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Introduction

Graph signal processing
Signal f on a graph G = (V,E): f : V 7→ C

v1

v2

v3

v4

f(vi) ∈ C

f ∈ Cn

Examples: sensor networks, social networks, transportation networks, ...
Exploits the underlying graph structure (correlations between nodes) to
perform signal processing and inference.

Main idea: represent f using basis Φ associated with graph shift operator
AG = ΦΛΦ∗ (adjacency, Laplacian, etc. that captures the local graph
structure).

GFT: f̂ = Φ∗f

[1]= (〈f, φ〉Cn)φ∈Φ
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[1]

GFT: f̂ = Φ∗f [1]= (〈f, φ〉Cn)φ∈Φ

[1] B. Girault, A. Ortega, and S. S. Narayanan, “Irregularity-aware graph Fourier transforms,” IEEE Transactions on Signal Processing, vol. 66, no. 21,
pp. 5746–5761, Nov. 2018.
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Introduction

Time-vertex GSP
[2]: f(v, ·) ∈ CT for each v ∈ V , T <∞, is a discrete time series with
common time indices (e.g., synchronous uniform sampling at every vertex).

f(v1)
v1

v2

v3

v4

f(v2)

f(v3)

f(v4)

For each v ∈ V , can apply DFT on f(v, ·):

DFT(f(v, ·)) = Ξ∗ vec(f(v, ·)),

where Ξ∗ is the DFT matrix.
Joint time-vertex Fourier transform: view f = (f(v, t)) as a matrix,

TV-transform: f̂ = Φ∗fΞ.

A representation in the basis Φ⊗ Ξ.

[2] F. Grassi, A. Loukas, N. Perraudin, and B. Ricaud, “A time-vertex signal processing framework: Scalable processing and meaningful
representations for time-series on graphs,” IEEE Trans. Signal Process., vol. 66, no. 3, pp. 817–829, Feb. 2018.
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Introduction

Time-vertex GSP

Missing samples.

If vertex domain dimension = 2, can reconstruct.
However, asynchronous sampling (e.g., sensor networks) ... now impossible to
reconstruct the signal.

f(v1)
v1

v2

v3

v4

f(v2)

f(v3)

f(v4)
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Introduction

Generalized GSP

Signal at each vertex is from an infinite dimensional separable Hilbert space
H = L2(Ω, µ).

Maybe non-bandlimited in Ω direction (Shannon-Nyquist: impossible to
represent as discrete time series).
Non-synchronous sampling (time indices are not same for different vertices).
Allows joint modeling of f(v, x) over v ∈ V , x ∈ H.
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Introduction

The rest of this talk...

1 Generalized Graph Signals and F-Transform

2 Sampling Theorem

3 Filtering

4 Conclusion

Details in
F. Ji and W. P. Tay, “A Hilbert space theory of generalized graph signal processing,” IEEE Trans.
Signal Process., 2019, accepted. [Online]. Available: https://arxiv.org/abs/1904.11655.
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Generalized Graph Signals and F-Transform

Outline

1 Generalized Graph Signals and F-Transform

2 Sampling Theorem

3 Filtering

4 Conclusion
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Generalized Graph Signals and F-Transform

Tensor product space

Tensor product Cn ⊗H =
{∑n

i=1 vi ⊗ hi
}
with

(a) v1 ⊗ h+ v2 ⊗ h = (v1 + v2)⊗ h;
(b) v ⊗ h1 + v ⊗ h2 = v ⊗ (h1 + h2);
(c) rv ⊗ h = v ⊗ rh for r ∈ C.

Inner product 〈·, ·〉Cn⊗H induced (linearly) by:

〈v1 ⊗ h1, v2 ⊗ h2〉Cn⊗H = 〈v1, v2〉Cn〈h1, h2〉H.

Cn ⊗H is a Hilbert space.
Generalized graph signal f : V 7→ H. S(G,H) - space of graph signals in H.

Lemma
S(G,H) is a Hilbert space isomorphic to Cn ⊗H, |V | = n.
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Generalized Graph Signals and F-Transform

F -transform
AG : self-adjoint graph shift operator of G, eigenvectors Φ form orthonormal
basis of Cn

A : compact, self-adjoint operator on H, eigenvectors Ξ of A form
orthonormal basis of H (Hilbert-Schmidt Theorem)
Φ⊗ Ξ is a basis for Cn ⊗H.
Joint F-transform:

Ff (φ⊗ ξ) = 〈f, φ⊗ ξ〉Cn⊗H

=
〈

(

Fourier series,
Fourier transform,
wavelet transform,
Chebyshev poly.,

...︷ ︸︸ ︷
〈f(v, ·), ξ〉H )v∈V , φ

〉
Cn︸ ︷︷ ︸

GFT

= 〈(〈f(·, x), φ〉Cn)x∈Ω, ξ〉H

f =
∑
φ⊗ξ Ff (φ⊗ ξ) · φ⊗ ξ
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Generalized Graph Signals and F-Transform

Relation to traditional GSP

H = C, can take Ξ = {1} and F-transform = GFT.

