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Abstract

The problem of calculating the thermoelastic stress around an
arbitrary number of arbitrarily-located planar cracks in an infinite
anisotropic medium is considered. The cracks open up under the ac-
tion of suitably prescribed heat flux and traction. With the aid of
suitable integral solutions, we reduce the problem to solving a sys-
tem of Hadamard finite-part (hypersingular) integral equations. The
hypersingular integral equations are solved for specific cases of the
problem.
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1 INTRODUCTION

Anisotropic structures can now be found in an increasingly wider range of

applications in modern technology. For example, synthetic materials, such

as plywoods and carbon-carbon composites, which exhibit anisotropic be-

haviours are widely used in the design and construction of modern vehicles

(e.g. aircrafts and high speed trains). The need to assess the reliability and

integrity of these structures has given rise to a vast body of literature on

cracks in anisotropic media. The majority of the papers in the literature,

e.g. Sollero and Aliabadi [9], Ang [1], Sweeney [12] and Stroh [10], ignored

the effect of heat flow on the stress distribution around the cracks.

There are relatively fewer studies which analyse the thermoelastic stress

around cracks in anisotropic solids. Using integral transform techniques,

Atkinson and Clements [2] calculated the thermoelastic stress around a pla-

nar crack in an infinite anisotropic medium. Similar problems involving a

single crack in an infinite anisotropic material were also solved by Hwu [6],

Tsai [13] and Wu [14]. Sturla and Barber [11] extended the work in Atkinson

and Clements [2] to allow for the possibility that the crack may be partially

closed. Clements [3] examined the thermoelastic problem of a planar crack

between bonded dissimilar anisotropic materials.

In the present paper, the problem of calculating the thermoelastic stress

around an arbitrary number of arbitrarily-located planar cracks in an infi-

nite anisotropic medium is considered. The problem is reduced to the task of

solving a system of Hadamard finite-part (hypersingular) integral equations.

The unknown functions in the integral equations are the jumps in the tem-

perature across opposite crack faces and the crack-opening displacements.

For convenience, we assume that the cracks open up under the action of

suitably prescribed heat flux and traction. It may be worth mentioning that

the analysis presented is valid for the most general anisotropic material, i.e.

it does not require the material to possess any particular symmetries in its
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anisotropy.

2 TEMPERATURE AROUND CRACKS

2.1 Mathematical formulation

By referring to a Cartesian coordinate system 0x1x2x3, consider an infinite

anisotropic elastic medium in which there are N arbitrarily-located planar

cracks having geometries that do not vary along the x3-axis. The cracks

denoted by C(1), C(2), · · · , and C(N) are assumed not to intersect with one
another. On the 0x1x2 plane, the tips of a typical crack C

(k) are given by

(a(k), b(k)) and (c(k), d(k)). Refer to Figure 1.

The cracks are acted upon by suitably prescribed heat flux. The heat

flux generated by the cracks are required to vanish at infinity. The problem

is to determine the temperature throughout the elastic medium, particularly

around the cracks.

For plane problems, the steady-state temperature in a homogeneous anisotropic

medium is given by the function T (x) (x = (x1, x2)) which satisfies the heat

conduction equation (Nowacki [8])

λij
∂2T

∂xi∂xj
= 0, (1)

where λij = λji (i, j = 1, 2, 3) are the constant heat conduction coefficients

satisfying the strict inequality λ11λ22 − λ212 > 0. The convention of summing

over a repeated index is adopted only for latin subscripts which run from 1

to 3.

The mathematical task is to solve (1) subject to the conditions on the

cracks given by

λijn
(m)
i

∂

∂xj
(T (x)) → −Si(y)n(m)i

as x → y ∈ C(m) (m = 1, 2, · · · , N), (2)

where n(m) = [n
(m)
1 , n

(m)
2 ] = [{d(m) − b(m)}/`(m), {a(m) − c(m)}/`(m)] is a unit

normal vector to the crack C(m), `(m) =
q
{d(m) − b(m)}2 + {a(m) − c(m)}2
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Figure 1: Planar cracks in an anisotropic medium.

and Si(ξ1, ξ2) is a suitably prescribed function. In addition to (2), it is also

required that the heat flux generated by the cracks vanishes at infinity.

