
  

  

Abstract— This study aims at predicting affective states 

during programming using keyboard and mouse data. The 

article proposes and evaluates a novel set of features under 

programming context to predict affective states. Fourteen 

undergraduate participants performed three programming 

tasks of varying difficulties.  At the completion of each task, 

participants reported their affective states by viewing webcam 

videos and screen recordings. Features extracted from keyboard 

and mouse logs were used to train multiple classifiers. Among 

trained classifiers, feedforward neural network recognized 

positive, neutral and negative states with 52.9% accuracy. The 

overall Cohen’s Kappa reached 0.27. Without neutral states, the 

classifiers were able to differentiate positive and negative states 

with 74.1% accuracy and 0.48 Kappa. Our approach 

demonstrates improved ability of predicting self-labelled 

affective states of programmers from keyboard and mouse data, 

without using specialized sensors, and potential of emotional 

feedback to programmers during learning to deliver better 

experience. 

I. INTRODUCTION 

It is now a common practice for people to learn 
programming skills through various e-learning platforms. 
Typically, these platforms have videos and exercises for users 
to watch and practice. However, most e-learning platforms 
lack the awareness of users’ affective states (emotion, stress, 
etc.) and do not respond to their emotions1. 

Many researchers have found that emotions are related to 
learning process and academic achievement [1, 2]. In terms of 
programming learning, a study shows that affect such as flow 
[3] is positively related to programming achievement and 
affects like boredom and confusion are negatively related to 
programming outcome [4]. Therefore, if emotions can be 
detected by the platform, it can give corresponding feedbacks 
to improve learning experience. Research has demonstrated 
the effectiveness of emotional feedback. Shen et al. proposed 
an affective e-learning model and built an experimental 
prototype that provided customized learning material based on 
emotion predicted. Their results showed a significant 91% 
performance increase with emotion-aware over non-emotion-
aware platforms [5]. Other good examples of affect-sensitive 
intelligent tutoring systems include AutoTutor integrated with 
emotion sensors [6] and JavaTutor [7]. 

Others have previously used various methods to predict 
emotions of programmers. Muller et al. utilized biometric 
features such as electroencephalography (EEG) data, skin 
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temperature, heart rate and eye tracking data [8]. 
Unfortunately, it is not practical to use biometric sensors in 
software platforms since they are mostly intrusive devices. 
Bosch et al. used Computer Expression Recognition Toolbox 
(CERT) to detect facial expressions from video and predict 
emotions [9]. Facial expressions are good indicators of 
emotions, video features however may be subject to 
environmental factors like lighting, video quality and 
recognizable faces. Drosos et al. extracted AST nodes, 
stylometric features and wordgram from code snippets to 
predict frustration [10]. While it yielded a high prediction 
accuracy, it cannot reflect emotion changes occurred during 
programming. For example, user can delete and rewrite part of 
the code which may change prediction completely. In this 
paper, we specifically analyze keyboard and mouse data and 
derive features that can predict self-labelled affective states 
from programmers. Choosing keyboard and mouse over other 
methods has several advantages. Firstly, keyboard and mouse 
are inexpensive and easily available. Secondly, keyboard and 
mouse are non-intrusive devices. In our experiment, 
participants labeled their affective states in each minute of 
mouse-key log by reviewing webcam videos and screen 
recordings. With collected data, we conducted feature 
engineering and evaluated feature set in predicting emotions 
with several classifiers. 

II. RELATED WORKS 

An experiment was conducted to discover emotions 
experienced during programming learning. In a computerized 
learning environment, Bosch et al. [11] studied what emotions 
novice programmers experienced during their first computer 
programming class. Researchers extracted key presses, “Run”, 
“Stop”, “Submit”, “Show Hint” button presses, code snapshots 
and videos of participants’ facial expressions during 
experiment and emotion labels were reported by participants 
who reviewed recorded videos. The results showed that five 
affective states: flow/engaged, neutral, confusion/uncertainty, 
boredom, frustration comprised 83% of the overall emotions 
experienced by novice programmers. Our study used these five 
affective states as labels. 

