
A Generalized Theory on Supervisor Reduction

Rong Su and W. Murray Wonham

Abstract— To make a supervisor comprehensible to a de-
signer has been a long-standing goal in the supervisory control
community. One strategy is to reduce the size of a super-
visor to generate a control equivalent version, whose size is
optimistically much smaller than the original one so that a
user or control designer can easily check whether a designed
controller fulfils its objectives and requirements. After the first
journal paper on this topic appeared in 1986 by Vaz and
Wonham, which relied on the concept of control covers, Su and
Wonham proposed in 2004 to use control congruences to ensure
computational viability. This work was later adopted in super-
visor localization theory, which aims for a control equivalent
distributed implementation of a given centralized supervisor.
Despite these publications some fundamental questions, which
might have been addressed in the first place, have not yet been
answered, namely what information is critical to ensure control
equivalence, what information is responsible for size reduction,
and whether partial observation makes the problem essentially
different. In this paper we address these questions by showing
that there exists a unified supervisor reduction theory, which is
applicable to all feasible supervisors regardless of whether they
are under full observation or partial observation. Our theory
proposes a preorder (called leanness) over all control equivalent
feasible supervisors based on their enabling, disabling and
marking information such that, if a supervisor S1 is leaner
than another supervisor S2, then the size of the minimal control
cover defined over the state set of S1 is no bigger than that of
S2.

I. INTRODUCTION

In supervisory control theory (SCT) [8] [14], the control
problem associated with a discrete-event system (DES) is to
enforce controllable and nonblocking behavior of the plant
that is admissible by the specification. When applying SCT to
a real application, there are two basic questions that require
a user to answer, that is, are we doing the right thing, and are
we doing things in the right way. The first question is about
the correctness of the plant and requirement models. The
second is about correctness of supervisor synthesis, which,
if computational complexity is not a concern, has been ade-
quately answered by SCT researchers. When computational
complexity is indeed a concern, several efficient synthesis
approaches have been proposed in the literature, e.g., [5] [9]
[10] [15], which can ensure correct behaviours of the closed-
loop system with low computational complexity. The first

Rong Su is affiliated with the School of Electrical and Electronic
Engineering at Nanyang Technological University, 50 Nanyang Avenue, Sin-
gapore 639798. Email: rsu@ntu.edu.sg. W. M. Wonham is affiliated with the
Edward S. Rogers Sr. Department of Electrical and Computer Engineering at
University of Toronto, 10 King’s College Road, Toronto, Ontario, M5S 3G4,
Canada. Email: wonham@control.utoronto.ca. The supports from Singapore
Ministry of Education Tier 1 Academic Research Grant RG84/13 (2013-
T1-002-177), National Research Foundation of Singapore DELTA-NTU
CORP LAB-SMA, and from the Natural Sciences and Engineering Research
Council (NSERC) of Canada, Grant DG7399, are gratefully acknowledged.

question, on the other hand, has been a long-standing hurdle
to SCT being adopted by industry because so far there is no
efficient way to identify potential errors in plant models or
requirement models. The current practice is to synthesize a
supervisor based on a given plant model and requirements.
An empty supervisor usually indicates a fault either in the
model or in the requirements; this should prompt the system
designer to undertake model or requirement updates. The
current SCT and its relevant tools can assist the designer
to quickly locate the problems in the model that lead to
emptiness of the supervisor. The real challenge is how to
determine whether the plant model and the requirements
are correct, when the supervisor synthesis returns a non-
empty supervisor. In this case it usually requires not only
syntactic correctness but also semantic correctness, i.e., the
designer has to understand the true meaning and impact of
every transition in the synthesized supervisor. Thus, to make
a supervisor small enough for a designer to understand its
function becomes important.

A supervisor carries two types of information: the key
information at each state for event enabling/disabling and
marking, and the information that tracks the evolution of
the plant. The latter may contain some redundancy because
the plant itself also carries such evolution information. In
principle, it is possible to remove redundant transitional
information from the supervisor, which will not interfere with
the first kind of information, i.e., a reduced supervisor can
still ensure the same control capability as that of the original
supervisor. This is the key idea used in Vaz and Wonham’s
paper on supervisor reduction [12], which relies on the
concept of control cover. A control cover is a collection
of subsets of states in a supervisor, in which the states of
each subset are “control consistent” with respect to event
enabling/disabling and state marking; the exact meaning
will be explained later. The authors proved two reduction
theorems, and proposed a corresponding (exponential time)
reduction algorithm. To overcome the computational com-
plexity involved in supervisor reduction, Su and Wonham
made a significant extension in [11] by first relaxing the
concept of control cover, then providing a polynomial-time
reduction algorithm based on a special type of cover called
control congruence, and finally showing that the minimal
supervisor problem (MSP) of computing a supervisor with
minimal state size is NP-hard. A polynomial-time lower
bound estimation algorithm provided in [11] has indicated
that in many instances minimal supervisors can be achieved
in polynomial time by using control congruence. Since
then, this reduction algorithm has been used with gratifying
results. One major application of supervisor reduction is in

supervisor localization [1], which aims to create a control-
equivalent distributed implementation of a given centralized
supervisor.

The supervisor reduction theory proposed in [11] rests
on two basic assumptions: (1) only full observation is con-
sidered; (2) the supervisor under consideration represents
a sublanguage of the plant, which can be easily satisfied
by applying supremal synthesis. Since then, many questions
have been raised by users. For example, can we apply
supervisor reduction to partially reduced supervisors (which
may not necessarily represent sublanguages of a given plant)
and can we apply supervisor reduction in cases with partial
observation? Some results have been reported in the literature
about the second question, see e.g., [3]. The main objective
of supervisor reduction is to ensure control equivalence
between the original supervisor and a reduced supervisor.
The fundamental questions are (1) Q1: what information
ensures control equivalence, even under partial observation,
and (2) Q2: what information determines the state size of a
reduced supervisor, which is the main performance index of
supervisor reduction. Ever since [12] [11], these questions
are still open. In this paper we aim to provide an answer.
We first propose a generalized supervisor reduction theory
which is applicable to all feasible supervisors, regardless
of whether they are subject to full observation or partial
observation; here a feasible supervisor does not disable
uncontrollable events and always issues the same control
command after strings that are not distinguishable based on
observations. In the case of partial observation, a supervisor
does not in general represent a sublanguage of the plant.
We show that for each feasible supervisor S of a plant G,
there exists a feasible supervisor SUPER derivable from
the linguistic definition of uncertainty subset construction
[13]). SUPER has the “universal” property that any feasible
supervisor that is control equivalent to S with respect to G,
and non-redundant with respect to S (i.e. without superfluous
transitions), can be projected from SUPER via a suitable
control cover on its state space, namely is a “quotient” of
SUPER with respect to this cover. This result will answer our
first question Q1. After that, we define a preorder � (referred
to as “leanness”) on feasible supervisors by using key
information about event enabling/disabling and state marking
such that for any two control equivalent supervisors S1 and
S2 with respect to G, if S1 is leaner than S2, i.e., S1 � S2,
then the minimal reduced supervisor induced by a minimal
control cover on S1 is no bigger than the one induced by
a minimal control cover on S2. This result provides an
answer to the second question Q2. As a direct consequence
of this result, as long as control equivalence holds, a feasible
supervisor under full observation always results in a reduced
supervisor no bigger than the one induced from a supervisor
under partial observation. Our theory is independent of the
specific way of achieving observability, for instance via the
property of normality [6] or of relative observability [2], or
by direct search [6] - the effect of such a choice is lumped
into the property of control feasibility, which states that a
feasible supervisor must apply the same control law to all

transitional sequences which cannot be distinguished based
on observations.