Notice that the conditions in (2) describe the applied heat flux on the

crack faces.

For our purpose here, we shall regard C(m) as the straight line segment

from (a(m), b(m)) to (c(m), d(m)).

2.2 Hypersingular integral equations

To solve (1) subject to (2), for any point x in the interior of the cracked

anisotropic medium, we take

T (x) =
NX
m=1

Z
C(m)

r(y)Λ(x;y;n(m))dS(y), (3)
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where y = (y1, y2), r(y) is an arbitrary function yet to be determined and

Λ(x;y;n(m)) =
1

2π
Re

 ρΩkn
(m)
k

(y1 − x1) + τ (y2 − x2)

 , (4)

with Ωk = λk1 + τλk2, τ =
µ
−λ12 + i

q
λ11λ22 − λ212

¶
/λ22, i =

√−1 and
ρ = 1/

q
λ11λ22 − λ212.

It is an easy matter to verify via direct substitution that (3) together

with (4) satisfies the heat conduction equation (1) in the domain of interest.

Equation (3) may be obtained from the boundary integral equation of (1).

For further details of the boundary integral equation, refer to Clements [5].

Using (3) together with (4), we find that conditions (2) give rise to:

1

π
χ(q)H

Z 1

−1
R(q)(t)dt

(t− u)2 +
1

4π

NX
m=1

Z 1

−1
R(m)(t)K(mq)(t, u)dt

= −Si(X(q)
1 (u),X

(q)
2 (u))n

(q)
i for − 1 < u < 1 (q = 1, 2, · · · ,N),

(5)

where R(q)(t) = r(X
(q)
1 (t), X

(q)
2 (t)), 2X

(q)
1 (u) = c(q) + a(q) + (c(q) − a(q))u,

2X(q)
2 (u) = d(q) + b(q) + (d(q) − b(q))u, χ(q) = Re{ρ`(q)[Ωkn(q)k ]2[c(q) − a(q) +

τ(d(q) − b(q))]−2},
K(mq)(t, u)

= Re

 ρ`(m)Ωkn
(m)
k Ωin

(q)
i (1− δmq)h

X
(m)
1 (t)−X(q)

1 (u) + τ
³
X
(m)
2 (t)−X(q)

2 (u)
´i2

 , (6)

δmq is the kronecker-delta, and H indicates that the integral is to be inter-

preted in the Hadamard finite-part sense or more specifically

H
Z 1

−1
R(t)dt

(t− u)2
def
= lim

ε→0+

"Z 1

−1
(t− u)2R(t)dt
[(t− u)2 + ε2]2

− π

2ε
R(u)

#

−R(u)
2
[
1

1− u +
1

1 + u
] for − 1 < u < 1. (7)

[Note. In the version published in Engineeing Analysis with Boundary Ele-

ments, the term on the second line of (7) is missing.]
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Equations (5) constitute a system of Hadamard finite-part singular (hy-

persingular) integral equations containing R(q)(t) as unknown functions. Nu-

merical methods for solving the integral equations are available (e.g. Kaya

and Erdogan [7]). Once R(q)(t) for −1 < t < 1, or r(y) for y ∈ C(q), is deter-
mined from (5), the temperature throughout the whole anisotropic medium

can be evaluated using (3) together with (4).

If a physical interpretation of the function r(y) in (3) is required, we can

use the limit

lim
ε→0±

ε
Z 1

−1
w(s)ds³

[s− t]2 + ε2
´ = ±πw(t) for − 1 < t < 1 (8)

to show that r(y) is directly proportional to the jump in the temperature

across opposite faces of the cracks. [Notice that in (8) it is assumed that w(s)

is differentiable infinitely many times over the open interval (−1, 1).] More
precisely, it can be shown that

lim
ε→0+

h
T (y − εn(m))− T (y + εn(m))

i
= r(y) for y ∈ C(m). (9)

3 STRESS AROUND CRACKS

3.1 Mathematical formulation

Having determined the temperature field, we are now interested in finding

the stress distribution around the cracks. The cracks are assumed to open up

under the action of applied heat flux (as described in Section 2) and suitably

prescribed traction. The stress generated by the cracks are required to vanish

at infinity.

