

Abstract— This study aims at predicting affective states

during programming using keyboard and mouse data. The

article proposes and evaluates a novel set of features under

programming context to predict affective states. Fourteen

undergraduate participants performed three programming

tasks of varying difficulties. At the completion of each task,

participants reported their affective states by viewing webcam

videos and screen recordings. Features extracted from keyboard

and mouse logs were used to train multiple classifiers. Among

trained classifiers, feedforward neural network recognized

positive, neutral and negative states with 52.9% accuracy. The

overall Cohen’s Kappa reached 0.27. Without neutral states, the

classifiers were able to differentiate positive and negative states

with 74.1% accuracy and 0.48 Kappa. Our approach

demonstrates improved ability of predicting self-labelled

affective states of programmers from keyboard and mouse data,

without using specialized sensors, and potential of emotional

feedback to programmers during learning to deliver better

experience.

I. INTRODUCTION

It is now a common practice for people to learn
programming skills through various e-learning platforms.
Typically, these platforms have videos and exercises for users
to watch and practice. However, most e-learning platforms
lack the awareness of users’ affective states (emotion, stress,
etc.) and do not respond to their emotions1.

Many researchers have found that emotions are related to
learning process and academic achievement [1, 2]. In terms of
programming learning, a study shows that affect such as flow
[3] is positively related to programming achievement and
affects like boredom and confusion are negatively related to
programming outcome [4]. Therefore, if emotions can be
detected by the platform, it can give corresponding feedbacks
to improve learning experience. Research has demonstrated
the effectiveness of emotional feedback. Shen et al. proposed
an affective e-learning model and built an experimental
prototype that provided customized learning material based on
emotion predicted. Their results showed a significant 91%
performance increase with emotion-aware over non-emotion-
aware platforms [5]. Other good examples of affect-sensitive
intelligent tutoring systems include AutoTutor integrated with
emotion sensors [6] and JavaTutor [7].

Others have previously used various methods to predict
emotions of programmers. Muller et al. utilized biometric
features such as electroencephalography (EEG) data, skin

*Research supported by Nanyang Technological University.

Hualin Liu was with Nanyang Technological University, Singapore,

Singapore (e-mail: liuhualin333@gmail.com).

Owen Newton Fernando, is with School of Computer Science and

Engineering, Nanyang Technological University, Singapore (e-mail:
ofernando@ntu.edu.sg).

temperature, heart rate and eye tracking data [8].
Unfortunately, it is not practical to use biometric sensors in
software platforms since they are mostly intrusive devices.
Bosch et al. used Computer Expression Recognition Toolbox
(CERT) to detect facial expressions from video and predict
emotions [9]. Facial expressions are good indicators of
emotions, video features however may be subject to
environmental factors like lighting, video quality and
recognizable faces. Drosos et al. extracted AST nodes,
stylometric features and wordgram from code snippets to
predict frustration [10]. While it yielded a high prediction
accuracy, it cannot reflect emotion changes occurred during
programming. For example, user can delete and rewrite part of
the code which may change prediction completely. In this
paper, we specifically analyze keyboard and mouse data and
derive features that can predict self-labelled affective states
from programmers. Choosing keyboard and mouse over other
methods has several advantages. Firstly, keyboard and mouse
are inexpensive and easily available. Secondly, keyboard and
mouse are non-intrusive devices. In our experiment,
participants labeled their affective states in each minute of
mouse-key log by reviewing webcam videos and screen
recordings. With collected data, we conducted feature
engineering and evaluated feature set in predicting emotions
with several classifiers.

II. RELATED WORKS

An experiment was conducted to discover emotions
experienced during programming learning. In a computerized
learning environment, Bosch et al. [11] studied what emotions
novice programmers experienced during their first computer
programming class. Researchers extracted key presses, “Run”,
“Stop”, “Submit”, “Show Hint” button presses, code snapshots
and videos of participants’ facial expressions during
experiment and emotion labels were reported by participants
who reviewed recorded videos. The results showed that five
affective states: flow/engaged, neutral, confusion/uncertainty,
boredom, frustration comprised 83% of the overall emotions
experienced by novice programmers. Our study used these five
affective states as labels.

