonormal basis of \mathcal{H} (Hilbert-Schmidt Theorem)
- $\Phi \otimes \Xi$ is a basis for $\mathbb{C}^n \otimes \mathcal{H}$.
- Joint *F*-transform:

 $\mathcal{F}_f(\phi \otimes \xi) = \langle f, \, \phi \otimes \xi \rangle_{\mathbb{C}^n \otimes \mathcal{H}}$

$$= \left\langle (\left\langle f(v,\cdot), \xi \right\rangle_{\mathcal{H}})_{v \in V}, \phi \right\rangle_{\mathbb{C}^n}$$

- A_G : self-adjoint graph shift operator of G, eigenvectors Φ form orthonormal basis of \mathbb{C}^n
- A: compact, self-adjoint operator on \mathcal{H} , eigenvectors Ξ of A form orthonormal basis of \mathcal{H} (Hilbert-Schmidt Theorem)
- $\Phi \otimes \Xi$ is a basis for $\mathbb{C}^n \otimes \mathcal{H}$.
- Joint *F*-transform:

$$\mathcal{F}_f(\phi \otimes \xi) = \langle f, \phi \otimes \xi \rangle_{\mathbb{C}^n \otimes \mathcal{H}}$$

Fourier series, Fourier transform, wavelet transform, Chebyshev poly.

$$= \left\langle (\overbrace{\langle f(v,\cdot), \xi \rangle_{\mathcal{H}}}^{\sim})_{v \in V}, \phi \right\rangle_{\mathbb{C}^n}$$

- A_G : self-adjoint graph shift operator of G, eigenvectors Φ form orthonormal basis of \mathbb{C}^n
- A: compact, self-adjoint operator on \mathcal{H} , eigenvectors Ξ of A form orthonormal basis of \mathcal{H} (Hilbert-Schmidt Theorem)
- $\Phi \otimes \Xi$ is a basis for $\mathbb{C}^n \otimes \mathcal{H}$.
- Joint *F*-transform:

$$\mathcal{F}_f(\phi \otimes \xi) = \langle f, \, \phi \otimes \xi \rangle_{\mathbb{C}^n \otimes \mathcal{H}}$$

Fourier series, Fourier transform, wavelet transform, Chebyshev poly.,

$$= \underbrace{\left\langle (\left\langle f(v,\cdot), \xi \right\rangle_{\mathcal{H}})_{v \in V}, \phi \right\rangle_{\mathbb{C}^{n}}}_{\mathsf{GFT}}$$

- A_G : self-adjoint graph shift operator of G, eigenvectors Φ form orthonormal basis of \mathbb{C}^n
- A: compact, self-adjoint operator on \mathcal{H} , eigenvectors Ξ of A form orthonormal basis of \mathcal{H} (Hilbert-Schmidt Theorem)
- $\Phi \otimes \Xi$ is a basis for $\mathbb{C}^n \otimes \mathcal{H}$.
- Joint *F*-transform:

$$\mathcal{F}_f(\phi \otimes \xi) = \langle f, \phi \otimes \xi \rangle_{\mathbb{C}^n \otimes \mathcal{H}}$$

Fourier series, Fourier transform, wavelet transform, Chebyshev poly.,

$$= \underbrace{\left\langle (\overline{\langle f(v,\cdot), \xi \rangle_{\mathcal{H}}})_{v \in V}, \phi \right\rangle_{\mathbb{C}^{n}}}_{\mathsf{GFT}}$$
$$= \underbrace{\langle (\langle f(\cdot, x), \phi \rangle_{\mathbb{C}^{n}})_{x \in \Omega}, \xi \rangle_{\mathcal{H}}}_{\mathcal{H}}$$

イロト イヨト イヨト イヨト

- A_G : self-adjoint graph shift operator of G, eigenvectors Φ form orthonormal basis of \mathbb{C}^n
- A: compact, self-adjoint operator on \mathcal{H} , eigenvectors Ξ of A form orthonormal basis of \mathcal{H} (Hilbert-Schmidt Theorem)
- $\Phi \otimes \Xi$ is a basis for $\mathbb{C}^n \otimes \mathcal{H}$.
- Joint *F*-transform:

$$\mathcal{F}_f(\phi \otimes \xi) = \langle f, \, \phi \otimes \xi \rangle_{\mathbb{C}^n \otimes \mathcal{H}}$$

Fourier series, Fourier transform, wavelet transform, Chebyshev poly.,

$$= \underbrace{\left\langle (\overline{\langle f(v,\cdot), \xi \rangle_{\mathcal{H}}})_{v \in V}, \phi \right\rangle_{\mathbb{C}^{n}}}_{\mathsf{GFT}}$$
$$= \langle (\langle f(\cdot, x), \phi \rangle_{\mathbb{C}^{n}})_{x \in \Omega}, \xi \rangle_{\mathcal{H}}$$

•
$$f = \sum_{\phi \otimes \xi} \mathcal{F}_f(\phi \otimes \xi) \cdot \phi \otimes \xi$$

イロト イヨト イヨト イヨト

• $\mathcal{H} = \mathbb{C}$, can take $\Xi = \{1\}$ and \mathcal{F} -transform = GFT.

メロト メタト メヨト メヨト

- $\mathcal{H} = \mathbb{C}$, can take $\Xi = \{1\}$ and \mathcal{F} -transform = GFT.
- $\mathcal{H} = L^2(G')$ with discrete measure, where G' = (V', E') is a finite graph.

- $\mathcal{H} = \mathbb{C}$, can take $\Xi = \{1\}$ and \mathcal{F} -transform = GFT.
- $\mathcal{H} = L^2(G')$ with discrete measure, where G' = (V', E') is a finite graph.
 - ▶ $S(G, \mathcal{H})$ signals on product graph $G \times G'$. Suitable A: \mathcal{F} -transform = GFT

- $\mathcal{H} = \mathbb{C}$, can take $\Xi = \{1\}$ and \mathcal{F} -transform = GFT.
- $\mathcal{H} = L^2(G')$ with discrete measure, where G' = (V', E') is a finite graph.
 - ▶ S(G, H) signals on product graph $G \times G'$. Suitable A: \mathcal{F} -transform = GFT
 - $G' = path graph: \mathcal{F}$ -transform = TV-transform

Example of infinite dimensional \mathcal{H}

• $\mathcal{H} = \text{subspace of } L^2([-\pi,\pi],\lambda_{\text{Leb.}}) \text{ consisting of } f \text{ such that } f(-\pi) = f(\pi).$

メロト メタト メヨト メヨト

Example of infinite dimensional \mathcal{H}

• $\mathcal{H} =$ subspace of $L^2([-\pi,\pi], \lambda_{\text{Leb.}})$ consisting of f such that $f(-\pi) = f(\pi)$. • Choose

$$Af(x) = \frac{i}{2} \left(\int_{-\pi}^{x} f(y) \mathrm{d}y - \int_{x}^{\pi} f(y) \mathrm{d}y \right).$$

イロト イヨト イヨト イヨト
Example of infinite dimensional \mathcal{H}

• \mathcal{H} = subspace of $L^2([-\pi,\pi],\lambda_{\text{Leb.}})$ consisting of f such that $f(-\pi) = f(\pi)$. • Choose

$$Af(x) = \frac{i}{2} \left(\int_{-\pi}^{x} f(y) \mathrm{d}y - \int_{x}^{\pi} f(y) \mathrm{d}y \right).$$

• A is compact with eigenvectors $\Xi = \left\{ \frac{\exp(imx)}{\sqrt{2\pi}} : m \in \mathbb{Z} \right\}$ (Fourier series basis):

$$f(x) = \sum_{m \in \mathbb{Z}} \frac{a_m}{\sqrt{2\pi}} e^{imx}, \ a_m \in \mathbb{C} \text{ for all } m \in \mathbb{Z}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example of infinite dimensional \mathcal{H}

• $\mathcal{H} =$ subspace of $L^2([-\pi,\pi],\lambda_{\text{Leb.}})$ consisting of f such that $f(-\pi) = f(\pi)$. • Choose

$$Af(x) = \frac{i}{2} \left(\int_{-\pi}^{x} f(y) \mathrm{d}y - \int_{x}^{\pi} f(y) \mathrm{d}y \right).$$

• A is compact with eigenvectors $\Xi = \left\{ \frac{\exp(imx)}{\sqrt{2\pi}} : m \in \mathbb{Z} \right\}$ (Fourier series basis):

$$f(x) = \sum_{m \in \mathbb{Z}} \frac{a_m}{\sqrt{2\pi}} e^{imx}, \ a_m \in \mathbb{C} \text{ for all } m \in \mathbb{Z}.$$

Fredholm operator

$$Af(x) = \int_{\Omega} K(x,y) f(y) \mathrm{d} \mu(y),$$

Hermitian $K \in L^2(\Omega \times \Omega) \implies A$ compact, self-adjoint. Choose different kernels for different applications.