If the displacement and the stress are denoted by uk(x) and σij(x) re-

spectively then

σij(x) = cijkr
∂uk
∂xr
− βijT (x), (10)

where cijkp and βij = βji are, respectively, the constant elastic moduli and

stress-temperature coefficients of the anisotropic medium.
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Substituting (10) into the equilibrium equations, we find that

cijkr
∂2uk

∂xj∂xr
= βij

∂T

∂xj
. (11)

Notice that the temperature T (x) is regarded as known from Section 2.

Hence, (11) is an inhomogeneous system of partial differential equations.

For further details, refer to Clements [4].

The mathematical task is to solve (11) subject to the conditions

σkj(x)n
(m)
j → −skj(y)n(m)j

as x → y ∈ C(m) (m = 1, 2, · · · , N), (12)

where −skjn(m)j denotes the k-th component of the prescribed traction on

the crack C(m). In addition, it is also required that σkj → 0 as |x|→∞.

3.2 A particular solution

To find a particular solution of (11), for any point x in the interior of the

cracked anisotropic medium, let

vk(x) =
NX
m=1

Z
C(m)

r(y)Vk(x;y;n
(m))dS(y), (13)

where r(y) is as determined in Section 2 and Vk(x;y;n
(m)) are functions yet

to be determined.

The system (11) holds if Vk(x;y;n
(m)) satisfy

cijkr
∂2Vk

∂xj∂xr
= βij

∂Λ

∂xj
for x 6= y, (14)

where Λ(x;y;n(m)) is as given by (4).

From Clements [3], solutions of (14) can be written as

Vk(x;y;n
(m)) = − 1

2π
Re

n
ρDkΩpn

(m)
p ln(y1 − x1 + τ [y2 − x2])

o
+
1

2π
Re

X
α

{Akαfα(zα)} , (15)
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where the summation over the greek subscript is from 1 to 3, fα(zα) is a

holomorphic function of zα in the interior of the cracked anisotropic medium,

zα = x1 + pαx2, Akα and pα are constants as defined in reference [3] and Dk

(k = 1, 2, 3) are constants satisfying the system³
ci1k1 + τci1k2 + τci2k1 + τ 2ci2k2

´
Dk = βi1 + τβi2. (16)

For a given y, to ensure that Vk(x;y;n
(m)) is single-valued at any point

x 6= y, i.e. in order thatI
x∈C

d

dS

h
Vk(x;y;n

(m))
i
dS(x) = 0

holds for any closed curve C in the 0x1x2 plane (y /∈ C), we choose

fα(zα) = ρNαjDjΩpn
(m)
p ln(y1 + pαy2 − zα), (17)

where [Nαj ] is the inverse of [Akα].

From (10), the stress which corresponds to (13) together with (15) and

(17) is given by

tkj(x) =
NX
m=1

Z
C(m)

r(y)Wkj(x;y;n
(m))dS(y)− βkjT (x), (18)

where

Wkj(x;y;n
(m)) =

1

2π
Re

(
ρBkjΩpn

(m)
p

(y1 − x1 + τ [y2 − x2])
)

− 1
2π
Re

X
α

(
ρLkjαNαsDsΩpn

(m)
p

(y1 + pαy2 − zα)
)
, (19)

where Bkj = [ckjp1 + τckjp2]Dp and Lkjα = [ckjp1 + pαckjp2]Apα.

The stress tkj(x) is discontinuous across each of the cracks. Specifically,

from (8), (9), (18) and (19), we find that

lim
ε→0+

h
tkj(x− εn(m))− tkj(x+ εn(m))

i
= µ

(m)
kj r(x) for x ∈ C(m) (m = 1, 2, · · · , N). (20)
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where

µ
(m)
kj = −βkj +Re

2iρBkjΩpn
(m)
p

³
n
(m)
1 + τn

(m)
2

´
τ − τ


−ReX

α

2iρLkjαNαsDsΩpn
(m)
p

³
n(m)1 + pαn

(m)
2

´
pα − pα

 , (21)

where z denotes the complex conjugate of z.

3.3 Hypersingular integral equations

For the solution of (11) subject to (12), we let the displacement be given by

uk(x) = vk(x) + φk(x), (22)

where vk(x) are given by (13) together with (15)-(17) and φk(x) are functions

yet to be determined.