 A few literatures have discussed the detection of affective
states during programming using keyboard and mouse data.
Some studies investigated predicting emotion with mouse.
Hernandez et al. [12] demonstrated a pressure-sensitive
keyboard and capacitive mouse could be used to sense user’s
stress while performing designed tasks that required the use of

Jagath C. Rajapakse is with the School of Computer Science and

Engineering, Nanyang Technological University, Singapore (e-mail:

asjagath@ntu.edu.sg).
1 We use “Affective State” and “Emotion” interchangeably in this

literature

Hualin Liu, Owen Noel Newton Fernando and Jagath C. Rajapakse, Fellow IEEE

Predicting Affective States of Programming using Keyboard Data

and Mouse Behaviors*

keyboard/mouse under stressed/relaxed condition. Analysis
showed that increased levels of stress greatly influenced typing
pressure and amount of mouse contact. Most people tend to
show forceful typing pressure and larger contact with mouse.
Sun et al. [13] showed muscle stiffness in arm/hand, which are

proved to be effective in detecting stress, can be captured from
common mouse using mass-spring-damper system parameters
with the help of a linear predictive coding model. Hibbeln et
al. [14] used mouse cursor movements (specifically mouse
move speed and di

stance) to infer negative emotions while performing a
number ordering task and a task interacting with an e-
commerce website. The negative emotions were induced by
introducing unfair tasks on the computer. Experiments were to
test the attentional control theory [15] that negative emotions
decrease people’s ability to control their attention. The result
showed that negative emotion may affect mouse cursor
distance and speed, resulting in greater cursor distance and
slower average cursor speed. Some researchers demonstrated
prediction using keystroke data. Epp et al. [16] extracted
typing rhythms on the keyboard to detect users’ emotional
states when typing a free text paragraph. Keyboard features
including keystroke duration features (dwell) such as duration
of 1st key of all digraphs, keystroke latency features (flight)
such as time elapsed from one key release to another key press,
and features that combines dwell and flight features were
extracted from the keyboard. There were also studies
combining both mouse and keyboard data for prediction.
Zimmermann et al. [17] used both mouse and keyboard
features such as number of mouse clicks per minute, average
duration of mouse clicks, total and average distance of mouse
movements in pixels, keystroke per second, average duration
of one keystroke, etc., to recognize induced emotions.
Rodrigues et al. [18] carried out a study using both keyboard
and mouse data to detect stress and used a feature set including
click duration, click accuracy, amount of mouse movement,
mouse clicks and keystrokes. It was found out that
substantially greater usage of mouse and keyboard, high
frequency of backspace key pressed, mouse clicks and scroll
usage were indicators of stress.

Our work follows the recent study by Vea et al. [19] who
used keyboard and mouse data to detect negative emotions of
novice programming students learning C++. They used a
combination of keyboard and mouse features and extracted
features defined by a set of rules proposed in literature. The
feature set was divided into three sets: (i) keystroke verbosity
features such as keys pressed and typing speed; (ii) keystroke
durations and latency features of digraph and trigraph; and (iii)
mouse features derived from the number of left/right clicks.
Extracted features were used to recognize three emotional
labels namely frustration, confusion and boredom. Emotional
labels were derived from viewing the webcam videos by
researchers, rather than by self-judged reports by participants.
In this study, we used self-judged approach to collect emotion
labels since we believed participant reported labels were more
realistic. We built on previously discovered features and
introduced more programming-related features, which
achieved higher accuracies in predicting self-labelled positive
and negative emotions of programmers than other studies [8,
9].

2 https://github.com/selfspy/selfspy
3 https://sourceforge.net/p/pyhook/wiki
4 https://www.sqlite.org/index.html

III. METHODOLOGY

This section explains three processes in our methods: data
collection, feature extraction and selection, and predictive
model building.

