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Abstract

A numerical method based on an integro-differential equation and
local interpolating functions is proposed for solving the one-dimensional
wave equation subject to a non-local conservation condition and suit-
ably prescribed initial-boundary conditions. To assess its validity and
accuracy, the method is applied to solve several test problems.
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1 Introduction

The development of numerical techniques for solving partial differential equa-

tions in physics subject to non-local conservation conditions is a subject of

considerable interest. There are many papers that deal with the numerical

solution of the diffusion (parabolic) equation with integral conditions giving

the specification of mass, e.g. Ang [1], Dehghan [6], Cannon, Lin and Wang

[3], Cannon and Matheson [4], Cannon and van der Hoek [5], Gumel, Ang

and Twizell [8] and Noye and Dehghan [10]. Although theoretical studies on

the existence and uniqueness and the behaviours of solutions for problems

governed by the wave (hyperbolic) equation with non-local conditions have

received considerable attention in the literature (e.g. Beilin [2] and Kavalloris

and Tzanetis [9]), relatively few papers give the numerical solutions of such

problems.

In a recent paper, Dehghan [7] describes several finite-difference schemes

for the numerical solution of the one-dimensional wave equation (in non-

dimensionalized form)

∂2φ

∂x2
=

∂2φ

∂t2
− q(x, t) (for 0 ≤ x ≤ 1 and t ≥ 0) (1)

subject to the non-local conservation conditionZ 1

0

φ(x, t)dx = 0 for t ≥ 0. (2)

In addition to (2), the unknown function φ is required to satisfy the initial

conditions

φ(x, 0) = f(x) and
∂φ

∂t

¯̄̄̄
t=0

= g(x) for 0 ≤ x ≤ 1 (3)

and the boundary condition

φ(0, t) = 0 for t > 0. (4)
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Here q(x, t), f(x) and g(x) are suitably given functions.

For a more general problem, the non-local condition (2) and the boundary

condition (4) may be respectively superceded byZ 1

0

φ(x, t)dx = E(t) for t ≥ 0 (5)

and

αφ(0, t) + β
∂

∂x
[φ(x, t)]

¯̄̄̄
x=0

= r(t) for t > 0 (6)

where α and β are given constants and r(t) and E(t) are suitably prescribed

functions.

In the present paper, an alternative numerical method based on an integro-

differential formulation of the wave equation and on approximating φ(x, t)

through the use of local interpolating spatial functions is proposed for solving

(1) subject to the initial conditions (3), the non-local condition (5) and the

boundary condition given by (6). The proposed method is applied to solve

several test problems in order to assess its validity and accuracy.

2 Integro-differential formulation

Through partial integrations of the wave equation (1) with respect to x, one

may derive the integro-differential equation

2φ(ξ, t) = φ(0, t) + φ(1, t) + ξθ(t) + (ξ − 1)ω(t)
+

Z 1

0

|x− ξ|( ∂
2

∂t2
[φ(x, t)]− q(x, t))dx, (7)

where θ and ω are the boundary flux functions defined by

θ(t) =
∂

∂x
[φ(x, t)]

¯̄̄̄
x=0

and ω(t) =
∂

∂x
[φ(x, t)]

¯̄̄̄
x=1

. (8)

The problem under consideration may now be reformulated as one that

requires finding φ(x, t) from (7) together with (3), (5) and (6).
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3 Approximation of φ(x, t)

To find φ(x, t) from (3), (5) and (6) and (7), we make the approximation

φ(x, t) '
NX
n=1

NX
m=1

cnmσn(x)φm(t), (9)

where φm(t) = φ(ξm, t), ξ1, ξ2, · · · , ξN−1 and ξN are N distinct well-spaced

nodes selected from the interval [0, 1] with ξ1 = 0 and ξN = 1, σn(x) =

1 + |x − ξn|3/2 is the local interpolating function centred about ξn and cnm
are constant coefficients defined by

NX
k=1

σn(ξk)cpk =

½
1 if n = p,
0 if n 6= p. (10)

The nodal functions φ1(t), φ2(t), · · · , φN−1(t) and φN(t) may be regarded

as unknown. The integro-differential equation (7) and the approximation (9)

can be used together with (3), (5) and (6) to reduce the problem under

consideration into an initial-value problem governed by a system of second

order linear ordinary differential equations.