Generalized Graph Signal Processing

November 2019 11 / 36

• Information propagation over a network: SI, SIR, SIRI

Source: J. McAuley and J. Leskovec. Learning to Discover Social Circles in Ego Networks. NIPS, 2012

• Information propagation over a network: SI, SIR, SIRI

Source: J. McAuley and J. Leskovec. Learning to Discover Social Circles in Ego Networks. NIPS, 2012

• Signal at each node v: $f(v) \in L^2([0,T])$, step function unbandlimited in time domain.

• Information propagation over a network: SI, SIR, SIRI

Source: J. McAuley and J. Leskovec. Learning to Discover Social Circles in Ego Networks. NIPS, 2012

- Signal at each node v: $f(v) \in L^2([0,T])$, step function unbandlimited in time domain.
- Suppose infection rate $\lambda_I = 1$, what is the recovery rate λ_R ?

• Information propagation over a network: SI, SIR, SIRI

Source: J. McAuley and J. Leskovec. Learning to Discover Social Circles in Ego Networks. NIPS, 2012

- Signal at each node v: $f(v) \in L^2([0,T])$, step function unbandlimited in time domain.
- Suppose infection rate $\lambda_I = 1$, what is the recovery rate λ_R ?
- Loss of information in using
 - GSP (aggregated statistics over time) or
 - TV-GSP (uniform sampling over time).

イロト 不得 トイヨト イヨト

Facebook network, $\lambda_I = 1$: $\lambda_R = 0$, $\lambda_R = 1/5$, $\lambda_R = 1/2$ and $\lambda_R = 1$.

Enron email network, $\lambda_I = 1$: $\lambda_R = 0$, $\lambda_R = 1/5$, $\lambda_R = 1/2$ and $\lambda_R = 1$.

Outline

Generalized Graph Signals and ${\mathcal F} ext{-}\mathsf{Transform}$

2 Sampling Theorem

3 Filtering

<ロ> (日) (日) (日) (日) (日)

• Joint sampling over vertex and Hilbert space domains.

- Joint sampling over vertex and Hilbert space domains.
- Synchronous sampling is not always easy: sensor networks, social networks, ...

- Joint sampling over vertex and Hilbert space domains.
- Synchronous sampling is not always easy: sensor networks, social networks, ...
- May need different graph sampling at different time vertices:

A (1) > A (2) > A

- Joint sampling over vertex and Hilbert space domains.
- Synchronous sampling is not always easy: sensor networks, social networks, ...
- May need different graph sampling at different time vertices:

• Suppose $f \in \operatorname{span}(\Phi' \otimes \Xi')$ - bandlimited.

• • • • • • • • • • • •

- Joint sampling over vertex and Hilbert space domains.
- Synchronous sampling is not always easy: sensor networks, social networks, ...
- May need different graph sampling at different time vertices:

- Suppose $f \in \operatorname{span}(\Phi' \otimes \Xi')$ bandlimited.
- Sampling: choose $W \subset V \times \Omega$ such that f is uniquely determined by W.

• • • • • • • • • • • •

- Joint sampling over vertex and Hilbert space domains.
- Synchronous sampling is not always easy: sensor networks, social networks, ...
- May need different graph sampling at different time vertices:

- Suppose $f \in \operatorname{span}(\Phi' \otimes \Xi')$ bandlimited.
- Sampling: choose $W \subset V \times \Omega$ such that f is uniquely determined by W.
- $f \in \operatorname{span}(\Phi' \otimes \Xi') \implies |W| \ge |\Phi'| \cdot |\Xi'|$. But not all sampling schemes work.

< ロ > < 同 > < 三 > < 三)

- Joint sampling over vertex and Hilbert space domains.
- Synchronous sampling is not always easy: sensor networks, social networks, ...
- May need different graph sampling at different time vertices:

- Suppose $f \in \operatorname{span}(\Phi' \otimes \Xi')$ bandlimited.
- Sampling: choose $W \subset V \times \Omega$ such that f is uniquely determined by W.
- $f \in \operatorname{span}(\Phi' \otimes \Xi') \implies |W| \ge |\Phi'| \cdot |\Xi'|$. But not all sampling schemes work.
- "Reconstructible vertex set": can reconstruct whole graph signal at each instant $x \in \Omega$ from signals in this set. \implies linearly independent rows of matrix Φ' .

Theorem

Two asynchronous ways (not exhaustive) to form sample set W:

Theorem

Two **asynchronous** ways (not exhaustive) to form sample set W:

● Choose V' to be any reconstructible vertex set.

Theorem

Two asynchronous ways (not exhaustive) to form sample set W:

- Choose V' to be any reconstructible vertex set.
 - For each $v \in V'$, choose $|\Xi'|$ points in Ω such that $f(v, \cdot) \in \operatorname{span} \Xi'$.

Theorem

Two asynchronous ways (not exhaustive) to form sample set W:

- Choose V' to be any reconstructible vertex set.
 - For each $v \in V'$, choose $|\Xi'|$ points in Ω such that $f(v, \cdot) \in \operatorname{span} \Xi'$.

2
$$\blacktriangleright$$
 Choose $V' = V$.

Theorem

Two **asynchronous** ways (not exhaustive) to form sample set W:

- Choose V' to be any reconstructible vertex set.
 - For each $v \in V'$, choose $|\Xi'|$ points in Ω such that $f(v, \cdot) \in \operatorname{span} \Xi'$.
- 2 \blacktriangleright Choose V' = V.
 - Choose $|\Xi'|$ points Ω' such that $f(v, \cdot) \in \operatorname{span} \Xi'$.

Theorem

Two **asynchronous** ways (not exhaustive) to form sample set W:

- Choose V' to be any reconstructible vertex set.
 - For each $v \in V'$, choose $|\Xi'|$ points in Ω such that $f(v, \cdot) \in \operatorname{span} \Xi'$.
- $\bullet \quad \mathsf{Choose} \ V' = V.$
 - Choose $|\Xi'|$ points Ω' such that $f(v, \cdot) \in \operatorname{span} \Xi'$.
 - $\delta(\Phi') = \text{size of maximal partition of } V \text{ into disjoint reconstructible vertex sets.}$ Partition $\Omega = \bigcup_{j=1}^{\delta(\Phi')} \Omega_j$ with $|\Omega_j| < |\Xi'|/\delta(\Phi') + 1$ and Ω_j are the sample points for all $v \in I_j$.

Theorem

Two **asynchronous** ways (not exhaustive) to form sample set W:

- For each $v \in V'$, choose $|\Xi'|$ points in Ω such that $f(v, \cdot) \in \operatorname{span} \Xi'$.
- 2 \blacktriangleright Choose V' = V.
 - Choose $|\Xi'|$ points Ω' such that $f(v, \cdot) \in \operatorname{span} \Xi'$.
 - $\delta(\Phi') = \text{size of maximal partition of } V \text{ into disjoint reconstructible vertex sets.}$ Partition $\Omega = \bigcup_{j=1}^{\delta(\Phi')} \Omega_j$ with $|\Omega_j| < |\Xi'| / \delta(\Phi') + 1$ and Ω_j are the sample points for all $v \in I_j$.

Furthermore, if \mathcal{H} is spanned by analytic functions, then any random (\prec Lebesgue measure) perturbation of W still determines f a.s.