A. Data Collection

A mouse-keyboard logger was written in Python, inspired
by Selfspy written by Gurgeh2. The logger ran in background
and collected keyboard and mouse data while programming.
The logger used PyHook3 module to listen to low-level input
device events such as key down, key up, and mouse move. It
then stored collected data to SQLite4 files. Logitech C922 Pro
Stream Webcam was used to record facial video. A video and
screen recorder were implemented using FFmpeg 5 . Data
collection Graphic User Interface (GUI) was implemented
using Python and contained instructions to guide participants
through programming tasks. The execution of the
programming task was synchronized with the mouse-keyboard
logger, FFmpeg recording, and Sublime Text Integrated
Development Environment (IDE).

In our experiment, we specifically made the following
assumptions.

1. We assumed someone familiar with Python
Programming once programmed in projects using
Python before and is familiar with basic syntax.

2. We assumed year 3 and year 4 undergraduate students
with programming experience had some knowledge
about algorithm.

Fourteen (9 male and 5 female) year 3 and year 4
undergraduate students who claimed Python programming
familiar to them participated in the experiment and performed
three programming tasks of varying difficulties. At the start of
the experiment, participants were given guidelines and
reminded the definitions of emotion labels. The participants
would carry out three programming tasks (at easy, medium,
and hard difficulty levels) in an experimental session. These
tasks were carefully chosen from Leetcode 6 , an online
programming learning website. We estimated and chose easy
problems with finish time estimation of 15-20 mins, medium
problems with 30 mins estimation and hard problems with
more than 30 mins estimation to induce negative emotions.
Participants needed to solve each algorithm problem within a
30-minute limit. To be more like real life scenario, participants
could search for help in the internet but not for solutions. Web
search was not separated from programming work in this study
for following reasons: (i) programmers search in the internet
all the time when learning and working; and (ii) activities such
as web search may reflect emotion of a programmer. To record
as much keyboard/mouse data as possible, pens and draft

5 https://www.ffmpeg.org/
6 https://leetcode.com/

paper were not provided. The participants could choose to end
one task in advance if he/she successfully finished the
assignment.

Upon completion of each task, the participant was
prompted with labeling GUI window. During labeling process,
participants were shown with screen recording and video of
facial expressions at 1.5x speed to avoid long labeling process.
The videos were divided into clips corresponding to one
minute of real time. As opposed to 15s used in previous studies
[9, 19], we used 1 min time interval because emotions were
observed not to change frequently and one-minute interval
provided more data to train the classifiers. Participants were
asked to report the most appropriate affective state
(Flow/Engagement, Neutral, Boredom, Confusion, or
Frustration) to each video clip.

B. Feature Extraction

The raw mouse-key log cannot be used for classification
immediately. Some features need to be extracted. In our study,
we carefully devised our feature set to be programming-related.
Primary features were first constructed from raw mouse-key
log. Table 1 lists seven primary features collected from mouse-
key logs. We discarded the first- and last-minute data of each
programming task to avoid initial and final settling effects.
After this process, a mouse-key log of primary features was
obtained.

Inspired by earlier studies and our own experience, we
calculated the secondary features given in Table 2 from
primary feature log. These secondary features are usually
counts and average values in one minute. Each minute of
primary feature log was therefore condensed into one data
point. Emotion labels acquired in data collection process were
assigned to corresponding data points.

Secondary features were divided into four categories:
keystroke verbosity features, mouse features, keyboard/mouse
usage features, and keystroke dynamics. Keystroke verbosity
features measured number of keystrokes/keys
hold/combination keys that have special functionality in the
IDE or text editor for programming work. These features are
closely related to programmers’ behaviors. For example, we
measured number of backspace and delete keys to monitor
whether participants encounter mistakes in the code. Large
values of backspace keys typed in one minute indicate the
programmer is not in flow. Same for combination keys, we
counted the number of undo, copy, save and build keystrokes.
These combination keys are frequently used in programming.
Take build keys for example, it is usually an indicator of
confusion because there are usually bugs or syntax errors after
building the code, which tend to make programmers confused.
We also counted the keystroke that happens outside the IDE to
explore if out-of-editor activities such as web search helped in
emotion prediction.