 A few literatures have discussed the detection of affective 
states during programming using keyboard and mouse data. 
Some studies investigated predicting emotion with mouse. 
Hernandez et al. [12] demonstrated a pressure-sensitive 
keyboard and capacitive mouse could be used to sense user’s 
stress while performing designed tasks that required the use of 
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keyboard/mouse under stressed/relaxed condition. Analysis 
showed that increased levels of stress greatly influenced typing 
pressure and amount of mouse contact. Most people tend to 
show forceful typing pressure and larger contact with mouse. 
Sun et al. [13] showed muscle stiffness in arm/hand, which are 

proved to be effective in detecting stress, can be captured from 
common mouse using mass-spring-damper system parameters 
with the help of a linear predictive coding model.  Hibbeln et 
al. [14] used mouse cursor movements (specifically mouse 
move speed and di

stance) to infer negative emotions while performing a 
number ordering task and a task interacting with an e-
commerce website. The negative emotions were induced by 
introducing unfair tasks on the computer. Experiments were to 
test the attentional control theory [15] that negative emotions 
decrease people’s ability to control their attention. The result 
showed that negative emotion may affect mouse cursor 
distance and speed, resulting in greater cursor distance and 
slower average cursor speed. Some researchers demonstrated 
prediction using keystroke data. Epp et al. [16] extracted 
typing rhythms on the keyboard to detect users’ emotional 
states when typing a free text paragraph. Keyboard features 
including keystroke duration features (dwell) such as duration 
of 1st key of all digraphs, keystroke latency features (flight) 
such as time elapsed from one key release to another key press, 
and features that combines dwell and flight features were 
extracted from the keyboard. There were also studies 
combining both mouse and keyboard data for prediction. 
Zimmermann et al. [17] used both mouse and keyboard 
features such as number of mouse clicks per minute, average 
duration of mouse clicks, total and average distance of mouse 
movements in pixels, keystroke per second, average duration 
of one keystroke, etc., to recognize induced emotions. 
Rodrigues et al. [18] carried out a study using both keyboard 
and mouse data to detect stress and used a feature set including 
click duration, click accuracy, amount of mouse movement, 
mouse clicks and keystrokes. It was found out that 
substantially greater usage of mouse and keyboard, high 
frequency of backspace key pressed, mouse clicks and scroll 
usage were indicators of stress. 

Our work follows the recent study by Vea et al. [19] who 
used keyboard and mouse data to detect negative emotions of 
novice programming students learning C++. They used a 
combination of keyboard and mouse features and extracted 
features defined by a set of rules proposed in literature. The 
feature set was divided into three sets: (i) keystroke verbosity 
features such as keys pressed and typing speed; (ii) keystroke 
durations and latency features of digraph and trigraph; and (iii) 
mouse features derived from the number of left/right clicks. 
Extracted features were used to recognize three emotional 
labels namely frustration, confusion and boredom. Emotional 
labels were derived from viewing the webcam videos by 
researchers, rather than by self-judged reports by participants. 
In this study, we used self-judged approach to collect emotion 
labels since we believed participant reported labels were more 
realistic. We built on previously discovered features and 
introduced more programming-related features, which 
achieved higher accuracies in predicting self-labelled positive 
and negative emotions of programmers than other studies [8, 
9]. 
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III. METHODOLOGY 

This section explains three processes in our methods: data 
collection, feature extraction and selection, and predictive 
model building. 

A. Data Collection 

A mouse-keyboard logger was written in Python, inspired 
by Selfspy written by Gurgeh2. The logger ran in background 
and collected keyboard and mouse data while programming. 
The logger used PyHook3 module to listen to low-level input 
device events such as key down, key up, and mouse move. It 
then stored collected data to SQLite4 files. Logitech C922 Pro 
Stream Webcam was used to record facial video. A video and 
screen recorder were implemented using FFmpeg 5 . Data 
collection Graphic User Interface (GUI) was implemented 
using Python and contained instructions to guide participants 
through programming tasks. The execution of the 
programming task was synchronized with the mouse-keyboard 
logger, FFmpeg recording, and Sublime Text Integrated 
Development Environment (IDE).  

In our experiment, we specifically made the following 
assumptions. 

1. We assumed someone familiar with Python 
Programming once programmed in projects using 
Python before and is familiar with basic syntax. 