Theorem

Two **asynchronous** ways (not exhaustive) to form sample set W:

- **Choose** V' to be any reconstructible vertex set.
 - For each $v \in V'$, choose $|\Xi'|$ points in Ω such that $f(v, \cdot) \in \operatorname{span} \Xi'$.
- $\bullet Choose V' = V.$
 - Choose $|\Xi'|$ points Ω' such that $f(v, \cdot) \in \operatorname{span} \Xi'$.
 - $\delta(\Phi') = \text{size of maximal partition of } V \text{ into disjoint reconstructible vertex sets.}$ Partition $\Omega = \bigcup_{j=1}^{\delta(\Phi')} \Omega_j$ with $|\Omega_j| < |\Xi'| / \delta(\Phi') + 1$ and Ω_j are the sample points for all $v \in I_j$.

Furthermore, if \mathcal{H} is spanned by analytic functions, then any random (\prec Lebesgue measure) perturbation of W still determines f a.s.

• Suppose $f(v, \cdot) \in L^2([-\pi, \pi])$ is bandlimited to a frequency band [-B, B] in the classical Fourier series sense.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

Two **asynchronous** ways (not exhaustive) to form sample set W:

- $\bullet \quad \textbf{ boose } V' \text{ to be any reconstructible vertex set.}$
 - For each $v \in V'$, choose $|\Xi'|$ points in Ω such that $f(v, \cdot) \in \operatorname{span} \Xi'$.
- $\bullet Choose V' = V.$
 - Choose $|\Xi'|$ points Ω' such that $f(v, \cdot) \in \operatorname{span} \Xi'$.
 - $\delta(\Phi') = \text{size of maximal partition of } V \text{ into disjoint reconstructible vertex sets.}$ Partition $\Omega = \bigcup_{j=1}^{\delta(\Phi')} \Omega_j$ with $|\Omega_j| < |\Xi'| / \delta(\Phi') + 1$ and Ω_j are the sample points for all $v \in I_j$.

Furthermore, if \mathcal{H} is spanned by analytic functions, then any random (\prec Lebesgue measure) perturbation of W still determines f a.s.

- Suppose $f(v, \cdot) \in L^2([-\pi, \pi])$ is bandlimited to a frequency band [-B, B] in the classical Fourier series sense.
- Shannon-Nyquist Theorem: at least 2B samples to recover $f(v, \cdot)$ for each v individually.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

Two **asynchronous** ways (not exhaustive) to form sample set W:

- Choose V' to be any reconstructible vertex set.
 - For each $v \in V'$, choose $|\Xi'|$ points in Ω such that $f(v, \cdot) \in \operatorname{span} \Xi'$.
- $\bullet Choose V' = V.$
 - Choose $|\Xi'|$ points Ω' such that $f(v, \cdot) \in \operatorname{span} \Xi'$.
 - $\delta(\Phi') = \text{size of maximal partition of } V \text{ into disjoint reconstructible vertex sets.}$ Partition $\Omega = \bigcup_{j=1}^{\delta(\Phi')} \Omega_j$ with $|\Omega_j| < |\Xi'| / \delta(\Phi') + 1$ and Ω_j are the sample points for all $v \in I_j$.

Furthermore, if \mathcal{H} is spanned by analytic functions, then any random (\prec Lebesgue measure) perturbation of W still determines f a.s.

- Suppose $f(v, \cdot) \in L^2([-\pi, \pi])$ is bandlimited to a frequency band [-B, B] in the classical Fourier series sense.
- Shannon-Nyquist Theorem: at least 2B samples to recover $f(v,\cdot)$ for each v individually.
- But if $\{f(v, \cdot) : v \in V\}$ is bandlimited in graph vertex domain, then only need $\approx 2B/\delta(\Phi')$ for each vertex to recover all signals. $\square \to \square = \square$

W. P. Tay

• G - pixels of an image, $|V|=784,\,\Phi$: eigenvectors of graph Laplacian matrix $A_G.$

- G pixels of an image, $|V|=784,\,\Phi$: eigenvectors of graph Laplacian matrix $A_G.$
- $\mathcal{H} = L^2([-1,1]), \Xi$: Chebyshev polynomials of the first kind $\{P_j\}_{j\geq 0}$.

- G pixels of an image, $|V|=784, \, \Phi$: eigenvectors of graph Laplacian matrix $A_G.$
- $\mathcal{H} = L^2([-1,1]), \Xi$: Chebyshev polynomials of the first kind $\{P_j\}_{j\geq 0}$.
- $f(\cdot,1)$ and $f(\cdot,-1)$ correspond to images of handwritten digits '0' and '6'.

- G pixels of an image, $|V|=784, \, \Phi$: eigenvectors of graph Laplacian matrix $A_G.$
- $\mathcal{H} = L^2([-1,1])$, Ξ : Chebyshev polynomials of the first kind $\{P_j\}_{j\geq 0}$.
- $f(\cdot,1)$ and $f(\cdot,-1)$ correspond to images of handwritten digits '0' and '6'.
- For each $x \in [-1,1], \; f(\cdot,x)$ is graph bandlimited to the first k=300 eigenvalues of $A_G.$

- G pixels of an image, $|V|=784,\,\Phi$: eigenvectors of graph Laplacian matrix $A_G.$
- $\mathcal{H} = L^2([-1,1])$, Ξ : Chebyshev polynomials of the first kind $\{P_j\}_{j\geq 0}$.
- $f(\cdot,1)$ and $f(\cdot,-1)$ correspond to images of handwritten digits '0' and '6'.
- For each $x \in [-1,1], \ f(\cdot,x)$ is graph bandlimited to the first k=300 eigenvalues of $A_G.$
- For each node $v, \ f(v, \cdot)$ is in the span of the first B=8 Chebyshev polynomials.

• Asynchronous Sampling Theorem:

<ロ> (日) (日) (日) (日) (日)

• Asynchronous Sampling Theorem:

▶ sample 2k nodes (pixels)

• Asynchronous Sampling Theorem:

- sample 2k nodes (pixels)
- ▶ each node: sample B/2 random positions in [-1, 1] following $\mathcal{N}(0, 0.5)$

• Asynchronous Sampling Theorem:

- sample 2k nodes (pixels)
- each node: sample B/2 random positions in [-1,1] following $\mathcal{N}(0, 0.5)$

• With probability 1, impossible to reconstruct uniform samples.

• Asynchronous Sampling Theorem:

- sample 2k nodes (pixels)
- each node: sample B/2 random positions in [-1,1] following $\mathcal{N}(0, 0.5)$
- With probability 1, impossible to reconstruct uniform samples.

• Suppose we sample $W = \{(v_m, x_l) : m = 1, ..., 2k, l = 1, ..., B/2\}.$

イロト イヨト イヨト イヨト

- Suppose we sample $W = \{(v_m, x_l) : m = 1, \dots, 2k, l = 1, \dots, B/2\}.$
- Add white Gaussian noise to obtain \tilde{f} .

$$ilde{f}(v_m, x_l) = \sum_{i \leq k} \sum_{0 \leq j < B} y_{i,j} \phi_i(v_m) P_j(x_l) + ext{ noise}$$

- Suppose we sample $W = \{(v_m, x_l) : m = 1, \dots, 2k, l = 1, \dots, B/2\}.$
- Add white Gaussian noise to obtain \tilde{f} .

$$ilde{f}(v_m, x_l) = \sum_{i \leq k} \sum_{0 \leq j < B} y_{i,j} \phi_i(v_m) P_j(x_l) + \ {
m noise}$$

• Let M be the corresponding transformation matrix with entries $\phi_i(v_m)P_j(x_l)$.