The remainder of the paper is organized as follows.
In Section II, we provide preliminaries on supervisor re-
duction. In Section III we discuss critical information for
ensuring control equivalence. Then in Section IV we ad-
dress information that determines reduction efficiency. We
draw conclusions in Section V. Owing to limited space, all
proofs are omitted in the paper, which can be retrieved at
www.ntu.edu.sg/home/rsu/Publications.htm.

II. PRELIMINARIES ON SUPERVISOR REDUCTION

Given an arbitrary finite alphabet Σ, let Σ∗ be the free
monoid on Σ whose elements are all the finite strings of zero
or more elements from Σ, with the empty string ε being the
identity element and string concatenation being the monoid
operation. Given two strings s, t ∈ Σ∗, s is called a prefix
substring of t, written as s ≤ t, if there exists s′ ∈ Σ∗ such
that ss′ = t, where ss′ denotes the concatenation of s and s′.
Any subset L ⊆ Σ∗ is called a language. The prefix closure
of L is defined as L = {s ∈ Σ∗|(∃t ∈ L) s ≤ t} ⊆ Σ∗.
Given two languages L,L′ ⊆ Σ∗, let LL′ := {ss′ ∈ Σ∗|s ∈
L ∧ s′ ∈ L′} denote their concatenation. Let Σ′ ⊆ Σ. A
mapping P : Σ∗ → Σ′∗ is called the natural projection with
respect to (Σ,Σ′), if

1) P (ε) = ε,

2) (∀σ ∈ Σ)P (σ) :=

{
σ if σ ∈ Σ′,
ε otherwise,

3) (∀sσ ∈ Σ∗)P (sσ) = P (s)P (σ).
Given a language L ⊆ Σ∗, P (L) := {P (s) ∈ Σ′∗|s ∈ L}.
The inverse image mapping of P is

P−1 : 2Σ′∗ → 2Σ∗ : L 7→ P−1(L) := {s ∈ Σ∗|P (s) ∈ L},

where 2Σ′∗ and 2Σ∗ denote the power sets of Σ′∗ and Σ∗,
respectively. When L is a singleton, say L = {s}, we will
use P−1(s) to denote P−1({s}) for simplicity throughout
the paper.

A plant is modelled as a deterministic finite-state automa-
ton, G = (X,Σ, ξ, x0, Xm), where X stands for the state
set, Σ for the alphabet, ξ : X × Σ → X for the (partial)
transition function, x0 for the initial state and Xm ⊆ X for
the marker state set. Here we adopt the notations in [13]
and write ξ(x, σ)! to denote that the transition ξ(x, σ) is
defined. The domain of ξ can be extended to X×Σ∗, where
ξ(x, ε) = x for all x ∈ X , and ξ(x, sσ) := ξ(ξ(x, s), σ).
The closed behavior of G is defined as L(G) := {s ∈
Σ∗|ξ(x0, s)!}, and the marked behavior of G is Lm(G) :=
{s ∈ L(G)|ξ(x0, s) ∈ Xm}. G is nonblocking if Lm(G) =
L(G). We say G is reachable if for each x ∈ X there
exists s ∈ L(G) such that ξ(x0, s) = x. From now on
we consider only reachable automata. We denote by |X| the
size of the state set X . In some circumstances, when the
state set is not explicitly mentioned, we also write |G| for
the size of an automaton, namely the size of its state set.
Given two finite-state automata Gi = (Xi,Σ, ξi, xi,0, Xi,m)
(i = 1, 2), the meet of G1 and G2, denoted as G1 ∧ G2, is

a (reachable) finite-state automaton such that L(G1 ∧G2) =
L(G1) ∩ L(G2) and Lm(G1 ∧G2) = Lm(G1) ∩ Lm(G2).

Let Σ = Σc∪̇Σuc = Σo∪̇Σuo, where Σc, Σuc denote re-
spectively the controllable and uncontrollable subalphabets,
always disjoint, and similarly Σo, Σuo denote the observable
and unobservable subalphabets, of the full alphabet Σ. A
(feasible) supervisor of G = (X,Σ, ξ, x0, Xm) under Po :
Σ∗ → Σ∗o is a finite state automaton S = (Z,Σ, δ, z0, Zm)
such that
• [control existence] (∀s ∈ L(G ∧ S))(∀σ ∈ Σuc) sσ ∈
L(G)⇒ sσ ∈ L(S),

• [control feasibility] (∀s, s′ ∈ L(S))Po(s) = Po(s
′) ⇒

δ(z0, s) = δ(z0, s
′).

• [marking feasibility] (∀z ∈ Zm)(∃s ∈ Lm(G ∧
S)) δ(z0, s) = z.

The first property says that a supervisor can only disable
controllable events, thus, all uncontrollable events allowed
by the plant G must be allowed by the supervisor S. This
property can be ensured by enforcing controllability [8]
on the closed-loop system behaviors. The second property
says that a supervisor will issue the same (enabling) control
command to strings which are observationally identical under
Po, that is, the supervisor may change its control command
only when an observable event is received, or equivalently,
all unobservable events can only be selflooped at relevant
states, and any transition between two different states must
be observable. This property guarantees implementation fea-
sibility of the supervisor, and can be ensured by enforcing
observability [6] on the closed-loop system behaviors∗. The
last property states that any marker state in the supervisor
S must be reachable by a string s ∈ Lm(G ∧ S), namely
there is no redundant marking information in S. The closed-
loop behavior of the system is denoted by two languages: the
closed behavior L(G ∧ S) = L(G) ∩ L(S) and the marked
behavior Lm(G ∧ S) = Lm(G) ∩ Lm(S). A supervisor
S satisfying the properties of control existence, control
feasibility and marking feasibility can be computed by the
following simple procedure.
Procedure of Synthesis of Feasible Supervisors
• Step 1: Compute, by any method, a controllable ob-

servable sublanguage K ⊆ Lm(G). For instance, TCT
[17] can compute controllable and normal (or relatively
observable) sublanguages and SuSyNA [18] is able to
compute controllable and normal sublanguages.

• Step 2: Uncertainty Subset Construction (Chapter 6,
[13]). Let ≡K be the Nerode equivalence relation for
K, i.e., for all s, s′ ∈ K,

s ≡K s′ ⇐⇒ (∀u ∈ Σ∗)[su ∈ K ⇐⇒ s′u ∈ K].

Let [s]K := {s′ ∈ K|s ≡K s′} the equivalence class
of s ∈ K in the quotient K/ ≡K= {[s]K |s ∈ K}. Let
' be the equivalence relation on K defined by

(∀s, s′ ∈ K) s ' s′ ⇐⇒ {[t]K |t ∈
P−1
o (Po(s)) ∩K} = {[t′]K |t′ ∈ P−1

o (Po(s
′)) ∩K}.

∗Various properties such as normality [6] or relative observability [2] can
achieve observability

Compute S = (Z,Σ, δ, z0, Zm), where Z := K/ ',
Zm := {z ∈ Z|z ∩ K 6= ∅}, z0 := [ε]' and the
transition function δ : Z × Σ → Z is induced in the
natural way (see [13]), i.e.,
(∀z, z′ ∈ Z)(∀σ ∈ Σ) [δ(z, σ) = z′ ⇐⇒ (∃s ∈ z, s′ ∈

z′) sσ = s′].
It is straightforward to check that S is feasible and qualified
as a proper supervisor for G that synthesizes K; namely K =
Lm(G∧ S) and K = L(G∧ S). A similar procedure called
P-supervisor Synthesis and Standard Realization in [4] can
also achieve the same goal, which essentially relies on the
automaton subset construction algorithm [16].

A deterministic supervisor in the Ramadge-Wonham
paradigm, whose control command at each state is deter-
mined by the set of enabled events at that state, must satisfy
the control existence property and the control feasibility
property. The marking feasibility property on the other hand
does not necessarily hold in a deterministic supervisor,
which could create some restriction on the applicability of
the reduction theory in this paper. Nevertheless, for any
supervisor generated by existing synthesis tools such as TCT,
SuSyNA and Supremica, the marking feasibility property
always holds. Thus, the restriction imposed by the last
property is rather mild from an application point of view.

