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Abstract: In this work, we explore the use of the resistive random access memory (RRAM) device 
as a synapse for mimicking the trained weights linking neurons in a deep learning neural network 
(DNN) (AlexNet). The RRAM devices were fabricated in-house and subjected to 1000 bipolar read-
write cycles to measure the resistances recorded for Logic-0 and Logic-1 (we demonstrate the 
feasibility of achieving eight discrete resistance states in the same device depending on the RESET 
stop voltage). DNN simulations have been performed to compare the relative error between the 
output of AlexNet Layer 1 (Convolution) implemented with the standard backpropagation (BP) 
algorithm trained weights versus the weights that are encoded using the measured resistance 
distributions from RRAM. The IMAGENET dataset is used for classification purpose here. We focus 
only on the Layer 1 weights in the AlexNet framework with 11 × 11 × 96 filters values coded into a 
binary floating point and substituted with the RRAM resistance values corresponding to Logic-0 
and Logic-1. The impact of variability in the resistance states of RRAM for the low and high 
resistance states on the accuracy of image classification is studied by formulating a look-up table 
(LUT) for the RRAM (from measured I-V data) and comparing the convolution computation output 
of AlexNet Layer 1 with the standard outputs from the BP-based pre-trained weights. This is one of 
the first studies dedicated to exploring the impact of RRAM device resistance variability on the 
prediction accuracy of a convolutional neural network (CNN) on an AlexNet platform through a 
framework that requires limited actual device switching test data. 

Keywords: convolutional neural network; look-up-table; resistive switching memory; synapse; 
variability 
 

1. Introduction 

The advent of convolutional neural networks (CNN) has brought about a paradigm shift in the 
adoption of hardware assisted deep learning for edge computing applications. Several non-volatile 
memory based device technologies have been explored to realize neuromorphic/deep learning based 
CNN systems including resistive switching memory (RRAM) [1,2], spin-transfer torque RAM (STT-
RAM) [3,4] and phase-change memory (PCM) [5,6] for synaptic storage of the weights of the network, 
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which form the core of the computation. While many of these device technologies have been shown 
to be good candidates at an array level for hardware implementation, the issue of “variability” in the 
device performance and its impact on the reduction in prediction accuracy (say for image 
classification) of the neural network has not been specifically dealt with. In this study, we aim to 
propose a framework to assess and “quantify” the impact of RRAM switching variability on the 
prediction accuracy of CNN. The RRAM is chosen as the candidate device here as it has a simple 
structure [7], enables high integration density (small form factor) and can exhibit switching in the 
low-power regime, although the variability in the switching trends can be quite high [8–10]. 

2. Background and Literature Review 

2.1. Overview of Convolutional Neural Networks 

Convolutional neural networks (CNNs) are a subset of the machine learning family, which are 
well known for its grid-like topology, in which each grid is computed in parallel and hence best suited 
for a low footprint “digital signal processor” like implementation. The CNN computation can be 
explained with time-series data, by processing pixel data at regular time intervals. The CNN can be 
implemented effectively on a parallel processing system, in which the mathematical matrix operation 
of convolution, is followed by a fully connected neural network implementation [11]. The 
mathematical operation of “convolution” is illustrated in Figure 1. The kernel or trained weight is 
applied to the entire image, as shown in Figure 1. The boxes with arrows show how the input tensor 
element gets transformed to the output tensor by using the trained weight or kernel. Following the 
convolution, we have the fully connected layers that connect every neuron in one layer to every 
neuron in another layer, similar to the traditional multi-layer perceptron (MLP) neural network. 
Every neuron in the given network computes an output value by applying a function to the input 
values from the previous layer, as shown in Figure 2. The function applied to the input values is 
specified by trained weights. Learning in a neural network is a process of adjusting its weights 
(minimizing the cost function by iteration) [12]. 

 
Figure 1.  Illustrating the procedure of convolution in a convolutional neural network (CNN). 
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Figure 2. Part of the neural network architecture with a fully connected layer with input layer denoted 
by the nodes x1~x5 and the output layer denoted by S1~S5. Here, as an example, with matrix 
multiplication, all the outputs are affected by x3 (shown in blue). 