- Suppose we sample $W = \{(v_m, x_l) : m = 1, \dots, 2k, \ l = 1, \dots, B/2\}.$
- Add white Gaussian noise to obtain \tilde{f} .

$$\widetilde{f}(v_m, x_l) = \sum_{i \leq k} \sum_{0 \leq j < B} y_{i,j} \phi_i(v_m) P_j(x_l) + \text{ noise}$$

Let M be the corresponding transformation matrix with entries φ_i(v_m)P_j(x_l).
Recover y = (y_{i,j}) by solving the optimization:

$$\underset{y}{\arg\min} \left\| My - \tilde{f}(W) \right\|_2^2$$

Sampling Theorem

Sampling example

- Suppose we sample $W = \{(v_m, x_l) : m = 1, \dots, 2k, l = 1, \dots, B/2\}.$
- Add white Gaussian noise to obtain \tilde{f} .

$$ilde{f}(v_m, x_l) = \sum_{i \leq k} \sum_{0 \leq j < B} y_{i,j} \phi_i(v_m) P_j(x_l) + \ {
m noise}$$

Let M be the corresponding transformation matrix with entries φ_i(v_m)P_j(x_l).
Recover y = (y_{i,j}) by solving the optimization:

$$\underset{y}{\arg\min} \left\| My - \tilde{f}(W) \right\|_2^2$$

Result:

Outline

Generalized Graph Signals and ${\mathcal F} ext{-}\mathsf{Transform}$

Sampling Theorem

3 Filtering

Shift invariance

• A *filter* is a bounded linear transformation $L: S(G, \mathcal{H}) \to S(G, \mathcal{H})$.

メロト メタト メヨト メヨト

Shift invariance

- A *filter* is a bounded linear transformation $L: S(G, \mathcal{H}) \to S(G, \mathcal{H})$.
- Tensor product filter $A_G \otimes A(v \otimes h) = A_G(v) \otimes A(h)$ is an example.

Shift invariance

- A *filter* is a bounded linear transformation $L: S(G, \mathcal{H}) \to S(G, \mathcal{H})$.
- Tensor product filter $A_G \otimes A(v \otimes h) = A_G(v) \otimes A(h)$ is an example.
- L is shift invariant if both $(A_G \otimes \mathrm{Id}) \circ L = L \circ (A_G \otimes \mathrm{Id})$ and $(\mathrm{Id} \otimes A) \circ L = L \circ (\mathrm{Id} \otimes A)$.

Shift invariance

- A *filter* is a bounded linear transformation $L: S(G, \mathcal{H}) \to S(G, \mathcal{H})$.
- Tensor product filter $A_G \otimes A(v \otimes h) = A_G(v) \otimes A(h)$ is an example.
- L is shift invariant if both $(A_G \otimes \mathrm{Id}) \circ L = L \circ (A_G \otimes \mathrm{Id})$ and $(\mathrm{Id} \otimes A) \circ L = L \circ (\mathrm{Id} \otimes A)$.
- L is weakly shift invariant if $(A_G \otimes A) \circ L = L \circ (A_G \otimes A)$.

Shift invariance

- A *filter* is a bounded linear transformation $L: S(G, \mathcal{H}) \to S(G, \mathcal{H})$.
- Tensor product filter $A_G \otimes A(v \otimes h) = A_G(v) \otimes A(h)$ is an example.
- L is shift invariant if both $(A_G \otimes \mathrm{Id}) \circ L = L \circ (A_G \otimes \mathrm{Id})$ and $(\mathrm{Id} \otimes A) \circ L = L \circ (\mathrm{Id} \otimes A)$.
- L is weakly shift invariant if $(A_G \otimes A) \circ L = L \circ (A_G \otimes A)$.
- Shift invariant: commutes with $A_G^p \otimes A^q$ for all $p, q \ge 0$.
- Weakly shift invariant: commutes with $(A_G \otimes A)^p = A_G^p \otimes A^p$ for all $p \ge 0$.

Shift invariance

- A *filter* is a bounded linear transformation $L: S(G, \mathcal{H}) \to S(G, \mathcal{H})$.
- Tensor product filter $A_G \otimes A(v \otimes h) = A_G(v) \otimes A(h)$ is an example.
- L is shift invariant if both $(A_G \otimes \mathrm{Id}) \circ L = L \circ (A_G \otimes \mathrm{Id})$ and $(\mathrm{Id} \otimes A) \circ L = L \circ (\mathrm{Id} \otimes A)$.
- L is weakly shift invariant if $(A_G \otimes A) \circ L = L \circ (A_G \otimes A)$.
- Shift invariant: commutes with $A_G^p \otimes A^q$ for all $p, q \ge 0$.
- Weakly shift invariant: commutes with $(A_G \otimes A)^p = A_G^p \otimes A^p$ for all $p \ge 0$.
- Example: polynomial filter

Shift invariance

- A *filter* is a bounded linear transformation $L: S(G, \mathcal{H}) \to S(G, \mathcal{H})$.
- Tensor product filter $A_G \otimes A(v \otimes h) = A_G(v) \otimes A(h)$ is an example.
- L is shift invariant if both $(A_G \otimes \mathrm{Id}) \circ L = L \circ (A_G \otimes \mathrm{Id})$ and $(\mathrm{Id} \otimes A) \circ L = L \circ (\mathrm{Id} \otimes A)$.
- L is weakly shift invariant if $(A_G \otimes A) \circ L = L \circ (A_G \otimes A)$.
- Shift invariant: commutes with $A_G^p \otimes A^q$ for all $p, q \ge 0$.
- Weakly shift invariant: commutes with $(A_G \otimes A)^p = A_G^p \otimes A^p$ for all $p \ge 0$.
- Example: polynomial filter
 - Let $P(x) = a_0 + a_1 x + \ldots + a_p x^p$ be a polynomial of degree $p < \infty$.

Shift invariance

- A *filter* is a bounded linear transformation $L: S(G, \mathcal{H}) \to S(G, \mathcal{H})$.
- Tensor product filter $A_G \otimes A(v \otimes h) = A_G(v) \otimes A(h)$ is an example.
- L is shift invariant if both $(A_G \otimes \mathrm{Id}) \circ L = L \circ (A_G \otimes \mathrm{Id})$ and $(\mathrm{Id} \otimes A) \circ L = L \circ (\mathrm{Id} \otimes A)$.
- L is weakly shift invariant if $(A_G \otimes A) \circ L = L \circ (A_G \otimes A)$.
- Shift invariant: commutes with $A_G^p \otimes A^q$ for all $p, q \ge 0$.
- Weakly shift invariant: commutes with $(A_G \otimes A)^p = A_G^p \otimes A^p$ for all $p \ge 0$.
- Example: polynomial filter
 - Let $P(x) = a_0 + a_1 x + \ldots + a_p x^p$ be a polynomial of degree $p < \infty$.
 - ▶ $P(A_G \otimes A)$ commutes with both $A_G \otimes \text{Id}$ and $\text{Id} \otimes A$, \therefore shift invariant.

Shift invariance

- A *filter* is a bounded linear transformation $L: S(G, \mathcal{H}) \to S(G, \mathcal{H})$.
- Tensor product filter $A_G \otimes A(v \otimes h) = A_G(v) \otimes A(h)$ is an example.
- L is shift invariant if both $(A_G \otimes \mathrm{Id}) \circ L = L \circ (A_G \otimes \mathrm{Id})$ and $(\mathrm{Id} \otimes A) \circ L = L \circ (\mathrm{Id} \otimes A)$.
- L is weakly shift invariant if $(A_G \otimes A) \circ L = L \circ (A_G \otimes A)$.
- Shift invariant: commutes with $A_G^p \otimes A^q$ for all $p, q \ge 0$.
- Weakly shift invariant: commutes with $(A_G \otimes A)^p = A_G^p \otimes A^p$ for all $p \ge 0$.
- Example: polynomial filter
 - Let $P(x) = a_0 + a_1 x + \ldots + a_p x^p$ be a polynomial of degree $p < \infty$.
 - ▶ $P(A_G \otimes A)$ commutes with both $A_G \otimes \text{Id}$ and $\text{Id} \otimes A$, \therefore shift invariant.
- Example: $J = (1 a^{-1}A)^{-1}$, $a > \rho(A)$, commutes with $A \implies L = A_G \otimes J$ is shift invariant, but not polynomial if dim $\mathcal{H} = \infty$.