As a simple running example consider the single-tank
system of Figure 1, consisting of a water supply source

Fig. 1. Example 1: A single-tank system

whose supply rate qi is a constant (for simplicity), a tank,
and a control valve at the bottom of the tank controlling the
outgoing flow rate qo, whose value depends on the valve
opening and the water level h. We assume that the valve
can only be fully open or fully closed, and in case of a full
opening, the water level h can only go down. The water
level h can be measured; its value change triggers one of
the following predefined events: h=L, h=M, h=H, and h=EH,
which denote that the water level is changed to low, medium,
high, extremely high, respectively. The plant model G of the
system is depicted in Figure 2, where the alphabet Σ consists
exactly of the events shown in the figure. The actions of
opening the valve (qo = 1) and closing the valve (qo = 0) are
controllable but unobservable, and all water level events are
observable but uncontrollable. In the model a shaded double
circle denotes a marker state, i.e., states 5 and 9 in Figure
2. Assume that we do not want the water level to become

Fig. 2. Example 1: Automaton model of the plant G

extremely high, i.e., the event h=EH should not occur. To
prevent state 9 from being reached, we bring in requirement
E shown in Figure 3, whose alphabet is {h=L, h=M, h=H,
h=EH}, but the event h=EH is prohibited from occurring. A
controllable and observable sublanguage, i.e., a closed-loop
behavior K = Lm(G ∧ S), can be synthesized by using the
standard Ramadge-Wonham supervisory control paradigm,
which is also depicted in Figure 3. The corresponding feasi-

Fig. 3. Example 1: Automaton models of a requirement E (Left) and the
controllable and observable sublanguage K (Right)

ble supervisor S via the uncertainty subset construction on K
is depicted in Figure 4. We can see that in S all unobservable

Fig. 4. Example 1: A feasible supervisor S

events are selflooped at some states, and transitions between
different states are all labeled by observable events.

For a plant G, there may exist more than one supervisor
that achieves a control objective, e.g., ensures that the
closed-loop system behavior is contained in a predefined
requirement language E ⊆ Σ∗. Two supervisors S1 and S2 of
G are control equivalent [11] if L(G∧S1) = L(G∧S2) and
Lm(G ∧ S1) = Lm(G ∧ S2). Let F(G,S) be the collection
of all feasible supervisors of G under partial observation

Po, which are control equivalent to a given supervisor S.
It is desirable to find one supervisor S∗ ∈ F(G,S) such
that for all S′ ∈ F(G,S) we have |S∗| ≤ |S′|, i.e., the
supervisor S∗ has the minimum number of states. It has been
shown in [11] that, unfortunately, finding S∗ based on the
concept of control covers is NP-hard, even for a supervisor
under full observation. Each control cover is a collection of
subsets of states in S, in which the states of each subset are
“control consistent”, to be defined shortly. Thus, by grouping
those compatible states of S together, we may get a new
supervisor S′ such that (1) S′ is control equivalent to S; (2)
|S′| < |S|. In the next two sections we will investigate which
information is responsible for control consistency, and which
for size reduction.

III. INFORMATION THAT ENSURES CONTROL
EQUIVALENCE

Given a plant G = (X,Σ, ξ, x0, Xm) and a feasible
supervisor S = (Z,Σ, δ, z0, Zm), at each state z ∈ Z there
are four pieces of information shown below:
• Let EnS : Z → 2Σ with

z 7→ EnS(z) := {σ ∈ Σ|δ(z, σ)!}

be the (S-)enabled event set at state z ∈ Z.
• Let DS : Z → 2Σ with
z 7→ DS(z) := {σ ∈ Σ|¬δ(z, σ)! ∧ (∃s ∈ L(G)) sσ ∈

L(G) ∧ δ(z0, s) = z}
be the (S-)disabled event set at state z ∈ Z.

• Let MS : Z → {true, false} with

z 7→MS(z) := true if (∃s ∈ Lm(G∧ S)) δ(z0, s) = z

be the S-marking indicator at state z ∈ Z.
• Let TS : Z → {true, false} with

z 7→ TS(z) := true if (∃s ∈ Lm(G)) δ(z0, s) = z

be the G-marking indicator at state z ∈ Z.
The (S−)enabled event sets can be easily obtained by simply
checking the transition structure of S. To determine the other
sets for each state z ∈ Z, we can first construct the meet
G ∧ S, and then check each state pair (x, z) in the meet
associated with the state z ∈ Z. Compared with relevant
definitions in [11], the only change is made to the concept
of S-marking indicator, which requires that MS(z) = true
iff z is reachable by a string s ∈ Lm(G ∧ S), instead of
simply requiring z ∈ Zm as in [11], because here it is not
necessary that Lm(S) ⊆ Lm(G).

As an illustration, we revisit the supervisor S for the
single-tank system depicted in Figure 4. By computing the
meet G ∧ S we obtain the transition structure recognizing
K shown in the right-hand picture of Figure 3. From that
structure we get the following:
• EnS(z0) = {h=L, h=M}, DS(z0) = ∅, MS(z0) =
false, TS(z0) = false,

• EnS(z1) = {q0=0, q0=1, h=L, h=M}, DS(z1) = ∅,
MS(z1) = false, TS(z1) = false,

• EnS(z2) = {q0=0, q0=1, h=L, h=M, h=H}, DS(z2) =
∅, MS(z2) = true, TS(z2) = true,

• EnS(z3) = {q0=1, h=M, h=H}, DS(z3) = {q0=0},
MS(z3) = false, TS(z3) = false.

Let R ⊆ Z × Z be a binary relation, where (z, z′) ∈ R
iff the following two properties hold:

1) EnS(z) ∩DS(z′) = EnS(z′) ∩DS(z) = ∅,
2) TS(z) = TS(z′)⇒MS(z) = MS(z′).

We call R the binary compatibility relation over Z. The first
condition requires that no event enabled at one state can be
disabled at the other state. The second condition requires that
both states must have the same marking status, if they are
reachable by strings from the marked behavior of G. Notice
that R is reflexive and symmetric, but needn’t be transitive,
namely is a tolerance but not an equivalence relation. Any
two states satisfying R may potentially be merged together,
if their suffix behaviors are “compatible”, which is precisely
captured in the following concept. Let I be a finite index
set. We assume that m /∈ I .

Definition 1: A collection C = {(Zi, i)|Zi ⊆ Z ∧ i ∈ I}
is a control cover on S if

1) ∪i∈IZi = Z, (∀(Zi, i), (Zj , j) ∈ 2Z × I) i = j ⇒
Zi = Zj ,

2) (∀i ∈ I)Zi 6= ∅ ∧ (∀z, z′ ∈ Zi) (z, z′) ∈ R,
3) (∀i ∈ I)(∀σ ∈ Σ)(∃j ∈ I)[(∀z ∈ Zi)δ(z, σ)! ⇒

δ(z, σ) ∈ Zj].
C is minimal if for all other control covers C′ of Z we have
|C| ≤ |C′|. �

The definition of a control cover ensures that any two
different elements in the cover must have distinct index
values from I . But it is possible that Zi = Zj when i 6= j.
Because C := {({z}, z)|z ∈ Z} is trivially a control cover,
we know that S is non-empty if and only if there exists
a non-empty control cover C of S. Given a control cover
C = {(Zi, i)|Zi ⊆ Z ∧ i ∈ I} on S, we construct an induced
supervisor SC = (I,Σ, κ, i0, Im), where i0 ∈ I such that
z0 ∈ Zi0 , Im := {i ∈ I|Zi ∩ Zm 6= ∅}, and κ : I × Σ→ I
is the partial transition map such that for each i ∈ I and
σ ∈ Σ, κ(i, σ) := j if j is chosen to satisfy the following
property:

(∃z ∈ Zi)δ(z, σ) ∈ Zj∧[(∀z′ ∈ Zi) δ(z′, σ)!⇒ δ(z′, σ) ∈ Zj];

otherwise, κ(i, σ) is not defined. In general, there may exist
more than one choice of j with the above property. An
arbitrary selection among multiple choices will be adopted
to ensure a deterministic transitional structure for SC .