2. We assumed year 3 and year 4 undergraduate students 
with programming experience had some knowledge 
about algorithm. 

Fourteen (9 male and 5 female) year 3 and year 4 
undergraduate students who claimed Python programming 
familiar to them participated in the experiment and performed 
three programming tasks of varying difficulties. At the start of 
the experiment, participants were given guidelines and 
reminded the definitions of emotion labels. The participants 
would carry out three programming tasks (at easy, medium, 
and hard difficulty levels) in an experimental session. These 
tasks were carefully chosen from Leetcode 6 , an online 
programming learning website. We estimated and chose easy 
problems with finish time estimation of 15-20 mins, medium 
problems with 30 mins estimation and hard problems with 
more than 30 mins estimation to induce negative emotions. 
Participants needed to solve each algorithm problem within a 
30-minute limit. To be more like real life scenario, participants 
could search for help in the internet but not for solutions. Web 
search was not separated from programming work in this study 
for following reasons: (i) programmers search in the internet 
all the time when learning and working; and (ii) activities such 
as web search may reflect emotion of a programmer. To record 
as much keyboard/mouse data as possible, pens and draft 
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paper were not provided. The participants could choose to end 
one task in advance if he/she successfully finished the 
assignment.  

Upon completion of each task, the participant was 
prompted with labeling GUI window. During labeling process, 
participants were shown with screen recording and video of 
facial expressions at 1.5x speed to avoid long labeling process. 
The videos were divided into clips corresponding to one 
minute of real time. As opposed to 15s used in previous studies 
[9, 19], we used 1 min time interval because emotions were 
observed not to change frequently and one-minute interval 
provided more data to train the classifiers. Participants were 
asked to report the most appropriate affective state 
(Flow/Engagement, Neutral, Boredom, Confusion, or 
Frustration) to each video clip. 

B. Feature Extraction 

The raw mouse-key log cannot be used for classification 
immediately. Some features need to be extracted. In our study, 
we carefully devised our feature set to be programming-related. 
Primary features were first constructed from raw mouse-key 
log. Table 1 lists seven primary features collected from mouse-
key logs. We discarded the first- and last-minute data of each 
programming task to avoid initial and final settling effects. 
After this process, a mouse-key log of primary features was 
obtained. 

Inspired by earlier studies and our own experience, we 
calculated the secondary features given in Table 2 from 
primary feature log. These secondary features are usually 
counts and average values in one minute. Each minute of 
primary feature log was therefore condensed into one data 
point. Emotion labels acquired in data collection process were 
assigned to corresponding data points.  

Secondary features were divided into four categories: 
keystroke verbosity features, mouse features, keyboard/mouse 
usage features, and keystroke dynamics. Keystroke verbosity 
features measured number of keystrokes/keys 
hold/combination keys that have special functionality in the 
IDE or text editor for programming work. These features are 
closely related to programmers’ behaviors. For example, we 
measured number of backspace and delete keys to monitor 
whether participants encounter mistakes in the code. Large 
values of backspace keys typed in one minute indicate the 
programmer is not in flow. Same for combination keys, we 
counted the number of undo, copy, save and build keystrokes. 
These combination keys are frequently used in programming. 
Take build keys for example, it is usually an indicator of 
confusion because there are usually bugs or syntax errors after 
building the code, which tend to make programmers confused. 
We also counted the keystroke that happens outside the IDE to 
explore if out-of-editor activities such as web search helped in 
emotion prediction. 

Mouse behaviors captured all possible mouse actions, 
including mouse left/right clicks, mouse wheel action, mouse 
drag, number of mouse move, mouse move average speed. We 
design them because earlier study showed negative affects 
resulted in slower mouse speed and greater distance [14], and  
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TABLE I.  PRIMARY FEATURES EXTRACTED FROM MOUSE-KEY LOGS 

mouse click, scroll could be seen as indicators of stress [18], 
which may lead to other negative emotions. 

Inspired by work of stress detection from Roduigues et al. 
[18], we added keyboard/mouse usage features which were a 
set of time-related features including keyboard idle time, 
number of keyboard idle events, mouse idle time and number 
of mouse idle events. 

Keystroke dynamics were comprised of key press and 
release time. Inspired by Epp et al. [16], we designed new 
keystroke dynamic features under programming context. It 
included the average dwell time between the first and second 
keystrokes in Python keywords, consecutive arrow keys, and 
consecutive backspace keys. Programming keyword, arrow 
keys and delete keys occur frequently in keyboard log of a 
code snippet just like digraph and trigraph in a free text. We 
would like to explore if the keystroke dynamics of them can 
be used to predict emotion as well. We performed a feature 
scaling on average time duration between two pressed keys to 
eliminate individual differences in typing speeds. We did not 
scale intervals between consecutive arrow keys and backspace 
keys because they were not seen as words.  