イロト イボト イヨト イヨト

Shift invariance

- A *filter* is a bounded linear transformation $L: S(G, \mathcal{H}) \rightarrow S(G, \mathcal{H})$.
- Tensor product filter $A_G \otimes A(v \otimes h) = A_G(v) \otimes A(h)$ is an example.
- L is shift invariant if both $(A_G \otimes \mathrm{Id}) \circ L = L \circ (A_G \otimes \mathrm{Id})$ and $(\mathrm{Id} \otimes A) \circ L = L \circ (\mathrm{Id} \otimes A)$.
- L is weakly shift invariant if $(A_G \otimes A) \circ L = L \circ (A_G \otimes A)$.
- Shift invariant: commutes with $A_G^p \otimes A^q$ for all $p, q \ge 0$.
- Weakly shift invariant: commutes with $(A_G \otimes A)^p = A_G^p \otimes A^p$ for all $p \ge 0$.
- Example: polynomial filter
 - Let $P(x) = a_0 + a_1 x + \ldots + a_p x^p$ be a polynomial of degree $p < \infty$.
 - ▶ $P(A_G \otimes A)$ commutes with both $A_G \otimes \text{Id}$ and $\text{Id} \otimes A$, \therefore shift invariant.
- Example: J = (1 − a⁻¹A)⁻¹, a > ρ(A), commutes with A ⇒
 L = A_G ⊗ J is shift invariant, but not polynomial if dim H = ∞.
 If finite dimensional, J is polynomial ∵ ∃ minimal polynomial.

イロト イボト イヨト イヨト

Theorem

• Shift invariant \implies weakly shift invariant

・ロト ・四ト ・ヨト ・ヨト

Theorem

- Shift invariant ⇒ weakly shift invariant
- m_λ(A_G ⊗ A) dimension of λ-eigenspace. If m_λ = 1 for all λ, weakly shift invariant ⇒ shift invariant.

Theorem

- Shift invariant ⇒ weakly shift invariant
- Or m_λ(A_G ⊗ A) dimension of λ-eigenspace. If m_λ = 1 for all λ, weakly shift invariant ⇒ shift invariant.
- Self-adjoint L: weakly shift invariant \iff shift invariant.

Theorem

- Shift invariant ⇒ weakly shift invariant
- m_λ(A_G ⊗ A) dimension of λ-eigenspace. If m_λ = 1 for all λ, weakly shift invariant ⇒ shift invariant.
- Self-adjoint L: weakly shift invariant \iff shift invariant.
 - If m_λ(A_G) = 1, traditional GSP: all shift invariant filters are polynomial. Not true in GGSP even if m_λ(A_G ⊗ A) = 1 [e.g., L = A_G ⊗ J].

Theorem

- Shift invariant ⇒ weakly shift invariant
- m_λ(A_G ⊗ A) dimension of λ-eigenspace. If m_λ = 1 for all λ, weakly shift invariant ⇒ shift invariant.
- Self-adjoint L: weakly shift invariant \iff shift invariant.
- If $m_{\lambda}(A_G) = 1$, traditional GSP: all shift invariant filters are polynomial. Not true in GGSP even if $m_{\lambda}(A_G \otimes A) = 1$ [e.g., $L = A_G \otimes J$].
- If m_λ(A_G) = 1 and m_λ(A) = 1, we hope m_λ(A_G ⊗ A) = 1 so that all weakly shift invariant filters are shift invariant [but may have λ_φλ_ξ = λ_{φ'}λ_{ξ'}].

Theorem

- Shift invariant ⇒ weakly shift invariant
- m_λ(A_G ⊗ A) dimension of λ-eigenspace. If m_λ = 1 for all λ, weakly shift invariant ⇒ shift invariant.
- Self-adjoint L: weakly shift invariant \iff shift invariant.
- If $m_{\lambda}(A_G) = 1$, traditional GSP: all shift invariant filters are polynomial. Not true in GGSP even if $m_{\lambda}(A_G \otimes A) = 1$ [e.g., $L = A_G \otimes J$].
- If m_λ(A_G) = 1 and m_λ(A) = 1, we hope m_λ(A_G ⊗ A) = 1 so that all weakly shift invariant filters are shift invariant [but may have λ_φλ_ξ = λ_{φ'}λ_{ξ'}].
- Not always true, but almost always in practice ...

Theorem

- G has at least 3 nodes.
- Each edge weight of G is chosen randomly (\prec Lebesgue measure).
- $m_{\lambda}(A) = 1 \ \forall \lambda.$

Theorem

- G has at least 3 nodes.
- Each edge weight of G is chosen randomly (\prec Lebesgue measure).
- $m_{\lambda}(A) = 1 \ \forall \lambda.$

Then with probability one, we have:

• If A_G is the adjacency matrix of $G: m_{\lambda} = 1$ for all λ of $A_G \otimes A$.

Theorem

- G has at least 3 nodes.
- Each edge weight of G is chosen randomly (\prec Lebesgue measure).
- $m_{\lambda}(A) = 1 \ \forall \lambda.$

Then with probability one, we have:

- If A_G is the adjacency matrix of $G: m_{\lambda} = 1$ for all λ of $A_G \otimes A$.
- If A_G is the Laplacian matrix of G: then the 0-eigenspace of A_G ⊗ A is isomorphic to H. For λ ≠ 0, m_λ = 1.

イロト イ団ト イヨト イヨト

Theorem

- G has at least 3 nodes.
- Each edge weight of G is chosen randomly (\prec Lebesgue measure).
- $m_{\lambda}(A) = 1 \ \forall \lambda.$

Then with probability one, we have:

- If A_G is the adjacency matrix of $G: m_{\lambda} = 1$ for all λ of $A_G \otimes A$.
- If A_G is the Laplacian matrix of G: then the 0-eigenspace of A_G ⊗ A is isomorphic to H. For λ ≠ 0, m_λ = 1.
 - If A_G is the Laplacian matrix, we can restrict to the orthogonal complement of 0-eigenspace of $A_G \otimes A$.

Convolution filter is shift invariant

• $g \in S(G, \mathcal{H})$, define g * by $\mathcal{F}_{g*f} = \mathcal{F}_g \mathcal{F}_f$ is an element of $S(G, \mathcal{H})$, i.e.,

$$g * f = \sum_{\phi \otimes \xi} \mathcal{F}_g(\phi \otimes \xi) \mathcal{F}_f(\phi \otimes \xi) \cdot \phi \otimes \xi.$$

メロト メタト メヨト メヨト

Convolution filter is shift invariant

• $g \in S(G, \mathcal{H})$, define g * by $\mathcal{F}_{g*f} = \mathcal{F}_g \mathcal{F}_f$ is an element of $S(G, \mathcal{H})$, i.e.,

$$g * f = \sum_{\phi \otimes \xi} \mathcal{F}_g(\phi \otimes \xi) \mathcal{F}_f(\phi \otimes \xi) \cdot \phi \otimes \xi.$$

• $\sum_{\phi \otimes \xi} |\mathcal{F}_g(\phi \otimes \xi)|^2 < \infty \implies g * \text{ is Hilbert-Schmidt operator } \Longrightarrow$ compact.

イロト イヨト イヨト イヨト

Convolution filter is shift invariant

• $g \in S(G, \mathcal{H})$, define g * by $\mathcal{F}_{g*f} = \mathcal{F}_g \mathcal{F}_f$ is an element of $S(G, \mathcal{H})$, i.e.,

$$g * f = \sum_{\phi \otimes \xi} \mathcal{F}_g(\phi \otimes \xi) \mathcal{F}_f(\phi \otimes \xi) \cdot \phi \otimes \xi.$$

• $\sum_{\phi \otimes \xi} |\mathcal{F}_g(\phi \otimes \xi)|^2 < \infty \implies g * \text{ is Hilbert-Schmidt operator } \Longrightarrow$ compact.