Theorem 1: Given a feasible supervisor S =
(Z,Σ, δ, z0, Zm) for a plant G = (X,Σ, ξ, x0, Xm),
let C = {(Zi, i)|Zi ⊆ Z ∧ i ∈ I} be a control cover on
S, and SC be an induced supervisor from C. Then SC is a
feasible supervisor, which is control equivalent to S.

Theorem 1 indicates that we can start with any given plant
G and feasible supervisor S to generate another feasible
supervisor S′, which is control equivalent to S with respect to
G, by applying the aforementioned construction induced by a
properly chosen control cover on S. Of special interest is the

fact that we do not need to know how S was obtained in the
first place. Thus, we have a unified way of undertaking super-
visor reduction regardless of whether S is under full obser-
vation or partial observation. As an illustration we revisit the
single-tank system, whose feasible supervisor S is depicted
in Figure 4. Based on the aforementioned analysis about
those four sets, i.e., EnS(z), DS(z), MS(z) and TS(z), we
can check that the set C := {({z0, z1, z2}, 1), ({z3}, 2)} is
a control cover, where I = {1, 2}. The resulting induced
supervisor SC is depicted in Figure 5. We can easily check

Fig. 5. Example 1: An induced supervisor SC

that SC is control equivalent to S with respect to G. From
SC we can see that what S really does is preventing the
valve from being closed when the water level is high, which
matches our expectation perfectly.

Next, we will present a result similar to the Generalized
Quotient Theorem in [11].

Definition 2: Given a plant G and a feasible supervisor S,
let S′ = (Z ′, δ′,Σ, z′0, Z

′
m) be another feasible supervisor

of G. Then S′ is non-redundant with respect to S if the
following hold:

1) (∀z ∈ Z ′)(∀σ ∈ Σ)δ′(z, σ)!⇒ (∃s ∈ L(G ∧ S)) sσ ∈
L(G ∧ S) ∧ δ′(z′0, s) = z,

2) (∀z ∈ Z ′m)(∃s ∈ Lm(G ∧ S)) δ′(z′0, s) = z. �

Definition 2 indicates that each transition in a non-redundant
supervisor S′ must belong to a string in the closed behavior
L(G∧S), and every marker state in S′ must be reachable by
a string in the marked behavior Lm(G ∧ S). Both synthesis
tools TCT and SuSyNA can be used to compute a non-
redundant feasible supervisor.

Definition 3: Given automata GA =
(XA,Σ, ξA, xA,0, XA,m) and GB =
(XB ,Σ, ξB , xB,0, XB,m), we say that GB is the image of
GA under the DES-isomorphism θ : XA → XB if

1) θ is bijective,
2) θ(xA,0) = xB,0 and θ(XA,m) = XB,m,
3) (∀x, x′ ∈ XA)(∀σ ∈ Σ)ξA(x, σ) = x′ ⇒

ξB(θ(x), σ) = θ(x′),
4) (∀x ∈ XB)(∀σ ∈ Σ)ξB(x, σ)! ⇒ ξA(θ−1({x}), σ)!.

�
Definition 3 states that an automaton GA is DES-

isomorphic to another automaton GB if GA and GB are
identical up to state relabeling, i.e., every state in GA maps
to a unique state in GB , in particular, the initial state of GA
maps to the initial state of GB , each marker state of GA maps
to a marker state of GB , each marker state in GB must have

one marker state in GA as a pre-image, each transition in
GA corresponds to one transition in GB , and each transition
in GB has one transition in GA as the pre-image.

Given a plant G and a feasible supervisor S, by computing
the meet of G and S, i.e., G∧ S, we can obtain the closed-
loop (closed and marked) behaviours. By applying the uncer-
tainty subset construction shown in Procedure 1 to G∧S with
respect to Po : Σ∗ → Σ∗o, we can derive a feasible supervisor,
say SUPER, which is control equivalent to S. The following
main result shows that any non-redundant feasible supervisor,
which is control equivalent to S with respect to G, can be
constructed from SUPER by using a suitable control cover
on S. It is an extension of the Generalized Quotient Theorem
stated in [11] to more generally defined feasible supervisors,
and clearly shows the “universality” of control covers.

Theorem 2: [Extended Quotient Theorem] Given a fea-
sible supervisor S of a plant G, let SUPER be constructed
as above. Then for any non-redundant feasible supervisor
SIMSUP with respect to S, which is control equivalent to S
with respect to G, there exists a control cover C on SUPER
and an induced feasible supervisor SC such that SC is DES-
isomorphic to SIMSUP.

Up to now we have developed a general theory on su-
pervisor reduction, which unifies both the full observation
case and the partial observation case. It is clear that the
concrete way of ensuring observability in a feasible su-
pervisor is not important in achieving control equivalence
during supervisor reduction. Knowledge of the plant G and
a feasible supervisor S will be sufficient for us to construct
a feasible supervisor, which is control equivalent to S, and
optimistically has a (significantly) smaller size.

IV. INFORMATION THAT DETERMINES REDUCTION
EFFICIENCY

Our case studies indicate that a supervisor with full
observation usually allows a much higher reduction ratio
than that allowed by a supervisor with partial observation.
An interesting question is what causes such a discrepancy.
In this section we propose an answer to this question, and
explain the actual effects of partial observation on supervisor
reduction.

Given a plant G and a feasible supervisor S, each feasible
supervisor S′ ∈ F(G,S) carries four pieces of critical
information captured by (EnS′ , DS′ ,MS′ , TS′). We define
a preorder “�” among elements of F(G,S)†, where for all
Si = (Zi,Σ, δi, zi,0, Zi,m) ∈ F(G,S) (i = 1, 2), we say S1

is leaner than S2, denoted as S1 � S2, if for all s ∈ L(G∧S)
we have
• EnS1

(δ1(z1,0, s)) ⊆ EnS2
(δ2(z2,0, s)) and

DS1
(δ1(z1,0, s)) ⊆ DS2

(δ2(z2,0, s)),
• MS1(δ1(z1,0, s)) = true⇒MS2(δ2(z2,0, s)) = true,
• TS1(δ1(z1,0, s)) = true⇒ TS2(δ2(z2,0, s)) = true.

In words, S1 is leaner than S2 if for each pair of states z1 in
S1 and z2 in S2 reachable by the same string in L(G ∧ S),
the enabled and disabled event sets at z1 are subsets of

†A preorder is reflexive and transitive but not necessarily antisymmetric.

those at z2; and, if the values of the S-marking indicator
and the G-marking indicator at z1 are both true, then those
values at z2 are also true. Informally speaking, each string
s ∈ L(G ∧ S) carries two types of information. Type 1:
information associated with s only, i.e., the set of enabled
events ψ(s) := {σ ∈ Σ|sσ ∈ L(G ∧ S)} and the set of
disabled events λ(s) := {σ ∈ Σ|sσ ∈ L(G) ∧ sσ /∈ L(S)}.
Type 2: information associated with all strings that reach
the same state as that reached by s, e.g., z1 in S1 above,
i.e., the set of enabled events at the state reached by s, e.g.,
EnS1(z1), and the set of disabled events at the state reached
by s, e.g., DS1(z1). It is clear that ψ(s) ⊆ EnS1(z1) and
λ(s) ⊆ DS1

(z1). In other words, when the plant G executes
the string s, the supervisor S1 allows more events specified
by EnS1

(z1) − ψ(s) and disables more events specified by
DS1(z1) − λ(s), owing to the need for ensuring control
feasibility. Such extra enabled/disabled events are clearly re-
dundant for s. If S1 � S2, we know that EnS1

(z1)−ψ(s) ⊆
EnS2

(z2)−ψ(s), and DS1
(z1)−λ(s) ⊆ DS2

(z2)−λ(s), that
is, S1 carries less redundant information (or equivalently, is
leaner) than S2 does. Although such redundant information
does not affect control equivalence of relevant supervisors, it
does affect the state-size reduction ratio, when we construct
a reduced supervisor based on a control cover.