Mouse behaviors captured all possible mouse actions,
including mouse left/right clicks, mouse wheel action, mouse
drag, number of mouse move, mouse move average speed. We
design them because earlier study showed negative affects
resulted in slower mouse speed and greater distance [14], and

7 http://xgboost.readthedocs.io/en/latest/

TABLE I. PRIMARY FEATURES EXTRACTED FROM MOUSE-KEY LOGS

mouse click, scroll could be seen as indicators of stress [18],
which may lead to other negative emotions.

Inspired by work of stress detection from Roduigues et al.
[18], we added keyboard/mouse usage features which were a
set of time-related features including keyboard idle time,
number of keyboard idle events, mouse idle time and number
of mouse idle events.

Keystroke dynamics were comprised of key press and
release time. Inspired by Epp et al. [16], we designed new
keystroke dynamic features under programming context. It
included the average dwell time between the first and second
keystrokes in Python keywords, consecutive arrow keys, and
consecutive backspace keys. Programming keyword, arrow
keys and delete keys occur frequently in keyboard log of a
code snippet just like digraph and trigraph in a free text. We
would like to explore if the keystroke dynamics of them can
be used to predict emotion as well. We performed a feature
scaling on average time duration between two pressed keys to
eliminate individual differences in typing speeds. We did not
scale intervals between consecutive arrow keys and backspace
keys because they were not seen as words.

To improve features for classification, we performed
correlation analysis and recursive feature elimination. The
correlated features were eliminated and features were ranked
using recursive feature elimination (RFE). Least effective
features were identified and removed in RFE using cross
validation until an optimal set of features was obtained. The
optimal feature set is then used for classification.

C. Classification

Since building individualized models require multiple
experiments from the same subject, we build subject
independent models to predict emotions from keyboard and
mouse data. We tested with a few classifiers. Among them,
SoftMax classifier, feedforward neural network with one
hidden layer and SoftMax output layer, random forest, a
gradient boosting decision tree called XGBoost7 showed good
performance.

We received only a few responses for boredom and
frustration labels. This could be due to tasks being not bored
and participants were not given huge pressure to finish the task
in time. Because of the lack of data, we aggregated the labels
into three affective states, namely positive, neutral and
negative. The positive emotion includes engagement.

Feature Description

Mouse Click
Left/Right/Middle mouse clicks, position,

whether the event is in IDE

Mouse Scroll
Scroll up/down and position, whether the event
is in IDE

Mouse Move
Mouse move with move length (Euclidean

distance in pixels) and duration

Mouse Drag Mouse drag behaviors

Mouse Idle Record mouse idle time

Keystroke
Keycode/Combination, whether user holds the

key, key hold time, whether the event is in IDE

Keyboard Idle Record keyboard idle time

TABLE II. SECONDARY FEATURES EXTRACTED FROM PRIMARY MOUSE-KEY LOG

The negative emotions combined frustration, confusion and
boredom states. All participants contribute data to positive and
neutral states and over 78.5% of participants contribute to all
affective states.

IV. RESULTS

Fourteen undergraduates with prior experience in Python
programming participated in three programming tasks each
lasting for 30 minutes. After each task, participants provided
emotional labels for each minute of the task by going through
facial videos and screen recording. We divided dataset into
train set and test set with an 8:2 ratio. Classifiers’
performances were evaluated.