• Let $f = \phi \otimes \xi$ with $\phi \in \Phi$ and $\xi \in \Xi$. Then, $g * f = \mathcal{F}_g(\phi \otimes \xi) \cdot \phi \otimes \xi$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Convolution filter is shift invariant

• $g \in S(G, \mathcal{H})$, define g * by $\mathcal{F}_{g*f} = \mathcal{F}_g \mathcal{F}_f$ is an element of $S(G, \mathcal{H})$, i.e.,

$$g * f = \sum_{\phi \otimes \xi} \mathcal{F}_g(\phi \otimes \xi) \mathcal{F}_f(\phi \otimes \xi) \cdot \phi \otimes \xi.$$

- $\sum_{\phi \otimes \xi} |\mathcal{F}_g(\phi \otimes \xi)|^2 < \infty \implies g * \text{ is Hilbert-Schmidt operator } \Longrightarrow$ compact.
- Let $f = \phi \otimes \xi$ with $\phi \in \Phi$ and $\xi \in \Xi$. Then, $g * f = \mathcal{F}_g(\phi \otimes \xi) \cdot \phi \otimes \xi$.
 - $\phi \otimes \xi$ is an eigenvector of g *

イロト イヨト イヨト イヨト

Convolution filter is shift invariant

• $g \in S(G, \mathcal{H})$, define g * by $\mathcal{F}_{g*f} = \mathcal{F}_g \mathcal{F}_f$ is an element of $S(G, \mathcal{H})$, i.e.,

$$g * f = \sum_{\phi \otimes \xi} \mathcal{F}_g(\phi \otimes \xi) \mathcal{F}_f(\phi \otimes \xi) \cdot \phi \otimes \xi.$$

- $\sum_{\phi \otimes \xi} |\mathcal{F}_g(\phi \otimes \xi)|^2 < \infty \implies g * \text{ is Hilbert-Schmidt operator } \Longrightarrow$ compact.
- Let $f = \phi \otimes \xi$ with $\phi \in \Phi$ and $\xi \in \Xi$. Then, $g * f = \mathcal{F}_g(\phi \otimes \xi) \cdot \phi \otimes \xi$.
 - $\phi \otimes \xi$ is an eigenvector of g *
 - $g * \text{ commutes with } A_G \otimes \text{Id and } \text{Id} \otimes A$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Convolution filter is shift invariant

• $g \in S(G, \mathcal{H})$, define g * by $\mathcal{F}_{g*f} = \mathcal{F}_g \mathcal{F}_f$ is an element of $S(G, \mathcal{H})$, i.e.,

$$g * f = \sum_{\phi \otimes \xi} \mathcal{F}_g(\phi \otimes \xi) \mathcal{F}_f(\phi \otimes \xi) \cdot \phi \otimes \xi.$$

- $\sum_{\phi \otimes \xi} |\mathcal{F}_g(\phi \otimes \xi)|^2 < \infty \implies g * \text{ is Hilbert-Schmidt operator } \Longrightarrow$ compact.
- Let $f = \phi \otimes \xi$ with $\phi \in \Phi$ and $\xi \in \Xi$. Then, $g * f = \mathcal{F}_g(\phi \otimes \xi) \cdot \phi \otimes \xi$.
 - $\phi \otimes \xi$ is an eigenvector of g *
 - $g * \text{ commutes with } A_G \otimes \text{Id and } \text{Id} \otimes A$
 - g * is shift invariant

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Convolution filter is shift invariant

• $g \in S(G, \mathcal{H})$, define g * by $\mathcal{F}_{g*f} = \mathcal{F}_g \mathcal{F}_f$ is an element of $S(G, \mathcal{H})$, i.e.,

$$g * f = \sum_{\phi \otimes \xi} \mathcal{F}_g(\phi \otimes \xi) \mathcal{F}_f(\phi \otimes \xi) \cdot \phi \otimes \xi.$$

- $\sum_{\phi \otimes \xi} |\mathcal{F}_g(\phi \otimes \xi)|^2 < \infty \implies g * \text{ is Hilbert-Schmidt operator } \Longrightarrow$ compact.
- Let $f = \phi \otimes \xi$ with $\phi \in \Phi$ and $\xi \in \Xi$. Then, $g * f = \mathcal{F}_g(\phi \otimes \xi) \cdot \phi \otimes \xi$.
 - $\phi \otimes \xi$ is an eigenvector of g *
 - $g * \text{ commutes with } A_G \otimes \text{Id and } \text{Id} \otimes A$
 - g * is shift invariant
- GSP: all polynomial filters are convolutions.

イロト 不得 トイヨト イヨト

Convolution filter is shift invariant

• $g \in S(G, \mathcal{H})$, define g * by $\mathcal{F}_{g*f} = \mathcal{F}_g \mathcal{F}_f$ is an element of $S(G, \mathcal{H})$, i.e.,

$$g * f = \sum_{\phi \otimes \xi} \mathcal{F}_g(\phi \otimes \xi) \mathcal{F}_f(\phi \otimes \xi) \cdot \phi \otimes \xi.$$

- $\sum_{\phi \otimes \xi} |\mathcal{F}_g(\phi \otimes \xi)|^2 < \infty \implies g * \text{ is Hilbert-Schmidt operator } \Longrightarrow$ compact.
- Let $f = \phi \otimes \xi$ with $\phi \in \Phi$ and $\xi \in \Xi$. Then, $g * f = \mathcal{F}_g(\phi \otimes \xi) \cdot \phi \otimes \xi$.
 - $\phi \otimes \xi$ is an eigenvector of g *
 - $g * \text{ commutes with } A_G \otimes \text{Id and } \text{Id} \otimes A$
 - g * is shift invariant
- GSP: all polynomial filters are convolutions.
- Polynomial filter $P(A_G \otimes A)$ with $a_0 \neq 0$ is non-compact, therefore not convolution.

イロト 不得 トイヨト イヨト 二日

Different classes of filters

Weakly shift invariant filters

Shift invariant filters

Limit of finite rank filters

< □ > < □ > < □ > < □ > < □ >

Compact filters

Convolution filters

Bandlimited filters

Adaptive polynomial filters

• At each vertex $u \in G$, different graph $G_u \implies$ different operator A_u (e.g., adjacency, Laplacian).

・ロト ・日下・ ・ ヨト・
Adaptive polynomial filters

- At each vertex $u \in G$, different graph $G_u \implies$ different operator A_u (e.g., adjacency, Laplacian).
- Adaptive polynomial filter $F = \sum_{u} P_1(A_G)_u \otimes P_2(A_u)$

Adaptive polynomial filters

- At each vertex $u \in G$, different graph $G_u \implies$ different operator A_u (e.g., adjacency, Laplacian).
- Adaptive polynomial filter $F = \sum_{u} P_1(A_G)_u \otimes P_2(A_u)$
 - ▶ P₁, P₂ are polynomials

<ロト < 回 > < 回 > < 回 > < 回 >

Adaptive polynomial filters

- At each vertex $u \in G$, different graph $G_u \implies$ different operator A_u (e.g., adjacency, Laplacian).
- Adaptive polynomial filter $F = \sum_{u} P_1(A_G)_u \otimes P_2(A_u)$
 - ▶ P₁, P₂ are polynomials
 - $P_1(A_G)_u$: matrix with u-th column of $P_1(A_G)$, 0 elsewhere.

<ロト < 回 > < 回 > < 三 > < 三)

Adaptive polynomial filters

• Suppose
$$P_1(x) = a_1x + b_1$$
, $P_2(x) = a_2x + b_2$.

イロト イロト イヨト イヨト

Adaptive polynomial filters

- Suppose $P_1(x) = a_1x + b_1$, $P_2(x) = a_2x + b_2$.
- F(f)(u,i) affected by f(v,j) if $(u,v) \in G$ and $(i,j) \in G_v$.
- Filter F captures hidden structures in \mathbb{C}^4 .