2.2. Use of RRAM for Neuromorphics/Deep Learning 

Resistive switching random access memory (RRAM) devices are suitable for neuromorphic 
applications as the change of the weights in the neural network can be mimicked by the analog 
conductance change in the dielectric of the RRAM, which changes state due to defect (vacancy) 
generation, transport or annihilation. The application of an electrical current or voltage as the stimuli 
creates an ionic motion or vacancy cluster formation in a nanoscale dimension within a two-terminal 
device leading to local redox phenomena and this, in turn, affects the device resistance, which stays 
non-volatile, unless perturbed externally again by applying another voltage or current pulse. Devices 
exhibiting such properties are, in general, termed as memristors. Figure 3 depicts the typical current-
voltage (I-V) characteristics of an RRAM, which could be switched either in the bipolar mode or 
unipolar mode (only bipolar schema shown here for illustration). The evolution from high to low 
resistance state is called SET, while the transition from the low to high resistance state is referred to 
as RESET. 

 
Figure 3. Typical I-V plot for the bipolar switching trends in a resistive switching memory device. The 
image here is adopted and modified from Reference [13], Copyright 2015, John Wiley & Sons. 

The reason for RRAM devices to be used in neuromorphic application are its analog conductance 
changes (depending on the material stack and operating conditions), high scalability, ultrafast 
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switching speed, non-volatility, large HRS (High Resistance State) /LRS (Low Resistance State) 
window, non-destructive read, simple structures with standard materials, 3D stackability and multi-
level storage (the option to store more than one bit of information in one cell). Low write current 
(short electrical pulses able to change the resistive state), longer retention time and endurance are 
other factors that favor the adoption of RRAM. Lower operating energy per bit and excellent CMOS  
(Complementary Metal Oxide Semiconductor) process compatibility and manufacturability are also 
advantages of using the RRAM as the primary element for neuromorphic computing [1]. 

2.3. Use of the AlexNet Platform for Implementation 

AlexNet, which is one of the popular CNN, competed in the ImageNet Large Scale Visual 
Recognition Challenge in 2012, with an error percentage of 15.3%. The entire model was 
computationally expensive, as it was implemented with a graphics processing units (GPUs), making 
the network perform well in real time. Figure 4 shows the schematic of the AlexNet containing eight 
layers out of which five are convolutional and three are fully-connected layers. The first convolutional 
layer filters the 224 × 224 × 3 input image with 96 kernels of size 11 × 11 × 3 with a stride of 4 pixels 
(this is the distance between consecutive computations). The second convolutional layer takes as 
input, the output of the first convolutional layer and filters it with 256 kernels of size 5 × 5 × 48. The 
third, fourth, and fifth convolutional layers are connected to one another without any intervening 
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 × 3 × 256 
connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth 
convolutional layer has 384 kernels of size 3 × 3 × 192 and fifth convolutional layer has 256 kernels of 
size 3 × 3 × 192. The fully-connected layers have 4096 neurons each [11]. While the combination of 
AlexNet and RRAM for deep learning implementation is not new and have been proposed in 
References [14–18] and these works did not give any details on the simulation methodology and 
procedure. Our work here provides a full system flow chart that explains how the variability in 
RRAM was explored and exploited to represent the “binary” representation of the weights in the 
CNN. 

 
Figure 4. Layer 1 is a convolution layer, the input image size is—224 × 224 × 3 (3 = RGB (8 bits each)), 
number of filters → 96 (Filter size—11 × 11 × 3) and the layer 1 output comprises of (224/4 × 224/4 × 96 
= 55 × 55 × 96) (with a stride of 4 pixels). 

2.4. Scope and Outline of Study 

This paper is organized as follows. Section 3 explains the device fabrication of RRAM and the 
simulation framework setup for the performance analysis of the CNN where the weights in the 
AlexNet Layer 1 are represented with the RRAM LUT (look-up table). Section 4 presents the electrical 
characterization results of the fabricated RRAM device, resulting in seven different HRS states 
depending on the magnitude of the RESET stop voltage pulse. In Section 5, we discuss the simulation 
results obtained from embedding RRAM conductance variations into the AlexNet Layer 1 weights. 
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Finally, we conclude our study in Section 6 revisiting the novelty of our study and proposing possible 
recommendations for further research along this line.  