4 Initial-value problem

If we substitute (9) into (7) and let ξ = ξr for r = 1, 2, · · · , N, we obtain
the system of ordinary differential equations

2φr(t) + Sr(t)

= φ1(t) + φN(t) + ξrθ(t) + (ξr − 1)ω(t) +
NX
m=1

Frmφ
00
m(t)

for r = 1, 2, · · · , N, (11)

where the prime denotes differentiation with respect to t and

Sr(t) =

Z 1

0

|x− ξr|q(x, t)dx,
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Frm =
NX
n=1

cnm(
1

2
[(1− ξr)

2 + ξ2r]

+
2

5
[(1− ξr)(1− ξn)

5/2 + ξrξ
5/2
n ]

− 4
35
[(1− ξn)

7/2 + ξ7/2n ] +
8

35
|ξr − ξn|7/2). (12)

The initial conditions (3) and the boundary condition (6) respectively

give rise to

φr(0) = f(ξr) and φ0r(0) = g(ξr) for r = 1, 2, · · · ,N, (13)

and

αφ1(t) + βθ(t) = r(t) for t > 0. (14)

With (9), the non-local conservation condition (5) can be approximately

written as

NX
m=1

Gmφm(t) = E(t), (15)

where

Gm =
NX
n=1

cnm(1 +
2

5
|1− ξn|5/2 +

2

5
ξ5/2n ). (16)

Thus, the initial-value problem is to solve (11), (14) and (15) subject to

(13).

5 Numerical procedure

A numerical procedure for solving (1) subject to (3), (5) and (6) can be

obtained by reducing (11) into a system of linear algebraic equations.
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We approximate φn(t) (n = 1, 2, · · · ,N) as a quartic function of time t
over the interval τ ≤ t ≤ τ + 3∆t, that is,

φn(t)

' 1

(∆t)4
[
1

24
(t− τ −∆t)(t− τ − 2∆t)(t− τ − 3∆t)(t− τ − 4∆t)φn(τ)

−1
6
(t− τ)(t− τ − 2∆t)(t− τ − 3∆t)(t− τ − 4∆t)φn(τ +∆t)

+
1

4
(t− τ )(t− τ −∆t)(t− τ − 3∆t)(t− τ − 4∆t)φn(τ + 2∆t)

−1
6
(t− τ)(t− τ −∆t)(t− τ − 2∆t)(t− τ − 4∆t)φn(τ + 3∆t)

+
1

24
(t− τ )(t− τ −∆t)(t− τ − 2∆t)(t− τ − 3∆t)φn(τ + 4∆t)]

for τ ≤ t ≤ τ + 4∆t. (17)

It follows that

φ0n(t)

' 1

(∆t)4
[(
1

6
[t− τ ]3 − 5

4
[t− τ ]2∆t+

35

12
[t− τ ][∆t]2 − 25

12
[∆t]3)φn(τ)

+(−2
3
[t− τ ]3 +

9

2
[t− τ ]2∆t− 26

3
[t− τ ][∆t]2 + 4[∆t]3)φn(τ +∆t)

+([t− τ ]3 − 6[t− τ ]2∆t+
19

2
[t− τ ][∆t]2 − 3[∆t]3)φn(τ + 2∆t)

+(−2
3
[t− τ ]3 +

7

2
[t− τ ]2∆t− 14

3
[t− τ ][∆t]2 +

4

3
[∆t]3)φn(τ + 3∆t)

+(
1

6
[t− τ ]3 − 3

4
[t− τ ]2∆t+

11

12
[t− τ ][∆t]2 − 1

4
[∆t]3)φn(τ + 4∆t)]

for τ ≤ t ≤ τ + 4∆t, (18)
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and

φ00n(t)

' 1

(∆t)4
[(
1

2
[t− τ ]2 − 5

2
[t− τ ]∆t+

35

12
[∆t]2)φn(τ)

+(−2[t− τ ]2 + 9[t− τ ]∆t− 26
3
[∆t]2)φn(τ +∆t)

+(3[t− τ ]2 − 12[t− τ ]∆t+
19

2
[∆t]2)φn(τ + 2∆t)