To improve features for classification, we performed 
correlation analysis and recursive feature elimination. The 
correlated features were eliminated and features were ranked 
using recursive feature elimination (RFE). Least effective 
features were identified and removed in RFE using cross 
validation until an optimal set of features was obtained. The 
optimal feature set is then used for classification.  

C. Classification 

Since building individualized models require multiple 
experiments from the same subject, we build subject 
independent models to predict emotions from keyboard and 
mouse data. We tested with a few classifiers. Among them, 
SoftMax classifier, feedforward neural network with one 
hidden layer and SoftMax output layer, random forest, a 
gradient boosting decision tree called XGBoost7 showed good 
performance.  

We received only a few responses for boredom and 
frustration labels. This could be due to tasks being not bored 
and participants were not given huge pressure to finish the task 
in time. Because of the lack of data, we aggregated the labels 
into three affective states, namely positive, neutral and 
negative. The positive emotion includes engagement.

Feature Description 

Mouse Click 
Left/Right/Middle mouse clicks, position, 

whether the event is in IDE 

Mouse Scroll 
Scroll up/down and position, whether the event 
is in IDE 

Mouse Move 
Mouse move with move length (Euclidean 

distance in pixels) and duration 

Mouse Drag Mouse drag behaviors 

Mouse Idle Record mouse idle time 

Keystroke 
Keycode/Combination, whether user holds the 

key, key hold time, whether the event is in IDE 

Keyboard Idle Record keyboard idle time 



  

TABLE II.  SECONDARY FEATURES EXTRACTED FROM PRIMARY MOUSE-KEY LOG 

  

The negative emotions combined frustration, confusion and 
boredom states. All participants contribute data to positive and 
neutral states and over 78.5% of participants contribute to all 
affective states. 

IV. RESULTS 

Fourteen undergraduates with prior experience in Python 
programming participated in three programming tasks each 
lasting for 30 minutes. After each task, participants provided 
emotional labels for each minute of the task by going through 
facial videos and screen recording. We divided dataset into 
train set and test set with an 8:2 ratio. Classifiers’ 
performances were evaluated. 

A. Feature Selection and Ranking 

Correlation map between features, visualized with 
Seaborn8,  is given in Figure 1. Numbers in the graph are 
feature numbers in Table 2. We identified two highly 
negatively correlated (smaller than -0.8) features (18: 
keyboard idle time and 29: mouse idle time), and two highly 
positive correlated (larger than 0.8) features (26: mouse wheel 
action and 28: not_ide_clicks). Deleting one of the highly 
correlated features improved the accuracy of the classifiers.  

The RFE was applied to the feature set with all classifiers 
for ranking features and identifying an optimal set of features. 
Usually the dimension of the final set is around 20 features. 
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Features were ranked based on the aggregate ranking score. 
The top 10 features are shown in Table 3. As seen, novel 
features such as arrow_keys (Keystroke Verbosity), 
duration_deletion and duration_keyword (Keystroke 
Dynamics) were ranked high and shown to be highly effective 
in predicting emotions from keyboard and mouse data.  

B. Classifier Performance 

We evaluated prediction accuracies with a set of classifiers. 
SoftMax classifier, feedforward neural network with one 
hidden layer, random forest and XGBoost had better 
performance and their performance were shown in this paper.  

 