3. Experimental and Simulation Test Setup 

3.1. HfOx RRAM Device Fabrication 

The HfOx-based RRAM (1R) devices were fabricated on an SiO2 substrate, as shown in Figure 5. 
The bottom electrodes were patterned by UV lithography with positive tone resist followed by 
sputtering of the inert 10 nm Pt metal electrode under Ar ambient at room temperature and with a 
lift-off process. The process was repeated to sputter 15 nm HfOx layer and then the active top metal 
electrode of Ti (10 nm) to form 10 × 10 µm crosspoint devices. Finally, another 10 nm of inert Pt layer 
was deposited on top of the Ti layer for passivation. The I-V curves and endurance cycles were 
characterized using the Keithley SCS-4200 A system. The SET operation was initiated using 3 V, 5 ms 
pulses with an external current compliance setting of 100µA, while the RESET events were triggered 
by stepwise increase in pulse amplitudes with an opposite voltage polarity (from −1.2 V to −2.2 V 
with 0.2 V intervals) with a pulse period of 200 ns to achieve multilevel resistance states. 

 
Figure 5. (a) Top view of the cross-point device under an optical microscope and a cross-sectional 
view of the schematic of the structure in the inset figure. The bottom electrode (BE) consists of an inert 
electrode, and top electrode (TE) serves as the active electrode, which essentially functions as an 
oxygen reservoir to facilitate oxygen migration in and out of the oxide layer. This allows the switching 
behavior to be predominantly governed by oxygen ion movement instead of Joule heating. (b) Three-
dimensional (3D) view of the cross-point region (see red rectangle) of the structure, taken using an 
atomic force microscope. 

3.2. RRAM Based Synaptic Simulation Setup 

The framework for RRAM resistance distribution incorporation into the AlexNet Layer 1 using 
a look-up table (LUT) approach is illustrated in Figure 6. The AlexNet Layer 1 convolution operation 
is implemented in MATLAB®, with two pipelines, one which uses AlexNet’s original extracted 
trained weights (96 filters each of 11 × 11 for red-green-blue (RGB)), implemented with MATLAB® 
general matrix and the second pipeline, which constructs the AlexNet weights from the LUT. The 
LUT contains the algorithm trained synaptic weight in a binary format, 32-bit (24-bits for the 
mantissa, 7-bits for exponent and 1-bit for sign) for every single weight value, as illustrated in Figure 
7. Each algorithm trained bit, Logic-0 or Logic-1, in the trained weight, is substituted by resistance 
values from the low and high resistance states of the switching RRAM device, encoded into a Logic-
0 or Logic-1, based on a set resistance threshold level (RTH). The difference in the accuracy of 
prediction of the Layer-1 computed output between the two pipelines provides a quantitative 
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estimate of the variability induced error in the hardware implementation of the CNN, in comparison 
to its algorithmic counterpart. 

The detailed step-by-step implementation of the RRAM based CNN setup is described below, 
along with the approach to quantify and compare the prediction errors. 

Step 1 A 224 × 224 pixel sized “cat” image is taken as the input. The program reads the image in 
.jpg format, converts it to uncompressed RGB, and this computed data is then passed to the next 
step for further processing. 

Step 2 The RGB image (224 × 224 × 3) is copied multiple times with a window size of 11 × 11 each 
and with a 4-pixel difference between the adjacent windows. The output from this stage is a 
matrix of size 11 × 11 × 3025 for each color (RGB).  

Step 3 There are two parallel pipelines here—the first (MATLAB® array) reads the weights (which 
are software trained using backpropagation) from a local drive to the program cache for further 
processing. The second pipeline (RRAM LUT) represents these software trained weights in a 
floating point format and encodes these weights with a Logic-0 or Logic-1 using the measured 
resistance distribution of RRAM in the low and high resistance states based on comparison of 
the randomly sampled resistance value from the LRS/HRS best fit resistance distributions to a 
set threshold resistance value (RTH). The resulting floating point representation of the RRAM 
encoded weights is then passed onto the next stage. The output size of both pipelines is 11 × 11 
× 96 (filters) × 3(RGB). It is the second pipeline where the physical variability (measured by 
resistance of low (LRS) and high resistance states (HRS)) inherent in the fabricated RRAM device 
is incorporated into the CNN. 

 
Figure 6. Flowchart showing the implementation of resistive random access memory (RRAM) based 
look-up table (LUT) for error quantification of a hardware implementation of the CNN using the 
AlexNet schema with Layer 1 being the convolution layer where the LUT is incorporated. 
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Step 4 For each 11 × 11 window of the input image (total 3025), the matrix SOP (sum of the product) 
is separately computed using the weights from the two pipelines. The difference in the 
computed output for the two pipelines is then recorded and defined as the “prediction error”. 