A. Feature Selection and Ranking

Correlation map between features, visualized with
Seaborn8, is given in Figure 1. Numbers in the graph are
feature numbers in Table 2. We identified two highly
negatively correlated (smaller than -0.8) features (18:
keyboard idle time and 29: mouse idle time), and two highly
positive correlated (larger than 0.8) features (26: mouse wheel
action and 28: not_ide_clicks). Deleting one of the highly
correlated features improved the accuracy of the classifiers.

The RFE was applied to the feature set with all classifiers
for ranking features and identifying an optimal set of features.
Usually the dimension of the final set is around 20 features.

8 https://seaborn.pydata.org

Features were ranked based on the aggregate ranking score.
The top 10 features are shown in Table 3. As seen, novel
features such as arrow_keys (Keystroke Verbosity),
duration_deletion and duration_keyword (Keystroke
Dynamics) were ranked high and shown to be highly effective
in predicting emotions from keyboard and mouse data.

B. Classifier Performance

We evaluated prediction accuracies with a set of classifiers.
SoftMax classifier, feedforward neural network with one
hidden layer, random forest and XGBoost had better
performance and their performance were shown in this paper.

Figure 1. Correlation Heatmap Between Features

Feature type Feature number Feature code Description

Content Features

1 Total_keys No of keystrokes typed

2 Hold_keys No of keystrokes user held

3 Backspace_keys No of backspace keys typed

4 Delete_keys No of delete keys typed

5 Undo_keys No of “Ctrl+Z” combination typed

6 Copy_keys No of “Ctrl+C” combination typed

7 Deletion_held_keys No of “backspace, delete, Ctrl+Z” keys held

8 Combo_keys No of overall combination key

9 Save_keys No of “Ctrl+S” typed

10 Alt_tab_keys No of “Alt+Tab” typed

11 Build_keys No of “Ctrl+B” typed

12 Arrow_keys No of “Up, Down, Left, Right” typed

13 Home_end keys No of “Home and End” typed

14 Not_ide_keys No of keystrokes typed outside IDE

28 Not_ide_clicks No of clicks outside IDE

Keyboard
Dynamic Features

15 Duration_keywords
Average duration between 1st and 2nd key down in a keyword in one

minute

16 Duration_arrow
Average duration between 1st and 2nd key down in consecutive arrow

keys typed in one minute

17 Duration_deletion
Average duration between 1st and 2nd key down in consecutive

backspace keys typed in one minute

Mouse Behaviors

20 Mouse_move_avg_speed Average speed of mouse movement

21 Mouse_move_times No of mouse moves

22 Mouse_move_total_length Total length of mouse move in one minute

23 Mouse_move_total_time Total time of mouse move in one minute

24 Mouse_left_click No of left clicks

25 Mouse_right_click No of right clicks

26 Mouse_wheel_action No of scroll events

27 Mouse_drag No of mouse drags

Keyboard/Mouse

Usage Features

18 Keyboard_idle_time Total keyboard idle time

19 Keyboard_idle_events No of keyboard idle events

29 Mouse_idle_time Total mouse idle time

30 Mouse_idle_events No of keyboard idle events

TABLE III. TOP 10 RANKED FEATURES

Since the dataset was unbalanced, we used Synthetic
Minority Over-sampling Technique (SMOTE) technique [20]
which generates minority labels with replacement using K-
Nearest Neighbor method, to rebalance the dataset and not to
overfit classifiers due to the lack of data. To avoid possible
overfitting, we used L2 regularization to penalize large
weights in training neural network classifiers. For tree-based
methods, the maximum depth and the number of estimators
were specified.

Table 4 shows the performances of different classifiers in
predicting positive, neutral and negative affective states. The
best overall accuracy of 52.93% was achieved by feedforward
neural network. Since classifiers were sensitive to
initializations, performance measures were reported as
averages of 100 prediction attempts. In each attempt, the
training and test set were randomly subsampled. F1 score and
Cohen’s Kappa statistic [21] were also used to measure the
performances due to the imbalance of class labels. According
to Landis and Koch [22], the Kappa score value of 0.2788
indicates fair agreement between data points.