From (11) and (22), for x in the interior of the cracked anisotropic

medium, the functions φk(x) must satisfy the homogeneous system of partial

differentiable equations

cijkr
∂2φk

∂xj∂xr
= 0. (23)

Using (10), we find that the stress which corresponds to uk(x) in (22) is

given by

σkj(x) = tkj(x) + ϕkj(x), (24)

where tij(x) are given by (18) together with (19) and ϕkj(x) = ckjpr∂φp/∂xr.

For the crack problem under consideration, to ensure that the functions

σkjn
(m)
j are continuous across the opposite faces of the crack C(m), from (20)

and (24), we require that

lim
ε→0+

h
ϕkj(x− εn(m))− ϕkj(x+ εn(m))

i
n
(m)
j

= −µ(m)kj n
(m)
j r(x) for x ∈ C(m) (m = 1, 2, · · · ,N). (25)
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Conditions (12) now become:

ϕkj(x)n
(m)
j → − [skj(y) + tkj(y)]n(m)j

as x → y ∈ C(m) (m = 1, 2, · · · ,N). (26)

Our task now is to find the solution of (23) which satisfies the conditions

(25) and (26).

If the system (23) holds in a region R (on the 0x1x2 plane) bounded by

a closed curve ∂R, it can be shown that (see Clements [5])

φk(x) =
Z
∂R

h
φr(y)Γrk(x;y;n)− ϕrp(y)np(y)Φrk(x;y)

i
dS(y) for x ∈ R,

(27)

where n = [n1(y), n2(y)] is the unit normal outward vector to R at the point

y = (y1, y2) ∈ ∂R and

Φrk(x;y) =
1

2π
Re

X
α

{ArαNαj ln(y1 − x1 + pα[y2 − x2])} djk,

Γrk(x;y;n) =
1

2π
Re

X
α

n
LrjαNαp(y1 − x1 + pα[y2 − x2])−1

o
nj(y)dpk,

(28)

where djk are constants defined by the relation

− i
2

X
α

n
Lj2αNαp − Lj2αNαp

o
dpk = δjk. (29)

Equations (27) are used in the indirect boundary element formulation of

boundary value problems involving (23).

From (27), we find that ϕqs(x) = cqskr∂φk/∂xr is given by

ϕqs(x)

=
Z
∂R

h
φr(y)Ξrqs(x;y;n

(m)) + ϕrp(y)np(y)Θrqs(x;y)
i
dS(y) for x ∈ R,

(30)

where

Θrqs(x;y) =
1

2π
Re

X
α

(
ArαNαpGqsαp

y1 − x1 + pα[y2 − x2]
)
,

Ξrqs(x;y;n) =
1

2π
Re

X
α

(
LrjαNαpGqsαp

(y1 − x1 + pα[y2 − x2])2
)
nj(y), (31)
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where Gqsαp = (cqsk1 + pαcqsk2)dpk.

Now if the region R covers the entire 0x1x2 plane and contains cracks

C(1), C(2), · · · , and C(N) in its interior, as in the case of the crack problem
presently under consideration, and if the functions ϕrp(x) behave as O(|x|−s)
(s > 0) for very large |x| , then, applying (25) and (30), we obtain, for x in
the interior of the cracked anisotropic medium,

ϕqs(x) =
NX
m=1

Z
C(m)

h
∆φp(y)Ξpqs(x;y;n

(m))− µ(m)pj n
(m)
j r(y)Θpqs(x;y)

i
dS(y),

(32)

where

lim
ε→0+

h
φp(x− εn(m))− φp(x+ εn(m))

i
= ∆φp(x) for x ∈ C(m). (33)

Notice that, from (18), (24) and (32), it is clear that σqs(x) behave asO(|x|−1)
for very large |x| . Such an asymptotic behaviour was also reported by Sturla
and Barber [11].