H = L2(G′) with discrete measure, where G′ = (V ′, E′) is a finite graph.

I S(G,H) - signals on product graph G×G′. Suitable A: F-transform = GFT
I G′ = path graph: F-transform = TV-transform

G

G′
G×G′

v1

u1 u2

v2

(v1, u1)

(v1, u2)

(v2, u1)
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Generalized Graph Signals and F-Transform

Example of infinite dimensional H
H = subspace of L2([−π, π], λLeb.) consisting of f such that f(−π) = f(π).

Choose

Af(x) = i

2

(∫ x

−π
f(y)dy −

∫ π

x

f(y)dy
)
.

A is compact with eigenvectors Ξ =
{

exp(imx)√
2π : m ∈ Z

}
(Fourier series

basis):

f(x) =
∑
m∈Z

am√
2π
eimx, am ∈ C for all m ∈ Z.

Fredholm operator

Af(x) =
∫

Ω
K(x, y)f(y)dµ(y),

Hermitian K ∈ L2(Ω× Ω) =⇒ A compact, self-adjoint.
Choose different kernels for different applications.
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Generalized Graph Signals and F-Transform

Spectral analysis example

Information propagation over a network: SI, SIR, SIRI

Signal at each node v: f(v) ∈ L2([0, T ]), step function unbandlimited in
time domain.
Suppose infection rate λI = 1, what is the recovery rate λR?
Loss of information in using

I GSP (aggregated statistics over time) or
I TV-GSP (uniform sampling over time).
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Sampling Theorem

Asynchronous joint sampling

Joint sampling over vertex and Hilbert space domains.

Synchronous sampling is not always easy: sensor networks, social networks, ...
May need different graph sampling at different time vertices:

Suppose f ∈ span(Φ′ ⊗ Ξ′) - bandlimited.
Sampling: choose W ⊂ V × Ω such that f is uniquely determined by W .
f ∈ span(Φ′⊗Ξ′) =⇒ |W | ≥ |Φ′| · |Ξ′|. But not all sampling schemes work.
“Reconstructible vertex set”: can reconstruct whole graph signal at each
instant x ∈ Ω from signals in this set. =⇒ linearly independent rows of
matrix Φ′.
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Sampling Theorem

Asynchronous joint sampling

Theorem
Two asynchronous ways (not exhaustive) to form sample set W :

1 I Choose V ′ to be any reconstructible vertex set.
I For each v ∈ V ′, choose |Ξ′| points in Ω such that f(v, ·) ∈ span Ξ′.

2 I Choose V ′ = V .
I Choose |Ξ′| points Ω′ such that f(v, ·) ∈ span Ξ′.
I δ(Φ′) = size of maximal partition of V into disjoint reconstructible vertex sets.

Partition Ω =
⋃δ(Φ′)
j=1 Ωj with |Ωj | < |Ξ′|/δ(Φ′) + 1 and Ωj are the sample

points for all v ∈ Ij .

Furthermore, if H is spanned by analytic functions, then any random (≺ Lebesgue
measure) perturbation of W still determines f a.s.

Suppose f(v, ·) ∈ L2([−π, π]) is bandlimited to a frequency band [−B,B] in
the classical Fourier series sense.
Shannon-Nyquist Theorem: at least 2B samples to recover f(v, ·) for each v
individually.
But if {f(v, ·) : v ∈ V } is bandlimited in graph vertex domain, then only
need ≈ 2B/δ(Φ′) for each vertex to recover all signals.
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Sampling Theorem

Sampling example

G - pixels of an image, |V | = 784, Φ : eigenvectors of graph Laplacian
matrix AG.

H = L2([−1, 1]), Ξ : Chebyshev polynomials of the first kind {Pj}j≥0.
f(·, 1) and f(·,−1) correspond to images of handwritten digits ’0’ and ’6’.
For each x ∈ [−1, 1], f(·, x) is graph bandlimited to the first k = 300
eigenvalues of AG.
For each node v, f(v, ·) is in the span of the first B = 8 Chebyshev
polynomials.
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polynomials.

f(·,−1) f(·, 1)

f(v, ·) bandlimited to B = 8
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Sampling Theorem

Sampling example

Asynchronous Sampling Theorem:

I sample 2k nodes (pixels)
I each node: sample B/2 random positions in [−1, 1] following N (0, 0.5)

With probability 1, impossible to reconstruct uniform samples.

f(·,−1) f(·, 1)
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Asynchronous Sampling Theorem:
I sample 2k nodes (pixels)
I each node: sample B/2 random positions in [−1, 1] following N (0, 0.5)

With probability 1, impossible to reconstruct uniform samples.

f(·, [−1,−0.5]) f(·, [−0.5, 0]) f(·, [0, 0.5]) f(·, [0.5, 1])
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Sampling Theorem

Sampling example

Suppose we sample W = {(vm, xl) : m = 1, . . . , 2k, l = 1, . . . , B/2}.