As seen from Table 4, the model differentiates positive and
negative emotions well but struggles to predict neutral
emotions. This may be because the neutral state does not carry
any features that are drastically different from positive or
negative emotions. For example, participants might have
reported their affective states as neutral though they had mild
positive or negative emotions. Another reason could be they
marked idle periods with no keyboard/mouse inputs as neutral.
To see the confounding effects of neutral state, we built a
classifier to differentiate only the positive and negative
affective states. The results listed in Table 5 shows an
improvement of performance: 74.1% predicting positive and
negative emotions with improved Kappa of 0.481.

V. DISCUSSION

The aim of our work is to explore useful features and
methods that can detect self-labelled programmer’s affective
states with non-intrusive input devices such as keyboard and
mouse. Compared to some of previous works, our set of
features showed better performance in predicting positive and
negative affective states. Bosch et al. [9] tracked facial features
and achieved Cohen’s Kappa of 0.22 and 0.23 for confusion
and frustration and 0.04, 0.11 and 0.07, for boredom,
flow/engagement and neutral states, respectively. Müller et al.
[8] distinguished positive and negative emotions with an
accuracy of 71.36% using features collected by biometric
sensors. In contrast, our method using keyboard and mouse
data distinguished the two labels with an accuracy of 74.11%.

There are several ways that our current method can be

improved in the future. As for data collected, we had a limited

dataset, so more data is needed. What’s more, there were

some time periods in which participants were thinking and not

interacting input devices. These data points should be

excluded from the analysis or we could add the “thinking”

state in future study. Speaking of experiment design, we

observed that given definitions of affective states, different

volunteers may have different interpretations. Hence, in

future work we will measure arousal and valence levels

alongside the self-labelled affective states as the ground truth

using biometric sensors. Besides, there were labels with very

few responses. This could be due to the flaw in our

experiment design or the chosen affective states cannot fully

model the participants’ feelings. In future study, we will

design other emotion inducing techniques and apply

unsupervised clustering to the ground truth data to obtain an

accurate set of emotion labels under programming context.

Regarding the current feature set, we didn’t measure key-up

time in mouse-keyboard logger. With key-up time measured,

researchers can design more keystroke dynamics features in

the future such as duration. In addition, although we didn’t

use distance-based in classifiers, we did apply KNN method

in the dataset rebalancing step. As the size of dataset grows,

it is necessary to apply other dimensionality reduction

methodologies like Principle Component Analysis. and

feedback to programmers

VI. CONCLUSION

Detecting emotions during programming is of vital

importance for efforts on building next generation of e-

learning platforms that can infer emotions from input devices

TABLE IV. PERFORMANCES OF DIFFERENT CLASSIFIERS PREDICTING POSITIVE, NEUTRAL AND NEGATIVE AFFECTIVE STATES

Feature Name Ranking

Total_keys 1

Mouse_move_total_length 2

Keyboard_idle_events 3

Arrow_keys 4

Duration_deletion 5

Mouse_move_total_time 6

Mouse_move_times 7

Backspace_typed 7

Duration_keyword 9

Mouse_move_average_speed 10

Classifier Affect F1 score Precisions Recall Accuracies Cohen’s kappa

XGBoost

Positive 0.6158 0.5583 0.6898

0.5223 0.2623 Neutral 0.1807 0.4078 0.1185

Negative 0.5806 0.5107 0.6766

Random Forest

Positive 0.6126 0.5978 0.6316

0.5161 0.2617 Neutral 0.2587 0.3550 0.2074

Negative 0.5685 0.5075 0.6492

SoftMax Classifier

Positive 0.6030 0.5930 0.6157

0.5212 0.2701 Neutral 0.2754 0.3621 0.2252

Negative 0.5851 0.5225 0.6677

Feedforward Neural

Network

Positive 0.6212 0.5931 0.6547

0.5293 0.2788 Neutral 0.2434 0.3910 0.1790

Negative 0.5855 0.5119 0.6866

TABLE V. PERFORMANCES OF DIFFERENT CLASSIFIERS PREDICTING POSITIVE AND NEGATIVE AFFECTIVE STATES

to improve their experience and efficiency.