• • • • • • • • • • • •

Adaptive polynomial filters

- Suppose $P_1(x) = a_1x + b_1$, $P_2(x) = a_2x + b_2$.
- F(f)(u,i) affected by f(v,j) if $(u,v) \in G$ and $(i,j) \in G_v$.
- Filter F captures hidden structures in \mathbb{C}^4 .
- G and each G_{u_i} have different physical meanings:

A D > A B > A B > A

Adaptive polynomial filters

- Suppose $P_1(x) = a_1x + b_1$, $P_2(x) = a_2x + b_2$.
- F(f)(u,i) affected by f(v,j) if $(u,v) \in G$ and $(i,j) \in G_v$.
- Filter F captures hidden structures in \mathbb{C}^4 .
- G and each G_{u_i} have different physical meanings:
 - ▶ G represents time

A D > A B > A B > A

Adaptive polynomial filters

- Suppose $P_1(x) = a_1x + b_1$, $P_2(x) = a_2x + b_2$.
- F(f)(u,i) affected by f(v,j) if $(u,v) \in G$ and $(i,j) \in G_v$.
- Filter F captures hidden structures in \mathbb{C}^4 .
- G and each G_{u_i} have different physical meanings:
 - ▶ G represents time
 - G_{u_i} correlations between node observations at time u_i

A D > A B > A B > A

Adaptive polynomial filters

- Suppose $P_1(x) = a_1x + b_1$, $P_2(x) = a_2x + b_2$.
- F(f)(u,i) affected by f(v,j) if $(u,v) \in G$ and $(i,j) \in G_v$.
- Filter F captures hidden structures in \mathbb{C}^4 .
- G and each G_{u_i} have different physical meanings:
 - ▶ G represents time
 - G_{u_i} correlations between node observations at time u_i
- Wrong to use GSP on big ambient graph containing all G_{u_i} s.

• • • • • • • • • • •

Adaptive polynomial filters: example

• Sensor network in dynamic environments like ocean surface. Social network topology changes over time.

< □ > < □ > < □ > < □ > < □ >

Adaptive polynomial filters: example

- Sensor network in dynamic environments like ocean surface. Social network topology changes over time.
- Each time t = 1, ..., n, $f(t) \in \mathbb{C}^m$ on graph G_t with graph shift operator A_t .

Adaptive polynomial filters: example

- Sensor network in dynamic environments like ocean surface. Social network topology changes over time.
- Each time t = 1, ..., n, $f(t) \in \mathbb{C}^m$ on graph G_t with graph shift operator A_t .
- A_t evolves according to a known model, starting from A_0 .

イロト 不得 トイヨト イヨト

Adaptive polynomial filters: example

- Sensor network in dynamic environments like ocean surface. Social network topology changes over time.
- Each time t = 1, ..., n, $f(t) \in \mathbb{C}^m$ on graph G_t with graph shift operator A_t .
- A_t evolves according to a known model, starting from A_0 .
- f generated from a base signal $g {:}\ f = F(g)$ where F is an adaptive polynomial filter.

Adaptive polynomial filters: example

- Sensor network in dynamic environments like ocean surface. Social network topology changes over time.
- Each time t = 1, ..., n, $f(t) \in \mathbb{C}^m$ on graph G_t with graph shift operator A_t .
- A_t evolves according to a known model, starting from A_0 .
- f generated from a base signal $g {:}\ f = F(g)$ where F is an adaptive polynomial filter.
- Given observations $\tilde{f}(t)=f(t)+N(t)$ at a subset of time indices, goal is to estimate F:

$$\min \sum_{t \in \text{Obs.}} \left\| F(g)(t) - \tilde{f}(t) \right\|_2^2$$

Adaptive polynomial filters: example

- Sensor network in dynamic environments like ocean surface. Social network topology changes over time.
- Each time t = 1, ..., n, $f(t) \in \mathbb{C}^m$ on graph G_t with graph shift operator A_t .
- A_t evolves according to a known model, starting from A_0 .
- f generated from a base signal $g {:}\ f = F(g)$ where F is an adaptive polynomial filter.
- Given observations $\tilde{f}(t)=f(t)+N(t)$ at a subset of time indices, goal is to estimate F:

$$\min \sum_{t \in \mathsf{Obs.}} \left\| F(g)(t) - \tilde{f}(t) \right\|_2^2$$

• Recovery error:

$$\sum_{t \in \text{Unobs.}} \frac{\left\|\hat{F}(g)(t) - f(t)\right\|_2}{\|f(t)\|_2}$$

Adaptive polynomial filters: example

Graphs evolve according to model in [4] (applications in social networks, biological neuron networks, etc.).

^[4] J. Ito and K. Kaneko, "Spontaneous structure formation in a network of chaotic units with variable connection strengths," Phys. Rev. Letts., vol. 88, no. 2, p. 028701, 2002.

Outline

Generalized Graph Signals and ${\mathcal F} ext{-}\mathsf{Transform}$

2 Sampling Theorem

3 Filtering

Summary

	GSP	TV-GSP	GGSP
Signal space	\mathbb{C}^n	$\mathbb{C}^n\otimes\mathbb{C}^m$	$\mathbb{C}^n\otimes\mathcal{H}$

Summary

	GSP	TV-GSP	GGSP
Signal space	\mathbb{C}^n	$\mathbb{C}^n\otimes\mathbb{C}^m$	$\mathbb{C}^n\otimes\mathcal{H}$
Fourier transform	Φ	$\Phi\otimes\Xi$ (finite dim.)	$\Phi \otimes \Xi$ (infinite dim.)

Summary

	GSP	TV-GSP	GGSP
Signal space	\mathbb{C}^n	$\mathbb{C}^n\otimes\mathbb{C}^m$	$\mathbb{C}^n \otimes \mathcal{H}$
Fourier transform	Φ	$\Phi\otimes\Xi$ (finite dim.)	$\Phi \otimes \Xi$ (infinite dim.)
Sampling	vertices	vertices	asynchronous joint

Summary

	GSP	TV-GSP	GGSP
Signal space	\mathbb{C}^n	$\mathbb{C}^n\otimes\mathbb{C}^m$	$\mathbb{C}^n\otimes\mathcal{H}$
Fourier transform	Φ	$\Phi\otimes\Xi$ (finite dim.)	$\Phi \otimes \Xi$ (infinite dim.)
Sampling	vertices	vertices	asynchronous joint
Shift invariance	A_G	same as GSP	SI and WSI

・ロト ・四ト ・ヨト ・ヨト

Summary

	GSP	TV-GSP	GGSP
Signal space	\mathbb{C}^n	$\mathbb{C}^n\otimes\mathbb{C}^m$	$\mathbb{C}^n\otimes\mathcal{H}$
Fourier transform	Φ	$\Phi\otimes\Xi$ (finite dim.)	$\Phi \otimes \Xi$ (infinite dim.)
Sampling	vertices	vertices	asynchronous joint
Shift invariance	A_G	same as GSP	SI and WSI
Convolution	polynomials are conv.	same as GSP	false

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣

Summary

	GSP	TV-GSP	GGSP
Signal space	\mathbb{C}^n	$\mathbb{C}^n\otimes\mathbb{C}^m$	$\mathbb{C}^n \otimes \mathcal{H}$
Fourier transform	Φ	$\Phi\otimes\Xi$ (finite dim.)	$\Phi \otimes \Xi$ (infinite dim.)
Sampling	vertices	vertices	asynchronous joint
Shift invariance	A_G	same as GSP	SI and WSI
Convolution	polynomials are conv.	same as GSP	false
Adaptive	n.a.	n.a.	yes

• Generalized signal processing framework for vertex signals $f \in \mathcal{H}$.

・ロト ・四ト ・ヨト ・ヨト

- Generalized signal processing framework for vertex signals $f \in \mathcal{H}$.
- Suitable Hilbert space and basis to define \mathcal{F} -transform.

< □ > < □ > < □ > < □ > < □ >

- Generalized signal processing framework for vertex signals $f \in \mathcal{H}$.
- Suitable Hilbert space and basis to define \mathcal{F} -transform.
- Asynchronous sampling over joint vertex and \mathcal{H} domain: achieves Shannon-Nyquist rate over joint domain.

< □ > < □ > < □ > < □ > < □ >

- Generalized signal processing framework for vertex signals $f \in \mathcal{H}$.
- Suitable Hilbert space and basis to define \mathcal{F} -transform.
- Asynchronous sampling over joint vertex and ${\cal H}$ domain: achieves Shannon-Nyquist rate over joint domain.
- Shift invariant and weakly shift invariant filters: WSI almost always SI.