Figure 1.  Correlation Heatmap Between Features 

Feature type Feature number Feature code Description 

Content Features 

1 Total_keys No of keystrokes typed 

2 Hold_keys No of keystrokes user held 

3 Backspace_keys No of backspace keys typed 

4 Delete_keys No of delete keys typed 

5 Undo_keys No of “Ctrl+Z” combination typed 

6 Copy_keys No of “Ctrl+C” combination typed 

7 Deletion_held_keys No of “backspace, delete, Ctrl+Z” keys held 

8 Combo_keys No of overall combination key 

9 Save_keys No of “Ctrl+S” typed 

10 Alt_tab_keys No of “Alt+Tab” typed 

11 Build_keys No of “Ctrl+B” typed 

12 Arrow_keys No of “Up, Down, Left, Right” typed 

13 Home_end keys No of “Home and End” typed 

14 Not_ide_keys No of keystrokes typed outside IDE 

28 Not_ide_clicks No of clicks outside IDE 

Keyboard 
Dynamic Features 

15 Duration_keywords 
Average duration between 1st and 2nd key down in a keyword in one 

minute 

16 Duration_arrow 
Average duration between 1st and 2nd key down in consecutive arrow 

keys typed in one minute 

17 Duration_deletion 
Average duration between 1st and 2nd key down in consecutive 

backspace keys typed in one minute 

Mouse Behaviors 

20 Mouse_move_avg_speed Average speed of mouse movement 

21 Mouse_move_times No of mouse moves 

22 Mouse_move_total_length Total length of mouse move in one minute 

23 Mouse_move_total_time Total time of mouse move in one minute 

24 Mouse_left_click No of left clicks 

25 Mouse_right_click No of right clicks 

26 Mouse_wheel_action No of scroll events 

27 Mouse_drag No of mouse drags 

Keyboard/Mouse 

Usage Features 

18 Keyboard_idle_time Total keyboard idle time 

19 Keyboard_idle_events No of keyboard idle events 

29 Mouse_idle_time Total mouse idle time 

30 Mouse_idle_events No of keyboard idle events 



  

TABLE III.  TOP 10 RANKED FEATURES 

 

Since the dataset was unbalanced, we used Synthetic 
Minority Over-sampling Technique (SMOTE) technique [20] 
which generates minority labels with replacement using K-
Nearest Neighbor method, to rebalance the dataset and not to 
overfit classifiers due to the lack of data. To avoid possible 
overfitting, we used L2 regularization to penalize large 
weights in training neural network classifiers. For tree-based 
methods, the maximum depth and the number of estimators 
were specified. 

Table 4 shows the performances of different classifiers in 
predicting positive, neutral and negative affective states. The 
best overall accuracy of 52.93% was achieved by feedforward 
neural network. Since classifiers were sensitive to 
initializations, performance measures were reported as 
averages of 100 prediction attempts. In each attempt, the 
training and test set were randomly subsampled. F1 score and 
Cohen’s Kappa statistic [21] were also used to measure the 
performances due to the imbalance of class labels. According 
to Landis and Koch [22], the Kappa score value of 0.2788 
indicates fair agreement between data points.  

As seen from Table 4, the model differentiates positive and 
negative emotions well but struggles to predict neutral 
emotions. This may be because the neutral state does not carry 
any features that are drastically different from positive or 
negative emotions. For example, participants might have 
reported their affective states as neutral though they had mild 
positive or negative emotions. Another reason could be they 
marked idle periods with no keyboard/mouse inputs as neutral. 
To see the confounding effects of neutral state, we built a 
classifier to differentiate only the positive and negative 
affective states. The results listed in Table 5 shows an 
improvement of performance: 74.1% predicting positive and 
negative emotions with improved Kappa of 0.481. 

V. DISCUSSION 

The aim of our work is to explore useful features and 
methods that can detect self-labelled programmer’s affective 
states with non-intrusive input devices such as keyboard and 
mouse. Compared to some of previous works, our set of 
features showed better performance in predicting positive and 
negative affective states. Bosch et al. [9] tracked facial features 
and achieved Cohen’s Kappa of 0.22 and 0.23 for confusion 
and frustration and 0.04, 0.11 and 0.07, for boredom, 
flow/engagement and neutral states, respectively. Müller et al. 
[8] distinguished positive and negative emotions with an 
accuracy of 71.36% using features collected by biometric 
sensors. In contrast, our method using keyboard and mouse 
data distinguished the two labels with an accuracy of 74.11%. 

There are several ways that our current method can be 

improved in the future. As for data collected, we had a limited 

dataset, so more data is needed. What’s more, there were 

some time periods in which participants were thinking and not 

interacting input devices. These data points should be 

excluded from the analysis or we could add the “thinking” 

state in future study. Speaking of experiment design, we 

observed that given definitions of affective states, different 

volunteers may have different interpretations. Hence, in 

future work we will measure arousal and valence levels 

alongside the self-labelled affective states as the ground truth 

using biometric sensors. Besides, there were labels with very 

few responses. This could be due to the flaw in our 

experiment design or the chosen affective states cannot fully 

model the participants’ feelings. In future study, we will 

design other emotion inducing techniques and apply 

unsupervised clustering to the ground truth data to obtain an 

accurate set of emotion labels under programming context. 