The example of Figure 6 illustrates preorder over control
equivalent feasible supervisors. The alphabet of the plant G
is Σ = {a, b, c, d1, d2, e}, Σc = {d1, d2}, and all events

Fig. 6. Example 2: A plant G (left), supervisors S1 (right top) and S2

(right bottom)

are observable for the sake of simplicity. It is not difficult
to check that S1 and S2 are control equivalent - they both
disable events d1 and d2 after executing the event c. To
check that S1 is leaner than S2, we only need to check
those conditions for two strings s = ε and s = c because
for other strings in L(G ∧ S), S1 and S2 are the same.
For s = ε, we have z1 = 0 in S1 and z2 = 0 in S2.
Clearly, EnS1

(z1) = {a, b, c} = EnS1
(z2), and DS1

(z1) =
∅ ⊆ {d1, d2} = DS2

(z2). In addition, we can check that
MS1

(z1) = false and MS2
(z2) = true, and TS1

(z1) =
false and TS2(z2) = true. Thus, those conditions hold for
s = ε. For s = c we have z1 = 3 in S1 and z2 = 0 in
S2. Clearly, EnS1

(z1) = ∅ ⊆ EnS1
(z2) = {a, b, c}, and

DS1
(z1) = {d1, d2} = DS2

(z2). In addition, we can check
that MS1(z1) = true = MS2(z2), and TS1(z1) = true =
TS2(z2). Thus, we conclude that S1 is leaner than S2.

Theorem 3: Given a plant G and a feasible supervisor S,
let SUPER be the same as that stated in Theorem 2. Then
for all S′ ∈ F(G,S), we have SUPER � S′.

Theorem 3 indicates that for all feasible supervisors in
F(G,S), SUPER has the leanest information which still
ensures control equivalence. The interesting point is that for
any feasible supervisor S′ ∈ F(G,S), we can construct
SUPER by applying the uncertainty subset construction on
G ∧ S′, namely we can always obtain the leanest feasible
supervisor, which is control equivalent to S with respect
to G. Nevertheless, the size of SUPER could be large for
a practical application. Thus, supervisor reduction may be
directly applied to any feasible supervisor S′ ∈ F(G,S).
The following result indicates that the state size of a re-
duced supervisor solely depends on the leanness of the key
information specified by those four functions - the leaner the
information, the smaller the reduced state size.

Theorem 4: Given a plant G and a feasible supervisor S,
let S1, S2 ∈ F(G,S) be non-redundant with respect to S,
and assume that S1 � S2. Let C1 and C2 be minimal control
covers of S1 and S2, respectively. Then |C1| ≤ |C2|.

As an illustration, in Example 2 depicted in Figure 6 we
know that S1 � S2. We can easily compute Ŝ1 and Ŝ2,
which are minimal feasible supervisors control equivalent to
S1 and S2, respectively. The results are shown in Figure
7 below. To show that Ŝ1 is minimal, we notice that any

Fig. 7. Example 2: Reduced supervisors Ŝ1 (right top) and Ŝ2 (right
bottom)

feasible supervisor, which is control equivalent to S1, needs
to have at least two different control patterns, i.e., to disable
d1 and d2 together (at state 3 in G), and to disable neither
of them (at the remaining states in G). Thus, it must have
at least two states. Since Ŝ1 has precisely two states, it is
a minimal supervisor. But it is not the unique one because
we can check that the cover C = {({0, 3}, 1), ({1, 2}, 2)}
with I = {1, 2} is also a control cover of S1, whose induced
supervisor is different from Ŝ1 and has two states. To see that
Ŝ2 is minimal, with the same argument as before, we know
that any feasible supervisor, which is control equivalent to

S2, must have at least two states. But we can check manually
that none of the covers of S2, whose size is 2, is a control
cover of S2. Thus, the size of any control cover of S2 must be
at least 3, which means S2 is the smallest one, which cannot
be reduced further. It is clear that |Ŝ1| = 2 < |Ŝ2| = 3,
which matches the conclusion made in Theorem 4.

With Theorem 3 and Theorem 4 we are able to answer
the question: among all feasible supervisors that are control
equivalent, which one will lead to a minimal reduced super-
visor, and for any two control equivalent feasible supervisors,
which one will result in a smaller reduced supervisor.

V. CONCLUSIONS

We have developed a generalized supervisor reduction the-
ory, which is applicable to all feasible supervisors, regardless
of whether they are designed under the assumption of full or
of partial observation. We have shown that the generalized
quotient theorem in [11] for supervisors with full observation
has a counterpart in the generalized reduction theory, which
states that for each feasible supervisor S of a plant G,
there exists a feasible supervisor SUPER derivable from the
uncertainty subset construction on G∧S such that all feasible
supervisors that are control equivalent to S with respect
to G and non-redundant with respect to S can be derived
via the quotient construction based on a properly chosen
control cover on SUPER. In addition, we have provided a
specific way of ordering those feasible supervisors by using
the key information described in those four functions such
that for any two control equivalent supervisors S1 and S2

with respect to (G,S), if S1 is leaner than S2, i.e., S1 � S2,
then the minimal reduced supervisor induced from S1 is no
bigger than the one induced from S2.

REFERENCES

[1] K. Cai and W.M. Wonham. Supervisor localization: a top-down
approach to distributed control of discrete-event systems. IEEE Trans.
Automatic Control, 55(3):605-618, 2010.

[2] K.Cai, R. Zhang and W. M. Wonham. Relative observability of
discrete-event systems and its supremal sublanguages. IEEE Trans-
actions on Automatic Control, 60(3):659-670, 2013.

[3] R. Zhang and K.Cai. On supervisor localization based distributed
control of discrete-event systems under partial observation. In Proc.
2016 American Control Conference, pp. 764-767, Boston, 2016.

[4] C. Cassandras and S. Lafortune. Introduction to Discrete Event Sys-
tems (2nd Ed.), Springer, 2008.

[5] L. Feng and W.M. Wonham. Supervisory control architecture for
discrete-event systems. IEEE Trans. Automatic Control, 53(6):1449-
1461, 2008.

[6] F. Lin and W. M. Wonham.On observability of discrete-event systems.
Information Sciences, 44(3):173-198, 1988.

[7] C. H. Papadimitriou. Computational Complexity. Addison Wesley,
1994.

[8] P.J. Ramadge and W.M. Wonham. Supervisory control of a class of
discrete event systems. SIAM J. Control and Optimization, 25(1):206–
230, 1987.

[9] R. Su, J.H. van Schuppen and J.E. Rooda. Aggregative synthesis of
distributed supervisors based on automaton abstraction. IEEE Trans.
Automatic Control, 55(7):1627-1640, 2010.

[10] R. Su, J.H. van Schuppen and J.E. Rooda. Maximally permissive co-
ordinated distributed supervisory control of nondeterministic discrete-
event systems. Automatica, 48(7):1237-1247, 2012.

[11] R. Su and W. M. Wonham. Supervisor reduction for discrete-event
systems. Journal of Discrete Event Dynamic Systems, 14(1):31-53,
2004.