Substituting (18) and (32) into conditions (26), we obtain

H
Z 1

−1
γ(i)rq∆φ(i)r (t)dt

(t− u)2 +
NX
m=1

1

2
`(m)(1− δim)

Z 1

−1
∆φ(m)r (t)Υ(mi)

rq (t, u)dt

= −sqs(X(i)
1 (u), X

(i)
2 (u))n

(i)
s + P

Z 1

−1
κ(i)q R

(i)(t)dt

(t− u)

+
NX
m=1

1

2
`(m)(1− δim)

Z 1

−1
R(m)(t)Ψ(mi)

q (t, u)dt

for − 1 < u < 1 (q = 1, 2, 3; i = 1, 2, · · · ,N), (34)

where ∆φ(i)r (t) = ∆φr(X
(i)
1 (t), X

(i)
2 (t)), P indicates that the integral is to be

interpreted in the Cauchy principal sense and

γ(i)rq =
1

π
`(i)n(i)p n

(i)
s Re

X
α

(
LrpαNαjGqsαj

[c(i) − a(i) + pα(d(i) − b(i))]2
)
,

Υ(mi)
rq (t, u) = Ξrqs(X

(i)
1 (u), X

(i)
2 (u);X

(m)
1 (t), X

(m)
2 (t);n(m))n(i)s ,

κ(i)q =
1

2π
`(i)n(i)s n

(i)
p Re

 ρΩp
³
βqs −Bqs

´
c(i) − a(i) + τ (d(i) − b(i))
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+
X
α

µ(i)rpArαNαjGqsαj + ρLqsαNαkDkΩp

c(i) − a(i) + pα(d(i) − b(i))
)
,

Ψ(mi)
q (t, u) = µ

(m)
rj n

(m)
j Θrqs(X

(i)
1 (u), X

(i)
2 (u);X

(m)
1 (t), X

(m)
2 (t))n(i)s

−Wqs(X
(i)
1 (u), X

(i)
2 (u);X

(m)
1 (t), X

(m)
2 (t);n(m))n(i)s

+βqsΛ(X
(i)
1 (u),X

(i)
2 (u);X

(m)
1 (t),X

(m)
2 (t);n(m))n(i)s .

(35)

Equations (34) constitute a system of hypersingular integral equations

from which we can solve for the unknown functions ∆φ(i)r (t) after we have

determined the functions R(i)(t) from (5). Once R(i)(t) and ∆φ(i)r (t) are

known, the stress σkj(x) can be evaluated using (18), (24) and (32).

4 SPECIFIC CASES

4.1 A single planar crack

For the thermoelastic problem under consideration in Sections 2 and 3, take

N = 1, (a(1), b(1)) = (−a, 0) and (c(1), d(1)) = (a, 0) where a is a positive real
constant. Physically, this corresponds to the case of a single planar cracks of

length 2a lying on the x2 = 0 plane.

If the prescribed heat flux on the crack is given by Si(x1, 0) = δi2S for

−a < x1 < a (S is a given constant), we find that the system (5) reduces to:

− 1

2ρaπ
H
Z 1

−1
R(1)(t)dt

(t− u)2 = S for − 1 < u < 1. (36)

The hypersingular integral equation (36) has the solution (see, e.g. Kaya

and Erdogan [7])

R(1)(t) = 2ρaS
√
1− t2 for − 1 < t < 1, (37)

which gives us the difference in the temperature on top and bottom crack

faces at the point x = (at, 0).
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The system (34) becomes:

1

πa
H
Z 1

−1
∆φ(1)i (t)dt

(t− u)2 = νqi [sq2(u)− 2ρaκqSu] for − 1 < u < 1,
(38)

where γrqνqi = δri and

γrq =
1

2
Re

(X
α

Lr2αNαjGq2αj

)

κq =
1

2
Re

(X
α

(µrArαNαjGq2αj + iLq2αNαkDk)

+i
³
βq2 −Bq2

´o
,

µr = −βr2 + 2Re
(
− Br2τ
τ − τ

+
X
α

Lr2αNαsDspα
pα − pα

)
. (39)

If we assume that sq2(u) are constant functions, i.e. sq2(u) = Pq (Pq are

given constants), then (38) gives us the crack-opening displacements

∆φ
(1)
i (t) = aνqi [aρκqSt− Pq]

√
1− t2 for − 1 < t < 1. (40)

The solution given by (40) is physically acceptable only if ∆φ
(1)
2 (t) ≥ 0

for −1 < t < 1, i.e. only if the constant tractions Pq satisfy the inequality
min

t∈(−1,1)
νq2 [aρκqSt− Pq] ≥ 0. (41)

If the inequality in (41) does not hold, the crack may be partially closed. For

such a case, (36), (37), (38) and (40) will have to be modified appropriately

to take into consideration the region of contact between opposite crack faces.