Add white Gaussian noise to obtain f̃ .

f̃(vm, xl) =
∑
i≤k

∑
0≤j<B

yi,jφi(vm)Pj(xl) + noise

Let M be the corresponding transformation matrix with entries φi(vm)Pj(xl).
Recover y = (yi,j) by solving the optimization:

arg min
y

∥∥My − f̃(W )
∥∥2

2

Result:
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Let M be the corresponding transformation matrix with entries φi(vm)Pj(xl).
Recover y = (yi,j) by solving the optimization:

arg min
y

∥∥My − f̃(W )
∥∥2

2

Result:
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Filtering

Shift invariance

A filter is a bounded linear transformation L : S(G,H)→ S(G,H).

Tensor product filter AG ⊗A(v ⊗ h) = AG(v)⊗A(h) is an example.
L is shift invariant if both (AG ⊗ Id) ◦ L = L ◦ (AG ⊗ Id) and
(Id⊗A) ◦ L = L ◦ (Id⊗A).
L is weakly shift invariant if (AG ⊗A) ◦ L = L ◦ (AG ⊗A).
Shift invariant: commutes with ApG ⊗Aq for all p, q ≥ 0.
Weakly shift invariant: commutes with (AG ⊗A)p = ApG ⊗Ap for all p ≥ 0.
Example: polynomial filter

I Let P (x) = a0 + a1x+ . . .+ apx
p be a polynomial of degree p <∞.

I P (AG ⊗A) commutes with both AG ⊗ Id and Id⊗A, ∴ shift invariant.

Example: J = (1− a−1A)−1, a > ρ(A), commutes with A =⇒
L = AG ⊗ J is shift invariant, but not polynomial if dimH =∞ .

If finite dimensional, J is polynomial ∵ ∃ minimal polynomial.
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Filtering

Shift invariance

Theorem
1 Shift invariant =⇒ weakly shift invariant

2 mλ(AG ⊗A) - dimension of λ-eigenspace. If mλ = 1 for all λ, weakly shift
invariant =⇒ shift invariant.

3 Self-adjoint L: weakly shift invariant ⇐⇒ shift invariant.

If mλ(AG) = 1, traditional GSP: all shift invariant filters are polynomial.
Not true in GGSP even if mλ(AG ⊗A) = 1 [e.g., L = AG ⊗ J ].
If mλ(AG) = 1 and mλ(A) = 1, we hope mλ(AG ⊗A) = 1 so that all
weakly shift invariant filters are shift invariant [but may have λφλξ = λφ′λξ′ ].
Not always true, but almost always in practice ...
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Filtering

Shift invariance

Theorem
G has at least 3 nodes.
Each edge weight of G is chosen randomly (≺ Lebesgue measure).
mλ(A) = 1 ∀λ.

Then with probability one, we have:

1 If AG is the adjacency matrix of G: mλ = 1 for all λ of AG ⊗A.
2 If AG is the Laplacian matrix of G: then the 0-eigenspace of AG ⊗A is

isomorphic to H. For λ 6= 0, mλ = 1.

If AG is the Laplacian matrix, we can restrict to the orthogonal complement
of 0-eigenspace of AG ⊗A.
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Filtering

Convolution filter is shift invariant

g ∈ S(G,H), define g ∗ by Fg∗f = FgFf is an element of S(G,H), i.e.,

g ∗ f =
∑
φ⊗ξ

Fg(φ⊗ ξ)Ff (φ⊗ ξ) · φ⊗ ξ.

∑
φ⊗ξ |Fg(φ⊗ ξ)|2 <∞ =⇒ g ∗ is Hilbert-Schmidt operator =⇒

compact.
Let f = φ⊗ ξ with φ ∈ Φ and ξ ∈ Ξ. Then, g ∗ f = Fg(φ⊗ ξ) · φ⊗ ξ.