+(−2[t− τ ]2 + 7[t− τ ]∆t− 14
3
[∆t]2)φn(τ + 3∆t)

+(
1

2
[t− τ ]2 − 3

2
[t− τ ]∆t+

11

12
[∆t]2)φn(τ + 4∆t)]

for τ ≤ t ≤ τ + 4∆t. (19)

If we let t = τ + j∆t (for j = 2, 3, 4) in (11), after using (18) and (19),

we obtain

2φr(τ + j∆t) + Sr(τ + j∆t)

= φ1(τ + j∆t) + φN (τ + j∆t) + ξrθ(τ + j∆t) + (ξr − 1)ω(τ + j∆t)

+
1

(∆t)2

NX
m=1

Frm[(
1

2
j2 − 5

2
j +

35

12
+
25

48
[−2j2 + 9j − 26

3
])φm(τ )

+
∆t

4
(−2j2 + 9j − 26

3
)φ0m(τ)

+(3j2 − 12j + 19
2
+
3

4
[−2j2 + 9j − 26

3
])φm(τ + 2∆t)

+(−2j2 + 7j − 14
3
− 1
3
[−2j2 + 9j − 26

3
])φm(τ + 3∆t)

+(
1

2
j2 − 3

2
j +

11

12
+
1

16
[−2j2 + 9j − 26

3
])φm(τ + 4∆t)]

for r = 1, 2, · · · , N and j = 2, 3, 4. (20)

Letting t = τ + j∆t (for j = 2, 3, 4) in (14) yields

αφ1(τ + j∆t) + βθ(τ + j∆t) = r(τ + j∆t) for j = 2, 3, 4. (21)
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Similarly, (15) gives

NX
m=1

Gmφm(τ + j∆t) = E(t+ j∆t) for j = 2, 3, 4. (22)

If φm(τ) and φ0m(τ ) (m = 1, 2, · · · , N) are known, we may regard (20),
(21) and (22) as a system of 3N + 6 linear algebraic equations in 3N + 6

unknowns given by φm(τ + j∆t), θ(τ + j∆t) and ω(τ + j∆t) for m = 1, 2,

· · · , N and j = 2, 3, 4. We may solve for the unknowns as follows.

Work out φm(0) and φ0m(0) using the initial conditions (13). Let τ = 0 in

(20), (21) and (22) and solve for φm(2∆t), θ(2∆t), ω(2∆t), φm(3∆t), θ(3∆t),

ω(3∆t), φm(4∆t), θ(4∆t) and ω(4∆t). With τ = 0, apply (18) with t = 0 to

calculate φm(∆t) using the known values of φ
0
m(0), φm(2∆t), φm(3∆t) and

φm(4∆t). Still with τ = 0, calculate φ0m(4∆t) using (18) with t = 4∆t. With

φm(4∆t) and φ0m(4∆t) now known, we can let τ = 4∆t in (20), (21) and (22)

to solve for φm(6∆t), θ(6∆t), ω(6∆t), φm(7∆t), θ(7∆t), ω(7∆t), φm(8∆t),

θ(8∆t) and ω(8∆t) and then calculate φm(5∆t) and φ0m(8∆t) using (18) with

t = 4∆t and t = 8∆t respectively. Repeating the process, we can let τ = 8∆t,

12∆t, 16∆t, · · · to solve for the unknowns at higher and higher time levels.

6 Specific test problems

Problem 1. For the first test problem, in the wave equation (1), the initial

conditions (3), the non-local condition (5) and the boundary condition (6),

take

q(x, t) = 0, f(x) = 0, g(x) = π cos(πx),

E(t) = 0, α = 1, β = 0, r(t) = sin(πt). (23)

With (23), it may be easily verified that the exact solution to the problem
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is given by

φ(x, t) = cos(πx) sin(πt). (24)

To apply the numerical procedure in Section 5 to solve the problem here,

we select the nodes ξ1, ξ2, · · · , ξN−1 and ξN to be given by ξi = (i−1)/(N−1)
for i = 1, 2, · · · , N. For N = 21 and various values of ∆t, the absolute errors

of the numerically obtained φ at selected points and at time t = 1/2 are

given in Table 1.