[12] A. F. Vaz and W. M. Wonham. On supervisor reduction in discrete-
event systems. International Journal of Control, 44(2):475-491, 1986.

[13] W. M. Wonham. Supervisory Control of Discrete-Event Systems.
Systems Control Group, Dept. of ECE, University of Toronto. URL:
www.control.utoronto.ca/DES, 2016.

[14] W.M. Wonham and P.J. Ramadge. On the supremal controllable
sublanguage of a given language. SIAM J. Control and Optimization,
25(3):637–659, 1987.

[15] S. Mohajerani, R. Malik and M. Fabian. A framework for composi-
tional synthesis of modular nonblocking supervisors. IEEE Transac-
tions on Automatic Control, 59 (1):150-162, 2014.

[16] G. Van Noord. Treatment of epsilon moves in subset construction.
Computational Linguistics, 26(1):61-76, 2000.

[17] TCT: A Computation Tool for Supervisory Control Synthesis.
http://www.control.utoronto.ca/DES/Research.html.

[18] SuSyNA: Supervisor Synthesis for Nondeterministic Automata.
http://www.ntu.edu.sg/home/rsu/Downloads.htm.

APPENDIX

Proof of Theorem 1: 1. We first claim that Lm(G ∧ S) ⊆
Lm(G ∧ SC). Let s ∈ Lm(G ∧ S). If s = ε, then z0 ∈ Zm.
Since z0 ∈ Zi0 , we have Zi0 ∩Zm 6= ∅. Therefore i0 ∈ Im,
namely ε ∈ Lm(SC). Let s = σ0 · · ·σk (k > 0). Because

δ(z0, σ0)!, δ(z0, σ0σ1)!, · · · , δ(z0, σ0σ1 · · ·σk)!,

we have

δ(z0, σ0)! and δ(zj , σj)! with zj+1 = δ(z0, σ0 · · ·σj), j = 1, · · · , k

Since {Zi|i ∈ I} is a control cover on Z, by Definition 1
and the definition of κ we have

(∀j : 0 ≤ j ≤ k)(∃ij , ij+1 ∈ I)zj ∈ Zij ∧ zj+1 ∈
Zij+1

∧ κ(ij , σj) = ij+1.

Therefore, κ(i0, s)!. Since s ∈ Lm(G ∧ S), we have
κ(i0, s) ∈ Im. Therefore s ∈ Lm(G ∧ SC), namely

Lm(G ∧ S) ⊆ Lm(G ∧ SC).

By taking the prefix closure on both sides, and recalling that
Lm(G ∧ S) = L(G ∧ S), we have

L(G ∧ S) ⊆ L(G ∧ SC).

2. For the reverse inclusion, let s ∈ L(G ∧ SC). If s = ε
then, as L(G ∧ S) 6= ∅, s ∈ L(G ∧ S). Suppose s = σ.
Then κ(i0, s)!, so there are z ∈ Zi0 and z′ ∈ Z such that
δ(z, σ) = z′, namely σ ∈ EnS(z). By the definition of the
control cover C, σ /∈ DS(z0), so either δ(z0, σ)! or

(∀t ∈ Σ∗)δ(z0, t) = z0 ⇒ tσ /∈ L(G).

But since s = σ ∈ L(G ∧ SC), we have εs ∈ L(G) and
δ(z0, ε) = z0. Thus, we conclude that δ(z0, σ)!, namely s ∈
L(G∧S). Of course, by the definition of the control cover C,
there follows δ(z0, σ) = z′ ∈ Zi′ for some i′ ∈ I . In general,
let s = σ0σ1 · · ·σk. Repeating the foregoing argument k-
fold, we see that s ∈ L(G∧SC) implies s ∈ L(G∧S). This
shows that L(G ∧ SC) ⊆ L(G ∧ S).
3. Let s ∈ Lm(G ∧ SC). As shown above, δ(z0, s)! with
δ(z0, s) = z ∈ κ(i0, s). Since κ(i0, s) ∈ Im, there exists
z′ ∈ Zκ(i0,s)∩Zm, namely MS(z′) = true. By the definition

of feasible supervisor, we know that there is s′ ∈ Lm(G∧S)
such that δ(z0, s

′) = z′, namely TS(z′) = true. At the same
time, s ∈ Lm(G ∧ SC) implies TS(z) = true. By definition
of control cover C, we get MS(z) = MS(z′) = true, namely
δ(z0, s) = z ∈ Zm, and s ∈ Lm(G ∧ S), as required.

So far we have shown that L(G ∧ S) = L(G ∧ SC) and
Lm(G ∧ S) = Lm(G ∧ SC). Finally, we need to show
that SC is a feasible supervisor, namely the conditions of
control existence and control feasibility must hold. The
control existence condition obviously holds because the
construction of SC from S does not disable more events than
S does. Since S is feasible, namely the control existence
condition holds, we know that this condition must hold for
SC . For the second condition of control feasibility, notice
that, by the definition of control cover C, unobservable
events selflooped at certain states in S are also selflooped
at appropriate states in SC . Thus, the control feasibility
condition holds for SC . Since S is marking feasible, it is
not difficult to check that SC must also be marking feasible,
which completes the proof. �

Proof of Theorem 2: With SUPER = (Z,Σ, δ, z0, Zm) and
SIMSUP = (Y,Σ, η, y0, Ym), for each y ∈ Y , let

Z(y) := {z ∈ Z|(∃s ∈ L(G∧S)δ(z0, s) = z∧η(y0, s) = y}

and define C := {(Z(y), y)|y ∈ Y }. We now check that C is
a control cover on SUPER.

By non-redundancy of SIMSUP, we have Z(y) 6= ∅ for
all y ∈ Y . Since SUPER is obtained by the uncertainty
subset construction, for each z ∈ Z, there is s ∈ L(G∧S) =
L(G ∧ SIMSUP) with δ(z0, s) = z and η(y0, s)!. Hence,
z ∈ Z(η(y0, s)). Thus, C = {(Z(y), y)|y ∈ Y } covers Z.

Next, fix y ∈ Y and let a, b ∈ Z(y) with σ ∈ EnSUPER(a).
We need to show that σ /∈ DSUPER(b). Since SUPER is
constructed via the uncertainty subset construction, we know
that for all s ∈ L(G∧S) such that δ(z0, s) = a, there exists
s′ ∈ P−1

o (Po(s)) ∩ L(G ∧ S) such that s′σ ∈ L(G ∧ S).
In addition, δ(z0, s

′) = a. Since a ∈ Z(y), there exists
ŝ ∈ L(G ∧ S) such that δ(z0, ŝ) = a and η(y0, ŝ) = y.
Thus, we know that there exists ŝ′ ∈ P−1

o (Po(ŝ))∩L(G∧S)
such that ŝ′σ ∈ L(G∧S) and δ(z0, ŝ

′) = a. Since SIMSUP
is a feasible supervisor, we know that η(y0, ŝ

′) = y. Thus,
η(y, σ)!. Since b ∈ Z(y), there exists t ∈ L(G ∧ S) such
that δ(z0, t) = b and η(y0, t) = y. If there exists t′σ ∈ L(G)
such that δ(z0, t

′) = b, we know that there must exist
t̂ ∈ P−1

o (Po(t))∩L(G∧S) such that t̂σ ∈ L(G), δ(z0, t̂) = b
and, because SIMSUP is a feasible supervisor, we have
η(y0, t̂) = y. Since t̂σ ∈ L(G∧SIMSUP) = L(G∧SUPER),
we know that δ(b, σ)!. Thus, σ /∈ DSUPER(b), namely
EnSUPER(a) ∩DSUPER(b) = ∅, as required.

Next, we show that

TSUPER(a) = TSUPER(b)⇒MSUPER(a) = MSUPER(b).