Regarding the current feature set, we didn’t measure key-up 

time in mouse-keyboard logger. With key-up time measured, 

researchers can design more keystroke dynamics features in 

the future such as duration. In addition, although we didn’t 

use distance-based in classifiers, we did apply KNN method 

in the dataset rebalancing step. As the size of dataset grows, 

it is necessary to apply other dimensionality reduction 

methodologies like Principle Component Analysis. and 

feedback to programmers 

VI. CONCLUSION 

Detecting emotions during programming is of vital 

importance for efforts on building next generation of e-

learning platforms that can infer emotions from input devices  

TABLE IV.  PERFORMANCES OF DIFFERENT CLASSIFIERS PREDICTING POSITIVE, NEUTRAL AND NEGATIVE AFFECTIVE STATES  

Feature Name Ranking 

Total_keys 1 

Mouse_move_total_length 2 

Keyboard_idle_events 3 

Arrow_keys 4 

Duration_deletion 5 

Mouse_move_total_time 6 

Mouse_move_times 7 

Backspace_typed 7 

Duration_keyword 9 

Mouse_move_average_speed 10 

Classifier Affect F1 score Precisions Recall Accuracies Cohen’s kappa 

XGBoost 

Positive 0.6158 0.5583 0.6898 

0.5223 0.2623 Neutral 0.1807 0.4078 0.1185 

Negative 0.5806 0.5107 0.6766 

Random Forest 

Positive 0.6126 0.5978 0.6316 

0.5161 0.2617 Neutral 0.2587 0.3550 0.2074 

Negative 0.5685 0.5075 0.6492 

SoftMax Classifier 

Positive 0.6030 0.5930 0.6157 

0.5212 0.2701 Neutral 0.2754 0.3621 0.2252 

Negative 0.5851 0.5225 0.6677 

Feedforward Neural 

Network 

Positive 0.6212 0.5931 0.6547 

0.5293 0.2788 Neutral 0.2434 0.3910 0.1790 

Negative 0.5855 0.5119 0.6866 



  

TABLE V.  PERFORMANCES OF DIFFERENT CLASSIFIERS PREDICTING POSITIVE AND NEGATIVE AFFECTIVE STATES  

to improve their experience and efficiency. 

The input devices for such systems cannot be intrusive and 

can be deployed without the knowledge of the programmers. 

We used common input devices like keyboard and mouse, and 

do not need other sophisticated input sensors.  
We conducted experiments to gather mouse-key logs while 

programming and affective states were given by participants 
after watching screen recordings and facial videos. From 
keyboard and mouse data, we constructed features including 
keystroke verbosity features, mouse behaviors, 
keyboard/mouse usage features and keystroke dynamics. Our 
results showed that the programming-related feature set 
performs well in detecting self-labelled emotions of 
programmers. Feedforward neural network trained predicting 

three emotional labels: positive, neutral and negative achieved 
an overall accuracy of 52.9% and 0.27 Kappa and when 
trained to predict two emotional labels: positive and negative, 
classifier reached an overall accuracy of 74.1% and 0.48 
Kappa.  

The present study demonstrates that keyboard and mouse 
data can be effectively used to predict emotions of the 
programmers. Our study can be used to build next generation 
of affect-sensitive intelligent tutoring system under 
programming context. Researchers could begin with the set of 
present features and investigate higher order features to further 
improve prediction performance. One could also research on 
using dynamics of raw keyboard and mouse data to design the 
classifiers.
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Classifier Affect F1 score Precision Recall Accuracies Cohen’s kappa 

XGBoost 
Positive 0.7495 0.7548 0.7470 

0.7274 0.4504 
Negative 0.6995 0.6991 0.7038 

Random Forest 
Positive 0.7319 0.7680 0.7017 

0.7199 0.4398 
Negative 0.7055 0.6750 0.7419 

SoftMax Classifier 
Positive 0.7491 0.7886 0.7158 

0.7384 0.4770 
Negative 0.7256 0.6919 0.7656 

Feedforward Neural 

Network 

Positive 0.7552 0.7820 0.7322 
0.7411 0.4810 

Negative 0.7244 0.7011 0.7519 
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