イロト イヨト イヨト イヨト

- Generalized signal processing framework for vertex signals $f \in \mathcal{H}$.
- Suitable Hilbert space and basis to define \mathcal{F} -transform.
- \bullet Asynchronous sampling over joint vertex and ${\cal H}$ domain: achieves Shannon-Nyquist rate over joint domain.
- Shift invariant and weakly shift invariant filters: WSI almost always SI.
- Convolution, bandpass filters, adaptive polynomial filters (dynamic networks).

<ロト < 同ト < ヨト < ヨ)

Conclusion

- Generalized signal processing framework for vertex signals $f \in \mathcal{H}$.
- Suitable Hilbert space and basis to define \mathcal{F} -transform.
- Asynchronous sampling over joint vertex and ${\cal H}$ domain: achieves Shannon-Nyquist rate over joint domain.
- Shift invariant and weakly shift invariant filters: WSI almost always SI.
- Convolution, bandpass filters, adaptive polynomial filters (dynamic networks).

Future

<ロト < 同ト < ヨト < ヨ)

- Generalized signal processing framework for vertex signals $f \in \mathcal{H}$.
- Suitable Hilbert space and basis to define \mathcal{F} -transform.
- \bullet Asynchronous sampling over joint vertex and ${\cal H}$ domain: achieves Shannon-Nyquist rate over joint domain.
- Shift invariant and weakly shift invariant filters: WSI almost always SI.
- Convolution, bandpass filters, adaptive polynomial filters (dynamic networks).

Future

• Framework applicable for square integrable graph stochastic processes: for each $v \in V$, $X(v,t,\omega) \in L^2([0,T] \times \Omega, \mathscr{F}, \mathbb{P})$.

イロト 不得 トイヨト イヨト

- Generalized signal processing framework for vertex signals $f \in \mathcal{H}$.
- Suitable Hilbert space and basis to define \mathcal{F} -transform.
- Asynchronous sampling over joint vertex and \mathcal{H} domain: achieves Shannon-Nyquist rate over joint domain.
- Shift invariant and weakly shift invariant filters: WSI almost always SI.
- Convolution, bandpass filters, adaptive polynomial filters (dynamic networks).

Future

- Framework applicable for square integrable graph stochastic processes: for each $v \in V$, $X(v,t,\omega) \in L^2([0,T] \times \Omega, \mathscr{F}, \mathbb{P})$.
- Notions of stationarity can be defined w.r.t. the shift operators $A_G \otimes \text{Id}$, $\text{Id} \otimes A$ and $A_G \otimes A$ similar to [5,6].

^[5] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, "Stationary graph processes and spectral estimation," IEEE Trans. Signal Process., vol. 65, no. 22, pp. 5911–5926, Nov. 2017. DOI: 10.1109/TSP.2017.2739099.

^[6] N. Perraudin and P. Vandergheynst, "Stationary signal processing on graphs," IEEE Trans. Signal Process., vol. 65, no. 13, pp. 3462–3477, Jul. 2017. DOI: 10.1109/TSP.2017.2690388.

- Generalized signal processing framework for vertex signals $f \in \mathcal{H}$.
- Suitable Hilbert space and basis to define \mathcal{F} -transform.
- Asynchronous sampling over joint vertex and \mathcal{H} domain: achieves Shannon-Nyquist rate over joint domain.
- Shift invariant and weakly shift invariant filters: WSI almost always SI.
- Convolution, bandpass filters, adaptive polynomial filters (dynamic networks).

Future

- Framework applicable for square integrable graph stochastic processes: for each $v \in V$, $X(v,t,\omega) \in L^2([0,T] \times \Omega, \mathscr{F}, \mathbb{P})$.
- Notions of stationarity can be defined w.r.t. the shift operators $A_G \otimes \text{Id}$, $\text{Id} \otimes A$ and $A_G \otimes A$ similar to [5,6].
- "Strict" and "weak" strong and wide-sense stationarity.

^[5] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, "Stationary graph processes and spectral estimation," IEEE Trans. Signal Process., vol. 65, no. 22, pp. 5911–5926, Nov. 2017. DOI: 10.1109/TSP.2017.2739099.

^[6] N. Perraudin and P. Vandergheynst, "Stationary signal processing on graphs," IEEE Trans. Signal Process., vol. 65, no. 13, pp. 3462–3477, Jul. 2017. DOI: 10.1109/TSP.2017.2690388.

Conclusion

- Generalized signal processing framework for vertex signals $f \in \mathcal{H}$.
- Suitable Hilbert space and basis to define \mathcal{F} -transform.
- Asynchronous sampling over joint vertex and \mathcal{H} domain: achieves Shannon-Nyquist rate over joint domain.
- Shift invariant and weakly shift invariant filters: WSI almost always SI.
- Convolution, bandpass filters, adaptive polynomial filters (dynamic networks).

Future

- Framework applicable for square integrable graph stochastic processes: for each $v \in V$, $X(v, t, \omega) \in L^2([0, T] \times \Omega, \mathscr{F}, \mathbb{P})$.
- Notions of stationarity can be defined w.r.t. the shift operators $A_G \otimes \text{Id}$, $\text{Id} \otimes A$ and $A_G \otimes A$ similar to [5,6].
- "Strict" and "weak" strong and wide-sense stationarity.
- Other high dimensional extensions: simplicial complexes [7] and hypergraphs [8].

^[5] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, "Stationary graph processes and spectral estimation," IEEE Trans. Signal Process., vol. 65, no. 22, pp. 5911–5926, Nov. 2017. DOI: 10.1109/TSP.2017.2739099.

^[6] N. Perraudin and P. Vandergheynst, "Stationary signal processing on graphs," IEEE Trans. Signal Process., vol. 65, no. 13, pp. 3462–3477, Jul. 2017. DOI: 10.1109/TSP.2017.2690388.

^[7] S. Barbarossa and S. Sardellitti, "Topological signal processing over simplicial complexes," arXiv preprint arXiv:1907.11577, 2019.

^[8] S. Zhang, Z. Ding, and S. Cui, "Introducing hypergraph signal processing: Theoretical foundation and practical applications," arXiv preprint arXiv:1907.09203, 2019.

Acknowledgments

Singapore Ministry of Education Academic Research Fund Tier 2 grant MOE2018-T2-2-019

< □ > < □ > < □ > < □ > < □ >

Thank you!

http://www.ntu.edu.sg/home/wptay/

・ロト ・日下・ ・ ヨト・

References I

- B. Girault, A. Ortega, and S. S. Narayanan, "Irregularity-aware graph Fourier transforms," *IEEE Transactions on Signal Processing*, vol. 66, no. 21, pp. 5746–5761, Nov. 2018.
- [2] F. Grassi, A. Loukas, N. Perraudin, and B. Ricaud, "A time-vertex signal processing framework: Scalable processing and meaningful representations for time-series on graphs," *IEEE Trans. Signal Process.*, vol. 66, no. 3, pp. 817–829, Feb. 2018.
- [3] F. Ji and W. P. Tay, "A Hilbert space theory of generalized graph signal processing," *IEEE Trans. Signal Process.*, 2019, accepted. [Online]. Available: https://arxiv.org/abs/1904.11655.
- J. Ito and K. Kaneko, "Spontaneous structure formation in a network of chaotic units with variable connection strengths," *Phys. Rev. Letts.*, vol. 88, no. 2, p. 028 701, 2002.
- [5] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, "Stationary graph processes and spectral estimation," *IEEE Trans. Signal Process.*, vol. 65, no. 22, pp. 5911–5926, Nov. 2017. DOI: 10.1109/TSP.2017.2739099.

< □ > < □ > < □ > < □ > < □ >

References II

- [6] N. Perraudin and P. Vandergheynst, "Stationary signal processing on graphs," IEEE Trans. Signal Process., vol. 65, no. 13, pp. 3462–3477, Jul. 2017. DOI: 10.1109/TSP.2017.2690388.
- [7] S. Barbarossa and S. Sardellitti, "Topological signal processing over simplicial complexes," *arXiv preprint arXiv:1907.11577*, 2019.
- [8] S. Zhang, Z. Ding, and S. Cui, "Introducing hypergraph signal processing: Theoretical foundation and practical applications," *arXiv preprint arXiv:1907.09203*, 2019.

イロト イポト イヨト イヨト