I φ⊗ ξ is an eigenvector of g ∗
I g ∗ commutes with AG ⊗ Id and Id⊗A
I g ∗ is shift invariant

GSP: all polynomial filters are convolutions.
Polynomial filter P (AG ⊗A) with a0 6= 0 is non-compact, therefore not
convolution.
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∑
φ⊗ξ |Fg(φ⊗ ξ)|2 <∞ =⇒ g ∗ is Hilbert-Schmidt operator =⇒

compact.
Let f = φ⊗ ξ with φ ∈ Φ and ξ ∈ Ξ. Then, g ∗ f = Fg(φ⊗ ξ) · φ⊗ ξ.

I φ⊗ ξ is an eigenvector of g ∗
I g ∗ commutes with AG ⊗ Id and Id⊗A
I g ∗ is shift invariant

GSP: all polynomial filters are convolutions.
Polynomial filter P (AG ⊗A) with a0 6= 0 is non-compact, therefore not
convolution.
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Filtering

Different classes of filters

Weakly shift invariant filters

Shift invariant filters

Limit of finite rank filters

Compact filters

Convolution filters

Bandlimited filters
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Filtering

Adaptive polynomial filters

At each vertex u ∈ G, different graph Gu =⇒ different operator Au (e.g.,
adjacency, Laplacian).

Adaptive polynomial filter F =
∑
u P1(AG)u ⊗ P2(Au)

I P1, P2 are polynomials
I P1(AG)u : matrix with u-th column of P1(AG), 0 elsewhere.
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Filtering

Adaptive polynomial filters

Suppose P1(x) = a1x+ b1, P2(x) = a2x+ b2.

F (f)(u, i) - affected by f(v, j) if (u, v) ∈ G and (i, j) ∈ Gv.
Filter F captures hidden structures in C4.
G and each Gui

have different physical meanings:

I G - represents time
I Gui correlations between node observations at time ui

Wrong to use GSP on big ambient graph containing all Guis.
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Filtering

Adaptive polynomial filters: example
Sensor network in dynamic environments like ocean surface. Social network
topology changes over time.

Each time t = 1, . . . , n, f(t) ∈ Cm on graph Gt with graph shift operator At.
At evolves according to a known model, starting from A0.
f generated from a base signal g: f = F (g) where F is an adaptive
polynomial filter.
Given observations f̃(t) = f(t) +N(t) at a subset of time indices, goal is to
estimate F :

min
∑
t∈Obs.

∥∥F (g)(t)− f̃(t)
∥∥2

2

Recovery error:

∑
t∈Unobs.

∥∥∥F̂ (g)(t)− f(t)
∥∥∥

2
‖f(t)‖2
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Filtering

Adaptive polynomial filters: example

Graphs evolve according to model in [4] (applications in social networks, biological
neuron networks, etc.).

[4] J. Ito and K. Kaneko, “Spontaneous structure formation in a network of chaotic units with variable connection strengths,” Phys. Rev. Letts.,
vol. 88, no. 2, p. 028 701, 2002.
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Conclusion

Summary

GSP TV-GSP GGSP

Signal space Cn Cn ⊗ Cm Cn ⊗H

Fourier transform Φ Φ⊗ Ξ (finite dim.) Φ⊗Ξ (infinite dim.)

Sampling vertices vertices asynchronous joint

Shift invariance AG same as GSP SI and WSI

Convolution polynomials
are conv. same as GSP false

Adaptive n.a. n.a. yes
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Conclusion

Conclusion

Generalized signal processing framework for vertex signals f ∈ H.

Suitable Hilbert space and basis to define F-transform.
Asynchronous sampling over joint vertex and H domain: achieves
Shannon-Nyquist rate over joint domain.
Shift invariant and weakly shift invariant filters: WSI almost always SI.
Convolution, bandpass filters, adaptive polynomial filters (dynamic networks).

Future

Framework applicable for square integrable graph stochastic processes: for
each v ∈ V , X(v, t, ω) ∈ L2([0, T ]× Ω,F ,P).
Notions of stationarity can be defined w.r.t. the shift operators AG ⊗ Id,
Id⊗A and AG ⊗A similar to .
“Strict” and “weak” strong and wide-sense stationarity.
Other high dimensional extensions: simplicial complexes and hypergraphs .
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Other high dimensional extensions: simplicial complexes and hypergraphs .

[5] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Stationary graph processes and spectral estimation,” IEEE Trans. Signal Process., vol. 65,
no. 22, pp. 5911–5926, Nov. 2017. doi: 10.1109/TSP.2017.2739099.

[6] N. Perraudin and P. Vandergheynst, “Stationary signal processing on graphs,” IEEE Trans. Signal Process., vol. 65, no. 13, pp. 3462–3477, Jul.
2017. doi: 10.1109/TSP.2017.2690388.
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Thank you!
http://www.ntu.edu.sg/home/wptay/
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