Step 5 To capture the stochastics of the error in computation, Steps 3 and 4 are iterated 1000 times 
using different randomly sampled resistance values for the HRS and LRS states of the RRAM 
device. 

3.3. Generation of RRAM based LUT for AlexNet Weights 

As illustrated in Figure 7, the software trained weights are obtained based on the stochastic 
gradient descent (SGD) optimization algorithm, optimized for one million images over 1000 
categories. Each of these trained weights are represented in a 32-bit floating point format comprising 
of 24 bits of mantissa, 7 bits of exponent, and one sign bit. Every single matrix element within a filter 
within a certain layer of the AlexNet framework would need to represented using this 32-bit format.  

 
Figure 7. RRAM weights representation in binary (Floating points values). 

Figure 8 illustrates how the measured electrical resistance of the RRAM is incorporated into the 
logic-0/1 for every single bit of the 32-bit representation of the algorithm trained weight in Figure 7. 
The DC I-V characteristics of the HfOx-based RRAM device with abrupt SET and gradual RESET data 
are measured and the corresponding resistances in the LRS and HRS are extracted at a specific read 
voltage (VREAD ~ 150 mV in our case). The extracted resistances in the HRS and LRS states (RHRS and 
RLRS) are then fitted with a Lognormal distribution. As seen in Figure 8, the extracted resistance 
distributions are expected to overlap at the tail ends which is where the bits in the floating point could 
be erroneously represented in the CNN hardware implementation. 

To demarcate the “0” and “1” from the resistance distributions, a threshold resistance (RTH) is 
arbitrarily defined by the average of the log scale values of the mean resistances in the HRS and LRS 
states (as shown in the equation below). For any randomly sampled value (R) from the fitted HRS or 
LRS distribution, if R < RTH, the value is encoded as a “0”; else, it is taken as “1”. For every bit in the 
floating point representation for error computation in Step 5 of Figure 6, 1000 values of RHRS and RLRS 
are sampled from their distributions and encoded to Logic-0/Logic-1 using the rule below. 𝑙𝑜𝑔 𝑅்ு =  𝑙𝑜𝑔 𝑅௅ோௌ + 𝑙𝑜𝑔 𝑅ுோௌ2   

If R < RTH = logic 0  
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Else If R > RTH = logic 1  

In this study, the LRS and HRS states are denoted as Logic-0 and Logic-1 respectively. Sampled 
values of RLRS from the LRS distribution that have a value larger than RTH will be wrongly classified 
as a “1”. Similarly, samples values of RHRS from the HRS distribution will get classified as a “0” if the 
value is lower than RTH. These incorrectly coded bits are referred to here as “False-0” and “False-1”, 
as shown in Figure 8. 

The above LUT generation procedure using MATLAB® subroutine is applied for four inner loops 
as discussed in the following subsection. 

 
Figure 8. RRAM resistance coded to digital logic-0/1 with false logic-0/1 condition explained on a 
normal pdf plot of low resistant state (LRS) and high resistant state (HRS) resistance data. 

3.4. Multiple Embedded Loops of CNN Simulation 

To fully examine the impact of hardware device variability on the accuracy drop in the CNN 
implementation for a practical edge computing application, the following four loops of simulation 
are deemed necessary: 

Loop 1 As illustrated in Figure 9, Loop-1 involves replacement of a group of just 4 bits every time 
from the 32-bit string representation of the algorithm trained weight with the RRAM encoded 
binary values. The binary values of the remaining 28 bits are intentionally undisturbed. With 
this 4-bit perturbation from the least significant bit (LSB) to the most significant bits (MSB) 
(Bits3~0, Bits4~7, Bits8~11, Bits12~15, Bits16~19, Bits20~23, Bits 28~31), the impact of the bit 
position on the prediction error in a hardware CNN can be explicitly quantified.  

 
Figure 9. The blue-shaded 4-bit string represents the bits where RRAM resistance values are encoded 
and the remaining 28 bits represent the unchanged binary version of the algorithm trained weight. 

Loop 2 Depending on the RESET stop voltage (VRESET-STOP), the resistance of the HRS state 
exhibits a wide range of values. For the same LRS state (governed by the current compliance), 
the RRAM device is reset to different HRS states by tuning VRESET-STOP. Seven different HRS 
states were attained by a selective tuning of VRESET-STOP from −1.2 V to −2.2 V, keeping the 
pulse duration fixed at 200 ns. For each of the resulting HRS distributions (shown in Figure 10), 
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represented by HRS-1 (shallow reset) to HRS-7 (deep reset), a different LUT was generated. This 
loop allows the quantification of the memory window on the CNN prediction error given the 
increasing resistance variability at deeper reset conditions. 

 
Figure 10. The coding scheme consisting of 7 different HRS states (one at a time) and 1 LRS state for 
the LUT generation. Attaining different reset conditions allows for the examination of memory 
window impact on the prediction error, also accounting for the higher resistance variability at deeper 
reset conditions. 

Loop 3 The upper and lower pipeline of the AlexNet Layer-1 contains 96-trained filters in total, and 
each of them are sized with a 11 × 11 matrix (refer to Figure 11). Loop operations 1 and 2 above 
are repeated for all the 96-filter values to generate RRAM resistance encoded weights the entire 
Layer-1 for a full convolution operation. 

 
Figure 11. Total of 96 AlexNet Layer-1 filters with 48 filters each from the upper and lower pipeline. 

Loop 4 The above loops 1, 2 and 3 are then repeated for red, blue, and green pixel image data, 
respectively, as shown in Figure 12. 

In all, simulation of all the scenarios encompassing the above four inner loops results in a total 
of 1,951,488 iterations from the 1 K bits of RRAM cycle-to-cycle resistance switching data measured. 
Every single algorithm trained weight value is converted to 56 different binary combination 
sequences (containing 8 4-bit string patterns × 7 HRS state values = 56 different LUT data sets). 
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Figure 12. Iteration repeated for red, green and blue data of the pixels in the classified image pattern. 

4. Electrical Characterization Results and Discussion 

The I-V characteristic of the fabricated RRAM device is shown in Figure 13a for 100 switching 
cycles. It is apparent that while the bipolar switching is gradual and consistently observed, the I-V 
curves for the different HRS states show a significant overlap. While such substantial overlap in the 
resistance values is undesirable from a CNN hardware implementation point of view, the 
experimental data sets are being used here only to illustrate the methodology that is proposed in 
Section 3. With further optimization of the device stack, fabrication process, and operating conditions, 
it should be possible to realize more confined and distinguishable resistance patterns in the future. 
The current measured at a read voltage of VREAD ~ 150mV for a single tested device is plotted in Figures 
13b and 14a after every SET and RESET sweep, keeping the pulse period fixed at 200 ns. The 
corresponding cumulative density function plots of the 8 resistance states (in terms of conductance) 
are plotted in Figure 14b. Multiple resistance states are attained here by gradually increasing the 
magnitude of the RESET pulses from −1.2 V to −2.2 V at steps of −0.1 V. The gradual process of RESET 
in this device stack may enable the realization of a multi-bit cell in the future if the stack is further 
optimized to ensure more spread out and discrete patterns of resistance variation with minimal 
overlap. 

 

 
Figure 13. (a) DC I-V characteristics of HfOx-based RRAM device with abrupt SET and gradual RESET 
behavior. The grey curve indicates the forming process on the pristine device. (b) Endurance cycling 
performed with a single SET pulse and multiple RESET pulses (−1.2 V to −2.2 V with 0.2 V interval) 
for each cycle. 
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Figure 14. (a) Closer look at the current jumps during the endurance test from the 700th to 820th pulse 
cycle. (b) Cumulative probability of the resistance states (1 LRS and 7 HRS states) achieved by 
successively increasing RESET voltage pulse amplitudes (−1.2 V to −2.2 V) during the multi-step 
RESET process, based on the pulsing scheme shown in the inset of Figure 13b 

5. Simulation Results and Discussion 

This section examines the results of the simulation of the AlexNet CNN layer-1 involving 
computation of the output matrix SOP for the two different pipelines shown in Figure 15 (reproduced 
from Figure 6). The value of matrix SOP from the purely algorithm trained weights is denoted as 
SCONV, while the corresponding value from RRAM encoded LUT is denoted as HCONV. We introduce a 
term called the relative error (RE) defined as the modulus of the difference between HCONV and SCONV, 
normalized by the value of SCONV. 

Figure 16 lists the values of RE for the R-G-B data considering different 4-bit positions along the 
32-bit string and also the different HRS levels (HRS-1 corresponding to shallow reset all the way to 
HRS-7 for deep reset) attained by fine tuning VRESET-STOP. When examining the impact of the bit 
positions where RRAM variability is incorporated, we see an increase of more than two orders of 
magnitude in the RE going from B3–B0 to B31–B28. This steep increase in error is very much expected 
given the increasing significance of the numerical values of the bits as we move from the right to the 
left in the 32-bit string. Note that the value of RE is substantially high for B31–B28 as the sign and 
exponent bits plays a critical role there. 