The region of contact may be determined in the manner of Sturla and Barber

[11].

4.2 Two coplanar cracks

We shall now solve the hypersingular integral equations (5) and (34) numer-

ically for particular cases of the problem involving a particular transversely-

isotropic medium containing a pair of equal length planar cracks.

13



Specifically, we take the transverse planes of the material to be parallel

to the 0x2x3 plane so that equation (1) is given by

λ11
∂2T

∂x21
+ λ22

∂2T

∂x22
= 0, (42)

and the first two equations of (11) are

C
∂2u1
∂x21

+ L
∂2u1
∂x22

+ (F + L)
∂2u2

∂x1∂x2
= β11

∂T

∂x1
,

A
∂2u2
∂x22

+ L
∂2u2
∂x21

+ (F + L)
∂2u1

∂x1∂x2
= β22

∂T

∂x2
, (43)

where A, L, F and C are independent elastic constants characterising the

elastic behaviour of the material. (Assuming that we are not interested in

the antiplane deformation of the material, we ignore the third equation which

does not contain u1 and u2.)

For the systems of partial differential equations above, details involved

in the calculation of constants such as pα, Akα, Lkjα and Nαk are described

in, for example, Clements [5]. We may take the latin and greek subscripts

in these constants as running from 1 to 2 (instead of 3 as in the general

analysis).

For the cracks, we take N = 2, with (a(1), b(1)) = (a, 0), (c(1), d(1)) =

(a + 2`, 0), (a(2), b(2)) = (−a − 2`, 0) and (c(2), d(2)) = (−a, 0), where a > 0
and ` > 0 are given constants. This corresponds to a pair of coplanar cracks,

each of length 2`. The inner tips of the cracks are separated by a distance

2a. The applied heat flux and traction at points y on both cracks are given

by Si(y) = δi2λ22S (S is a given constant) and skj(y) = 0 [in (2) and (12)]

respectively.

For this particular case, R(1)(t) = R(2)(−t) and the system (5) reduces to

H
Z 1

−1
R(t)dt

(t− u)2 +
Z 1

−1
R(t)K(t, u)dt = −2π for − 1 < u < 1, (44)

where χ =
q
λ11/λ22, R(t) = χR(1)(t)/(S`) and

K(t, u) =
·
t+ u+ 2

µ
a

`
+ 1

¶¸−2
. (45)
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Considering the symmetry of the problem about the x2-axis, we find that

∆φ
(1)
1 (t) = −∆φ

(2)
1 (−t) and ∆φ

(1)
2 (t) = ∆φ

(2)
2 (t) = 0. Consequently, the

system (34) reduces to a single equation, namely:

H
Z 1

−1
∆φ(t)dt

(t− u)2 −
Z 1

−1
∆φ(t)K(t, u)dt

= P
Z 1

−1
R(t)dt

(t− u) −
Z 1

−1
R(t)M(t, u)dt for − 1 < u < 1, (46)

where ∆φ(t) = γχ∆φ
(1)
1 (t)/(κS`

2), K(t, u) is as given in (45),

M(t, u) =
·
t+ u+ 2

µ
a

`
+ 1

¶¸−1
(47)

and

γ = Re
X
α

L12αNαjG12αj ,

κ = Re

(X
α

h
µ
(1)
22 A2αNαjG12αj + iL12αNαkDk

i
− iB12

)
. (48)

The system of singular integral equations (44) and (46) can be solved

numerically. There are several different methods of solution. We adopt the

collocation technique of Kaya and Erdogan [7], i.e. we make the approxima-

tion:

R(t) ' √
1− t2

JX
j=1

rjUj−1(t),

∆φ(t) ' √
1− t2

JX
j=1

φjUj−1(t), (49)

where Uj is the j-th order Chebyshev polynomial of the second kind and rj

and φj are constants yet to be determined.