Table 1. Absolute errors of the numerical values of φ(x, t) at selected points
and at t = 1/2, as computed using N = 21 and various values of ∆t.

x Exact φ
∆t = 0.125
Absolute error

∆t = 0.0625
Absolute error

∆t = 0.03125
Absolute error

0.10 0.95106 3.4× 10−3 3.0× 10−4 1.9× 10−5
0.20 0.80902 5.3× 10−3 6.1× 10−4 2.0× 10−5
0.30 0.58779 5.5× 10−3 7.0× 10−4 5.3× 10−5
0.40 0.30902 3.5× 10−3 4.5× 10−4 3.8× 10−5
0.50 0.00000 3.3× 10−14 1.5× 10−14 3.3× 10−15
0.60 −0.30902 3.5× 10−3 4.5× 10−4 3.8× 10−5
0.70 −0.58779 5.5× 10−3 7.0× 10−4 5.3× 10−5
0.80 −0.80902 5.3× 10−3 6.1× 10−4 2.0× 10−5
0.90 −0.95106 3.4× 10−3 3.0× 10−4 1.9× 10−5
1.00 −1.00000 2.3× 10−13 2.0× 10−13 3.5× 10−13

From Table 1, it is obvious that there is a significant reduction in the

absolute errors of the numerical values of φ when the computation is refined,

that is, the numerical values of φ converge to the exact solution (24) as the

time-step ∆t decreases from 0.125 to 0.03125 units. It may also be of interest

to compare our results here with those obtained by Dehghan [7] for the same

test problem. In [7], numerical values of φ at t = 1/2 and at the points in
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Table 1 are computed using various finite-difference schemes with 101 evenly

spaced grid points and a very small time-step of about 0.008 units. The

accuracy of the numerical values in Table 1, obtained using only 21 nodal

points and relatively larger time-steps, is as good compared with that of

those given in [7]. When we repeat our calculations using 41 nodal points

and a time-step of 0.015625 units, our numerical values are definitely more

accurate than those in [7].

Problem 2. For the second test problem, take

q(x, t) = (π2 +
1

4
) exp(−1

2
t) sin(πx),

f(x) = sin(πx), g(x) = −1
2
sin(πx),

E(t) =
2

π
exp(−1

2
t),

α = 1, β = 1, r(t) = π exp(−1
2
t). (25)

The exact solution for this particular test problem is given by

φ(x, t) = exp(−1
2
t) sin(πx). (26)

With q(x, t) as given in (25), the function Sr(t) in (11) may be written as

Sr(t) = (1 +
1

4π2
) exp(−1

2
t)(−2 sin(πξr) + π). (27)

As in the first test problem, the nodes ξ1, ξ2, · · · , ξN−1 and ξN are taken

to be given by ξi = (i− 1)/(N − 1) for i = 1, 2, · · · , N. Using N = 41 and

∆t = 0.05, we compute φ and ∂φ/∂t numerically at the point x = 1/2 for

0 ≤ t ≤ 3. The numerical values obtained are compared graphically with the
exact ones in Figure 1. As the numerical and exact values agree to at least

2 significant figures, their graphs are almost visually indistinguishable.
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Figure 1

7 Discussion and conclusion

A numerical method has been successfully developed and implemented on the

computer for solving the one-dimensional wave equation subject to a non-

local conservation condition and suitably prescribed initial-boundary con-

ditions. It (the method) reduces the problem under consideration into a

system of linear algebraic equations which may be written in matrix form as

AX = B over a certain time interval consisting of several consecutive time

levels. The system can be used to obtain a time-stepping scheme for finding

an approximate solution to the problem at higher and higher time levels. In

implementing the time-stepping scheme, the square matrix A has to be eval-

uated and processed only once in order to solve linear algebraic equations,

if the absolute difference between two consecutive time levels (that is, ∆t)

11



remains constant. Thus, for example, if the LU decomposition technique

together with backward substitutions is applied to solve the linear algebraic

equations, then the square matrix has to be decomposed only once.

Numerical results obtained for specific test problems (with known exact

solutions) indicate that accurate numerical solutions can be obtained by using

the numerical method presented here. Convergence of the numerical solutions

to the exact ones is observed when the calculations are refined by reducing

∆t or by increasing the number of nodal (collocation) points in the spatial

domain of the problem.
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