To this end, let y ∈ Y and a, b ∈ Z(y) with
MSUPER(a) 6= MSUPER(b). Without loss of generality, as-
sume that MSUPER(a) = true and MSUPER(b) = false.
Since MSUPER(a) = true, there exists s ∈ Lm(G ∧ S)

such that δ(z0, s) = a. Thus, TSUPER(a) = true. Since
a ∈ Z(y), we know that there exists s′ ∈ L(G ∧ S)
such that δ(z0, s

′) = a and η(y0, s
′) = y. Thanks to the

uncertainty subset construction, we know that there exists
ŝ ∈ P−1

o (Po(s
′)) ∩ Lm(G ∧ S) such that δ(z0, ŝ) = a

and, because SIMSUP is a feasible supervisor, we have
η(y0, ŝ) = y. This means y ∈ Ym. Since b ∈ Z(y), for
all t ∈ L(G∧S) with δ(z0, t) = b, thanks to the uncertainty
subset construction and the fact that SIMSUP is a feasible
supervisor, we can deduce that there exists t̂ ∈ L(G ∧ S)
such that δ(z0, t̂) = b, η(y0, t̂) = y and t ∈ Lm(G) ⇐⇒
t̂ ∈ Lm(G). Since MSUPER(b) = false, we know that
t̂ /∈ Lm(G ∧ S) = Lm(G ∧ SIMSUP). Since y ∈ Ym,
we deduce that t̂ /∈ Lm(G). Thus, t /∈ Lm(G). Since t is
arbitrarily chosen, we know that TSUPER(b) = false. Thus,
we have

MSUPER(a) 6= MSUPER(b)⇒ TSUPER(a) 6= TSUPER(b),

or equivalently,

TSUPER(a) = TSUPER(b)⇒MSUPER(a) = MSUPER(b).

Finally, we need to show that for each y ∈ Y and σ ∈ Σ,
there exists y′ ∈ Y such that

(∀z ∈ Z(y))δ(z, σ)!⇒ δ(z, σ) ∈ Z(y′).

Let z ∈ Z(y) and δ(z, σ)!. Clearly, there exists s ∈ L(G∧S)
such that sσ ∈ L(G ∧ S) and δ(z0, s) = z. By using an
argument similar to the above, we know that there exists s′ ∈
P−1
o (Po(s))∩L(G∧ S) such that δ(z0, s

′) = z, η(y0, s
′) =

y, and s′σ ∈ L(G ∧ S). Clearly, η(y, σ)!. Thus, δ(z, σ) ∈
Z(η(y, σ)), as required.

So far we have shown that C = {(Z(y), y)|y ∈ Y } is
a control cover on SUPER. Let SC := (Y,Σ, κ, y0, Ym) be
induced from C, where

(∀y ∈ Y)(∀σ ∈ Σ)κ(y, σ) :=

{
η(y, σ) if η(y, σ)!,
undefined otherwise.

For any y ∈ Y and σ ∈ Σ, assume that there exists z ∈ Z(y)
such that δ(z, σ)!. For all z′ ∈ Z(y), we know that there ex-
ists s ∈ L(G∧S) such that δ(z0, s) = z′ and η(y0, s) = y. If
δ(z′, σ)!, by the construction of SUPER we know that there
must exist s′ ∈ Σ∗ and u ∈ Σ∗uo such that Po(s) = Po(s

′),
δ(z0, s

′u) = z′ and s′uσ ∈ L(G ∧ SUPER) = L(G ∧ S) ⊆
L(SIMSUP) (owing to the control equivalence of SIMSUP
to S). Since SIMSUP is feasible, by the control feasibility
property and the fact that Po(s) = Po(s

′), we know that
η(y0, s) = η(y0, s

′) = y. Since s′uσ ∈ L(SIMSUP), by
the control feasibility property and the fact that u ∈ Σ∗uo,
we know that η(y0, s

′uσ) = η(y, uσ) = η(y, σ). Thus,
δ(z′, σ) = δ(z0, s

′uσ) ∈ Z(η(y, σ)). This means

(∃z ∈ Z(y))δ(z, σ)!⇒ (∀z′ ∈ Z(y))[δ(z′, σ)!⇒ δ(z′, σ) ∈
Z(η(y, σ))].

By Theorem 1 we know that SC is a feasible supervisor,
which is control equivalent to S with respect to G. In
addition, there exists a natural bijective mapping between

the state set Y of SIMSUP and the state set Y of SC with
respect to the control cover C,

θ : Y → Y : y 7→ θ(y) := y.

Thus, SC is DES-isomorphic to SIMSUP, which completes
the proof. �

Proof of Theorem 3: Let SUPER = (Ẑ,Σ, δ̂, ẑ0, Ẑm) and
S′ = (Z ′,Σ, δ′, z′0, Z

′
m). Let s ∈ L(G ∧ S). Recall that

SUPER is obtained by applying the uncertainty subset
construction on G ∧ S. Thus, we know that the following
properties hold:
(a) (∀σ ∈ EnSUPER(δ̂(ẑ0, s)))(∃s′ ∈ L(G ∧ S)) s′σ ∈

L(G ∧ S) ∧ δ̂(ẑ0, s
′) = δ̂(ẑ0, s),

i.e., no transition in SUPER is redundant.
(b) (∀s′, s′′ ∈ L(G ∧ S))Po(s

′) = Po(s
′′) ⇒ δ̂(ẑ0, s

′) =
δ̂(ẑ0, s

′′),
i.e., strings with the same projected image with respect
to Po reach the same state.

(c) for any two strings s′, s′′ ∈ L(G ∧ S), if δ̂(ẑ0, s
′) =

δ̂(ẑ0, s
′′), then

{σ ∈ Σ|(∃t ∈ L(G ∧ S) ∩ P−1
o (s′))tσ ∈ L(G ∧ S)} =

{σ′ ∈ Σ|(∃t′ ∈ L(G∧S)∩P−1
o (s′′))t′σ′ ∈ L(G∧S)},

i.e., for any event σ ∈ Σ, there exists a string t ∈
L(G ∧ S) ∩ P−1

o (s′) such that σ is enabled after t iff
there exists a string t′ ∈ L(G∧S)∩P−1

o (s′′) such that
σ is enabled after t′.

Let z := δ̂(ẑ0, s). Thus, we know that

EnSUPER(δ̂(ẑ0, s))

= ∪s′∈L(G∧S):δ̂(ẑ0,s′)=z
{σ ∈ Σ|s′σ ∈ L(G ∧ S)} by Property (a)

= ∪s′∈L(G∧S):δ̂(ẑ0,s′)=z
{σ ∈ Σ|(∃t ∈ L(G ∧ S))tσ ∈ L(G ∧ S) ∧ Po(s′) = Po(t)} by Property (b)

= {σ ∈ Σ|(∃s′ ∈ L(G ∧ S))s′σ ∈ L(G ∧ S) ∧ Po(s) = Po(s
′)} by Property (c)

⊆ {σ ∈ Σ|(∃s′ ∈ L(S′)Po(s) = Po(s
′) ∧ s′σ ∈ L(S′)} as L(G ∧ S) ⊆ L(S′) and S′ is feasible

= EnS′(δ
′(z′0, s))

Thus, EnSUPER(δ̂(ẑ0, s)) ⊆ EnS′(δ′(z′0, s)).
To show that DSUPER(δ̂(ẑ0, s)) ⊆ DS′(δ

′(z′0, s)), let
σ′ ∈ DSUPER(δ̂(ẑ0, s)) and z := δ̂(ẑ0, s). Then ¬δ̂(z, σ′)!
but there exists s′σ′ ∈ L(G) such that δ̂(ẑ0, s

′) = z. Clearly,
s′ ∈ L(G ∧ S) but s′σ′ /∈ L(S). In addition, by definition
of the uncertainty subset construction, we can choose s′ in
such a way that Po(s) = Po(s