The input devices for such systems cannot be intrusive and

can be deployed without the knowledge of the programmers.

We used common input devices like keyboard and mouse, and

do not need other sophisticated input sensors.
We conducted experiments to gather mouse-key logs while

programming and affective states were given by participants
after watching screen recordings and facial videos. From
keyboard and mouse data, we constructed features including
keystroke verbosity features, mouse behaviors,
keyboard/mouse usage features and keystroke dynamics. Our
results showed that the programming-related feature set
performs well in detecting self-labelled emotions of
programmers. Feedforward neural network trained predicting

three emotional labels: positive, neutral and negative achieved
an overall accuracy of 52.9% and 0.27 Kappa and when
trained to predict two emotional labels: positive and negative,
classifier reached an overall accuracy of 74.1% and 0.48
Kappa.

The present study demonstrates that keyboard and mouse
data can be effectively used to predict emotions of the
programmers. Our study can be used to build next generation
of affect-sensitive intelligent tutoring system under
programming context. Researchers could begin with the set of
present features and investigate higher order features to further
improve prediction performance. One could also research on
using dynamics of raw keyboard and mouse data to design the
classifiers.

REFERENCES

[1] R. Pekrun, T. Goetz, A. C. Frenzel, P. Barchfeld and R. P. Perry,

"Measuring emotions in students’ learning and performance: The

Achievement Emotions Questionnaire (AEQ)", Contemporary

Educational Psychology, vol. 36, no. 1, pp. 36-48, 2011.

[2] R. M. Carini, G. D. Kuh and S. P. Klein, "Student Engagement and

Student Learning: Testing the Linkages*", Research in Higher

Education, vol. 47, no. 1, pp. 1-32, 2006.

[3] M. Csikszentmihalyi, Flow: The psychology of optimal experience.

Harper and Row, New York, 1990.

[4] M. M. T. Rodrigo, R. S. Baker, M. C. Jadud, A. C. M. Amarra, T. Dy,

M. B. V. Espejo-Lahoz, S. A. L. Lim, S. A. M. S. Pascua, J. O. Sugay
and E. S. Tabanao, "Affective and behavioral predictors of novice

programmer achievement", Proceedings of the 14th annual ACM

SIGCSE conference on Innovation and technology in computer

science education - ITiCSE '09, 2009.

[5] L. Shen, M. Wang, and R. Shen, "Affective E-Learning: Using

“Emotional” Data to Improve Learning in Pervasive Learning

Environment." Journal of Educational Technology & Society, vol. 12,

no. 2, pp. 176-189, 2009.

[6] S. K. D’Mello, S. D. Craig, B. Gholson, S. Franklin, R. Picard and A.

C. Graesser "Integrating Affect Sensors in an Intelligent Tutoring

System.", International Conference on Intelligent User Interfaces,

2005.

[7] J. B. Wiggins, K. E. Boyer, A. Baikadi, A. Ezen-Can, J. F.

Grafsgaard, E. Ha, J. C. Lester, C. M. Mitchell and E. N. Wiebe,

"JavaTutor: An Intelligent Tutoring System that Adapts to Cognitive
and Affective States during Computer Programming", Proceedings of

the 46th ACM Technical Symposium on Computer Science Education

- SIGCSE '15, 2015.

[8] S. C. Muller and T. Fritz, "Stuck and Frustrated or in Flow and Happy:
Sensing Developers' Emotions and Progress", 2015 IEEE/ACM 37th

IEEE International Conference on Software Engineering, 2015.

[9] N. Bosch, Y. Chen and S. K. D’Mello, "It’s Written on Your Face:

Detecting Affective States from Facial Expressions while Learning
Computer Programming", Intelligent Tutoring Systems, pp. 39-44,

2014.