Substitution of (49) into (44) and (46) yields (for −1 < u < 1)
JX
j=1

rj [−πjUj−1(u) + Yj(u)] = −2π,
JX
j=1

φj [πjUj−1(u) + Yj(u)] =
JX
j=1

rj [πTj(u) + Zj(u)] , (50)

15



where Tj(x) = Uj(x) − xUj−1(x) is the j-th order Chebyshev polynomial of
the first kind and

Yj(u) =
Z 1

−1
K(t, u)

√
1− t2Uj−1(t)dt,

Zj(u) =
Z 1

−1
M(t, u)

√
1− t2Uj−1(t)dt. (51)

In deriving (50), we make use of some results in Kaya and Erdogan [7] to

compute the Hadamard finite-part and Cauchy principal integrals.

To set up a system of 2J linear algebraic equations in 2J unknowns rj

and φj (j = 1, 2, · · · , J), we take the value of u in (50) to be given (in turn)
by

u = cos

Ã
[2p− 1]π
2J

!
for p = 1, 2, · · · , J. (52)

At the crack tips (a, 0) and (a+2`, 0), we define the mode II thermoelastic

stress intensity factors

K−
II = lim

x→a−

q
2(a− x)σ12(x, 0) andK+

II = lim
x→(a+2`)+

q
2(x− a− 2`)σ12(x, 0).

(53)

Once φj are determined, these stress intensity factors may be computed ap-

proximately using

K±
II '

κS`3/2

2χ

JX
j=1

φjUj−1(±1). (54)

Using J = 20, we solve the system of linear algebraic equations and com-

pute the non-dimensionalized temperature jumpR(t) and the non-dimensionalized

crack-opening displacement (COD) ∆φ(t) in Figures 2 and 3 respectively for

a/` = 1/100, 1/10, 1 and 10. From Figure 2, on a given point on a crack,

it is apparent that the temperature jump increases as a/` decreases. It is

also interesting to note that on the crack a < x1 < a+ 2`, x2 = 0, the point

where the temperature jump is maximum shifts nearer to the tip (a, 0) as

a/` decreases. In Figure 3, we find that the COD may be negative in some

regions on the cracks near the inner tips (−a, 0) and (a, 0).
In Figure 4, we plot the non-dimensionalized stress intensity factorsK(1) =

2χK−
II/

³
κS`3/2

´
and K(2) = 2χK+

II/
³
κS`3/2

´
against 1/100 ≤ a/` ≤ 5. For

16
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Figure 2: Plots of the non-dimensionalized temperature jump for various
values of a/`.

1/100 ≤ a/` ≤ 5, K(1) < 0, K(2) > 0 and |K(2)| > |K(1)|. Also, for the
same range of a/`, |K(1)| increases while |K(2)| decreases as a/` increases,
i.e. the state of stress becomes more severe at the inner tips and less severe

at the outer tips if the distance separating the cracks is increased. It appears

that K(1)→ −1 and K(2)→ 1 as a/`→∞.

5 CONCLUSION

Hypersingular integral equations are derived for a two-dimensional thermoe-

lastic crack problem. The integral equations can be used to study the problem

for any configuration of planar cracks in any anisotropic full-space. The un-

known functions are the temperature jumps across the cracks and the crack-

opening displacements. Once they are determined, crack parameters of inter-
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Figure 3: Plots of the non-dimensionalized crack-opening displacement
(COD) for various values of a/`.

est, such as the crack tip stress intensity factors, can be readily computed.

In general, the hypersingular integral equations have to be solved numeri-

cally. For a specific case involving a pair of coplanar cracks in a transversely-

isotropic medium, we solve the hypersingular integral equations numerically

and compute the relevant crack tip stress intensity factors. The analysis pre-

sented can be extended to curved cracks without too much difficulty. With

the crack-opening displacements appearing directly in the formulation, the

hypersingular approach may prove to be particularly advantageous when the

cracks are partially closed under certain thermo-mechanical loading. For

partially closed cracks, the hypersingular integral equations may be applied

to obtain an iterative procedure for solving the thermoelastic problem. The

analysis in the present paper may also be used as a basis for the future devel-

opment of a hypersingular-boundary integral method for thermoelastic crack

18
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Figure 4: Plots of −K(1) and K(2) against a/`.

problems involving anisotropic bodies of finite extent.
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