′). Thus, we know that

σ′ ∈ {σ ∈ Σ|(∃s′ ∈ L(G∧S)) s′σ ∈ L(G)∧Po(s) = Po(s
′)∧s′σ /∈ L(S)},

which means DSUPER(z) ⊆ {σ ∈ Σ|(∃s′ ∈ L(G ∧ S)) s′σ ∈
L(G) ∧ Po(s) = Po(s

′) ∧ s′σ /∈ L(S)}. Thus, we have

DSUPER(z) ⊆ {σ ∈ Σ|(∃s′ ∈ L(G ∧ S)) s′σ ∈ L(G) ∧ Po(s) = Po(s
′) ∧ s′σ /∈ L(S)}

⊆ {σ ∈ Σ|(∃s′ ∈ L(G ∧ S′)) s′σ ∈ L(G) ∧ s′σ /∈ L(S′) ∧ δ′(z′0, s) = δ′(z′0, s
′)}

because L(G ∧ S) = L(G ∧ S′)
= DS′(δ

′(z′0, s))

Assume that MSUPER(δ̂(ẑ0, s)) = true. Then
s ∈ Lm(G ∧ S) = Lm(G ∧ S′), which means
MS′(δ

′(z′0, s)) = true. Assume that TSUPER(δ̂(ẑ0, s)) =

true. Then s ∈ Lm(G), which means TS′(δ′(z′0, s)) = true.
Thus, we have SUPER � S′. �

Proof of Theorem 4: Let Sj = (Zj ,Σ, δj , zj,0, Zj,m) (j =
1, 2), and Rj ⊆ Zj × Zj the binary compatibility relation
over Zj . Let C2 = {(Z2,i, i)|Z2,i ⊆ Z2 ∧ i ∈ I2} be a
minimal control cover on S2. By Definition 1 we know that

1) (∀i ∈ I2)Z2,i 6= ∅ ∧ (∀z, z′ ∈ Z2,i) (z, z′) ∈ R2,
2) (∀i ∈ I2)(∀σ ∈ Σ)(∃j ∈ I2)[(∀z ∈ Z2,i)δ2(z, σ)! ⇒

δ2(z, σ) ∈ Z2,j].
Since S2 is non-redundant with respect to S, we can derive
that for each z ∈ Z2 there exists s ∈ L(G ∧ S) such that
δ2(z2,0, s) = z. For each (Z2,i, i) ∈ C2, let

L(Z2,i) := {s ∈ L(G∧S)|δ2(z2,0, s) ∈ Z2,i}∪(Σ∗ \L(G)).

We can easily check that

EnS2(Z2,i) := ∪z∈Z2,iEnS2(z) = {σ ∈ Σ|sσ ∈
L(G ∧ S) ∧ s ∈ L(Z2,i)}.

Since S1, S2 ∈ F(G,S), we know that L(Z2,i) ∩ L(G) ⊆
L(G ∧ S2) = L(G ∧ S1). Let

Ĉ1 := {(Z1,i, i)|Z1,i ⊆ Z1∧[z ∈ Z1,i ⇐⇒ (∃s ∈
L(Z2,i))δ1(z1,0, s) = z] ∧ i ∈ I2}.

We now show that Ĉ1 is a control cover of S1. First, we show
that {Z1,i|i ∈ I2} is a cover of Z1. To see this, notice that
∪i∈I2L(Z2,i)∩L(G) = L(G∧S) = L(G∧S2) = L(G∧S1).
Since S1 is also non-redundant with respect to S, we know
that {Z1,i|i ∈ I2} must be a cover of Z1. It is obvious that,
for all (Z1,i, i), (Z1,j , j) ∈ Ĉ1, we have that i = j implies
Z1,i = Z1,j .

To show that Ĉ1 is a control cover of S1, we need to
show that the remaining Conditions 2-3 stated in Definition
1 hold. To check Condition 2, for each (Z1,i, i) ∈ Ĉ1 and for
all z1, z

′
1 ∈ Z1,i, we know that there exist s, s′ ∈ L(Z2,i)

such that δ1(z1,0, s) = z1 and δ1(z1,0, s
′) = z′1. On the

other hand, let z2 = δ2(z2,0, s) and z′2 = δ2(z2,0, s
′). Since

S1 � S2, we know that
• EnS1

(z1) ⊆ EnS2
(z2) and DS1

(z1) ⊆ DS2
(z2),

• MS1
(z1) = true⇒MS2

(z2) = true,
• TS1

(z1) = true⇒ TS2
(z2) = true,

and
• EnS1(z′1) ⊆ EnS2(z′2) and DS1(z′1) ⊆ DS2(z′2),
• MS1

(z′1) = true⇒MS2
(z′2) = true,

• TS1
(z′1) = true⇒ TS2

(z′2) = true.
Since (z2, z

′
2) ∈ R2, we have

• EnS2(z2) ∩DS2(z′2) = EnS2(z′2) ∩DS2(z2) = ∅,
• TS2(z2) = TS2(z′2)⇒MS2(z2) = MS2(z′2).

Thus, we can easily conclude that

EnS1
(z1) ∩DS1

(z′1) = EnS1
(z′1) ∩DS1

(z1) = ∅.

To show that

TS1
(z1) = TS1

(z′1)⇒MS1
(z1) = MS1

(z′1),

it is clear that if TS1
(z1) = TS1

(z′1) = false, then by the
definition of MS1

we know that MS1
(z1) = MS1

(z′1) =

false. So we only need to show that when TS1
(z1) =

TS1
(z′1) = true, we have MS1

(z1) = MS1
(z′1). Suppose

otherwise. Then without loss of generality, let MS1
(z1) =

true and MS1
(z′1) = false. Since MS1

(z′1) = false and
TS1(z′1) = true, we can conclude that MS2(z′2) = false
due to the control equivalence of S1 and S2. But on the
other hand, since S1 � S2, we know that MS1

(z1) = true
implies that MS2

(z2) = true. Thus, we have TS2
(z2) =

TS2
(z′2) = true, MS2

(z2) = true, and MS2
(z′2) = false,

which contradicts our assumption that

TS2
(z2) = TS2

(z′2)⇒MS2
(z2) = MS2

(z′2).

Thus, we can only have MS1
(z1) = MS1

(z′1), which means
(z1, z

′
1) ∈ R1.

To see that Condition 3 is satisfied, for each i ∈ I2, σ ∈ Σ,
we know that there exists j ∈ I2 such that

(∀z ∈ Z2,i)δ2(z, σ)!⇒ δ2(z, σ) ∈ Z2,j .

For each z′ ∈ Z1,i, if δ1(z′, σ)!, there there are two cases.
Case 1: there exists s ∈ L(Z2,i) such that δ1(z1,0, s) = z′

and sσ ∈ L(G ∧ S). Since δ2(z2,0, s) = z′′ ∈ Z2,i and
δ2(z′′, σ)!, we know that sσ ∈ L(Z2,j). Thus, δ1(z′, σ) ∈
Z1,j . Case 2: for all s′ ∈ L(Z2,i) with δ1(z1,0, s

′) = z′,
we have s′σ /∈ L(G∧ S). Then clearly s′σ /∈ L(G) because
otherwise the first condition of control cover will be violated.
Thus, we still have that s′σ ∈ L(Z2,j). Thus, δ1(z′, σ) ∈
Z1,j . So in either case, we can conclude that

(∀z ∈ Z1,i)δ1(z, σ)!⇒ δ1(z, σ) ∈ Z1,j ,

which completes our proof that Ĉ1 is a control cover of S1.
Clearly, |Ĉ1| = |C2|. On the other hand, if C1 is a minimal

control cover of S1, we know that |C1| ≤ |Ĉ1|. Thus, we
can conclude that |C1| ≤ |C2|. �

