
Aryani Paramita – NTU SCSE © 2016

CACHE
• To speed up accesses by storing recently used data closer to

CPU instead of main memory
• Accessed by content  Content Addressable Memory

HIT / MISS
• Cache Hit - When requested data is found in cache
• Cache Miss – When requested data is not found in the cache

REPLACEMENT POLICY
How do we choose victim cache line?
• FIFO (First In First Out)
• LRU (Least Recently Used)
• Random

Length of address in Main Memory

DEFINITIONS

• TAG – distinguished one cache memory block with another
• INDEX – identifies the cache block
• OFFSET – points to desired data in cache block

INSTRUCTION BREAKDOWN

Each of the address of load instruction is broken
into three parts: tag, index and offset.
Main memory size = M , cache size = C and offset
bits = Z results in the following (right figure).

Length of load instruction : log2(M) bits
OFFSET : z bits
INDEX : log2(C) – z bits
TAG : log2(M) – log2(C) bits
CACHE BLOCKS : log2(C) blocks

HOW IT WORKS

• The requested address is broken down into tag, index, and
offset.

• Cache table with corresponding index will be examined.
• If valid bit of the index is equals to 0, cache miss is

obtained
• Else tag bit of the requested address will be compared

with tag bit in cache table
• If tag is matched, cache hit is obtained
• Else cache miss is obtained

• When cache hit is obtained, data from cache table will be
returned. Else, data will be retrieved from main memory.

PRO / CONS

Direct mapping is simple and inexpensive to implement, but if a program accesses 2 blocks that map to the same line
repeatedly, the cache begins to thrash back and forth reloading the line over and over again leads to high miss rate.

Length of address in Main Memory

DEFINITIONS
• TAG – distinguished one cache memory block with another
• OFFSET – points to desired data in cache block

INSTRUCTION BREAKDOWN

Each of the address of load instruction is broken
into three parts: tag and offset.
Main memory size = M , cache size = C and offset
bits = Z results in the following (right figure).

Length of load instruction : log2(M) bits
OFFSET : z bits
TAG : log2(M) – log2(C) bits
CACHE BLOCKS : log2(C) blocks

HOW IT WORKS

• The requested address is broken down into tag and offset.
• Requested tag will be searched through cache with valid bit

• If there is tag matched with one of the index in the
cache table, cache hit is obtained

• Else, cache miss is obtained
• When cache hit is obtained, data from cache table will be

returned. Else, data will be retrieved from main memory.

PRO / CONS

Fully Associative is the most efficient utilisation of cache blocks, yet it is expensive to transverse through the cache to
find each requested tag. Since there is no specified slot for each instruction, an algorithm of replacement policy must
be designed along with implementation of fully associative cache.

Length of address in Main Memory

N-way set associative cache combines the idea of direct
mapped cache and fully associative cache. It has direct
mapped principle to an index, yet fully associative concept
within the index. An index contains N blocks of way.

INSTRUCTION BREAKDOWN

Each of the address of load instruction is broken
into three parts: tag, index and offset.
N-way set associative, Main memory size = M ,
cache size = C and offset bits = Z results in the
following (right figure).

Length of load instruction : log2(M) bits
OFFSET : z bits
INDEX : log2(C) – z – log2(N) bits
TAG : log2(M) – log2(C) + log2(N)bits
CACHE BLOCKS : log2(C) blocks

HOW IT WORKS

• The requested address is broken down into tag, index and
offset.

• Cache table with corresponding index will be examined. N-
ways of cache blocks will be transversed.
• If one of the way has the requested index, a cache hit

will be obtained
• Else cache miss is obtained

• When cache hit is obtained, data from cache table will be
returned. Else, data will be retrieved from main memory.

PRO / CONS

Combining direct mapped and fully associative principle is seen as the most balanced way to obtain high hit rate
meanwhile maintaining the resources cost. However, N-Way associative could be hard for initial implementation as
various concepts is involved.

• Different cache types has varied resource utilisation. This section will
explain NAND gates used in each type of cache.

• Decision made by each cache type when an instruction is loaded:
• Direct Mapped : 1 * valid_bit + valid_bit_1* tag_comparison.

• Fully Associative : cache_size * valid_bit + valid_bit_1 * tag_comparison

• N-way set associative : N* valid_bit + valid_bit_1 *tag_comparison

• Valid_bit_1 is a variable to calculate the number of (validbit==1) in
respective situation, meanwhile valid_bit and tag_comparison are the
NAND needed for each action.

Valid_Bit

(2 NAND GATES)

Tag_Comparison_per_bit

(4 NAND GATES)

• Tag_comparison = cache_bit * tag_comparison_per_bit.

• Hence, the costs of each cache can be summarised as:

Direct Mapped : 1 * 2 + valid_bit_1* 4 * cache_bit .

Fully Associative : cache_size * 2 + valid_bit_1 * 4 * cache_bit

N-way set associative : N* 2 + valid_bit_1 *4 * cache_bit

VIRTUAL MEMORY
• Extends the memory capacity of the main memory by using a

portion of the disk drive.
• Allows the system to run programs that are bigger than the size

of main memory
• Paging is implemented in this system.

PAGE TABLE
• Data structure that maintain information concerning the

location of each page, whether on disk or in memory.

Length of Virtual Address
DEFINITIONS
• Page Frames – virtual memory partitions of

main memory.
• OFFSET – points to desired data in page

frame
• Physical address – actual memory address

of physical memory
• Virtual address – addresses where physical

address mapped into

TLB (Translation Lookaside Buffer)
A memory cache that stores recent translations
of virtual memory to physical addresses for
faster retrieval

HOW IT WORKS

• The requested address is broken down into page and offset.
• Requested page is searched in TLB with fully associative

principle.
• If there is a frame number that matched the page, TLB

HIT is obtained, and data will be loaded from TLB.
• Else, page will be searched through page table with

direct mapping principle.
• If matched page id is found in page table, Page

Table Hit is obtained and data will be loaded from
Page Table. TLB will be updated accordingly.

• Else, Miss is obtained, and data will be loaded from
secondary memory.

Aryani Paramita – NTU SCSE © 2016