When comparing the impact of the different HRS levels, a notable decrease in RE when we 
transition from HRS-1 to HRS-7 is only observed for B31–B28, but not for the other bit positions. By 
right, similar reduction in RE should be observed irrespective of the bit positions analyzed. These 
expected trends are obscured by the large overlaps in the resistance distributions of the different HRS 
states in our current fabricated device. When a more robust device with distinctive HRS states is 
demonstrated in the future, the reduction in RE will be apparent for all bit positions though the 
magnitude of reduction will vary. 
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Figure 15. Definition of the relative error (RE) in computed matrix sum of products for the software 
and hardware flow convolution pipeline. The software pipeline refers to the algorithm trained 
weights while the hardware pipeline refers to the binary data encoded from the measured RRAM 
resistance distributions. 

 
Figure 16. Bitwise relative error for all the 7-HRS values listed for different 4-bit positions along the 
32-bit binary representation of the floating-point value for the CNN weights. The error values are 
listed separately for the red, green and blue colors accordingly. 

6. Conclusions 

This study presented a comprehensive methodology of assessing the impact of variability in the 
RRAM resistance distributions for the low and high resistance states on the image classification error 
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based on the synaptic weight representation using the 32-bit format for the floating point, with 4 bits 
at any time taking the values from the hardware implementation, while the remaining 28 bits having 
values from the pre-trained AlexNet CNN framework. A significant increase in the relative error (of 
the computed matrix SOP) from the least significant bits (LSB) to the most significant bits (MSB) is 
observed. The error value is particularly high for the MSB as it carries the exponent and the sign bit 
of the weight. It is also evident from the CNN simulations that the ability to reach deeper reset states 
more consistently also enables a significant reduction in RE. 

The proposed LUT-based analysis proves to be a useful technique when there is a need for quick 
validation of the RRAM device performance and its impact on a large scale CNN network through 
simulation, rather than having to fabricate a large array of devices to quantify the actual loss in image 
classification accuracy. In general, device engineers fabricate only a handful of devices for a specific 
suite and combination of process parameters. They use these small arrays of RRAM devices to 
measure its electrical characteristics and switching performance for a few 100–1000 cycles. These 
small array of RRAM samples are certainly not sufficient to construct a fully functioning deep 
learning (DL) hardware platform. Considering the expenses and time taken for a full-fledged array 
level fabrication and the needed characterization setup (more so at academic institutions with limited 
facilities), it is vital for device engineers to be able to adopt a “short cut” approach to assess and 
validate their device performance in a practical CNN scale setting with minimal effort from a 
simulation framework point of view. This is where the proposed LUT-based framework here comes 
in handy. 

One can use a small array of RRAM device switching data, extract the switching resistance state 
distributions, fit them with a Lognormal model and then generate a large LUT based data set and test 
the performance of their device for a specific deep learning application quickly by plugging the LUT 
into the MATLAB® simulation framework available for Deep Learning CNN. These quick simulations 
allow one to effectively quantify the expected prediction accuracy that can be attained for the 
fabricated devices. Our framework serves as a good intermediary step to assess whether to proceed 
with the existing process flow for a full array fabrication or to go back and optimize the RRAM 
process to attain better switching distributions. Our approach clearly enables one to quantify the 
impact of different memory windows and variations (and also different number of states (4-bit/8-bit 
etc.) on the image classification error using a simple set of devices (it could just be isolated set of MIM 
capacitors that were measured). 

There are several possible improvements to be considered in subsequent studies. The current 
test setup arbitrarily defines a fixed threshold to classify any samples resistance value as Logic-0 or 
Logic-1. It may be worth exploring different definitions of the threshold levels to examine the changes 
in the classification errors. As discussed earlier, the fabricated stack in this study shows large 
variations in the resistance that result in significant overlap of the HRS and LRS distributions. The 
stack will be further optimized to improve the memory window, either by fabrication, choice of 
different switching voltages/pulse waveforms and/or through material engineering. Additionally, 
the impact of read disturb, random telegraph noise as well as endurance/retention degradation on 
the HRS/LRS distributions and their indirect influence on classification accuracy of a real scale CNN 
will also be a subject of study in the near future. 
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