[10] I. Drosos, P. J. Guo and C. Parnin, "HappyFace: Identifying and
predicting frustrating obstacles for learning programming at

scale", 2017 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC), 2017.

[11] N. Bosch, S. K. D’Mello and C. Mills, "What Emotions Do Novices

Experience during Their First Computer Programming Learning

Session?", Lecture Notes in Computer Science, pp. 11-20, 2013.

[12] J. Hernandez, P. Paredes, A. Roseway and M. Czerwinski, "Under

pressure: Sensing Stress of Computer Users", Proceedings of the 32nd

annual ACM conference on Human factors in computing systems -

CHI '14, 2014.

[13] D. Sun, P. Paredes and J. Canny, "MouStress: Detecting Stress from

Mouse Motion", Proceedings of the 32nd annual ACM conference on

Human factors in computing systems - CHI '14, 2014.

[14] M. Hibbeln, J. L. Jenkins, C. Schneider, J. S. Valacich and M.
Weinmann, "How Is Your User Feeling? Inferring Emotion Through

Human-Computer interaction Devices", MIS Quarterly, vol. 41, no. 1,

pp. 1-21, 2017.

[15] M. W. Eysenck, N. Derakshan, R. Santos and M. G. Calvo, "Anxiety

and cognitive performance: Attentional control theory.", Emotion, vol.

7, no. 2, pp. 336-353, 2007.

[16] C. Epp, M. Lippold and R. L. Mandryk, "Identifying emotional states
using keystroke dynamics", Proceedings of the 2011 annual

conference on Human factors in computing systems - CHI '11, 2011.

[17] P. G. Zimmermann, S. Guttormsen, B. Danuser and P. Gomez,

"Affective Computing—A Rationale for Measuring Mood With
Mouse and Keyboard", International Journal of Occupational Safety

and Ergonomics, vol. 9, no. 4, pp. 539-551, 2003.

[18] M. Rodrigues, S. Gonçalves, D. Carneiro, P. Novais and F. Fdez-
Riverola, "Keystrokes and Clicks: Measuring Stress on E-learning

Students", Advances in Intelligent Systems and Computing, pp. 119-

126, 2013.

[19] L. A. Vea and M. M. T. Rodrigo, "Modeling Negative Affect Detector
of Novice Programming Students Using Keyboard Dynamics and

Mouse Behavior", Lecture Notes in Computer Science, pp. 127-138,

2017.

[20] N. V. Chawla, K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer,

“SMOTE: Synthetic Minority Over-sampling Technique”, Journal of

Artificial Intelligence Research, vol. 16, no. 1, pp. 321-357, 2002.

[21] J. Cohen, "A Coefficient of Agreement for Nominal
Scales", Educational and Psychological Measurement, vol. 20, no. 1,

pp. 37-46, 1960.

[22] J. R. Landis and G. G. Koch, "The Measurement of Observer

Agreement for Categorical Data", Biometrics, vol. 33, no. 1, p. 159,
1977.

Classifier Affect F1 score Precision Recall Accuracies Cohen’s kappa

XGBoost
Positive 0.7495 0.7548 0.7470

0.7274 0.4504
Negative 0.6995 0.6991 0.7038

Random Forest
Positive 0.7319 0.7680 0.7017

0.7199 0.4398
Negative 0.7055 0.6750 0.7419

SoftMax Classifier
Positive 0.7491 0.7886 0.7158

0.7384 0.4770
Negative 0.7256 0.6919 0.7656

Feedforward Neural

Network

Positive 0.7552 0.7820 0.7322
0.7411 0.4810

Negative 0.7244 0.7011 0.7519

	I. INTRODUCTION
	II. Related Works
	III. Methodology
	A. Data Collection
	B. Feature Extraction
	C. Classification

	IV. Results
	A. Feature Selection and Ranking
	B. Classifier Performance

	V. Discussion
	VI. Conclusion
	References

