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Abstract

A numerical method based on an integro-differential formulation is
proposed for solving a one-dimensional moving boundary Stefan prob-
lem involving heat conduction in a solid with phase change. Some
specific test problems are solved using the proposed method. The nu-
merical results obtained indicate that it can give accurate solutions
and may offer an interesting and viable alternative to existing numer-
ical methods for solving the Stefan problem.
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1 Introduction

Amoving boundary Stefan problem of interest requires solving the differential

equations

∂2T (x, t)

∂x2
+ xR(t)

dR(t)

dt

∂T (x, t)

∂x
= R2(t)

∂T (x, t)

∂t
for x ∈ [0, 1] and t ≥ 0, (1)

and

R(t)
dR(t)

dt
= −Ste ∂T (x, t)

∂x

¯̄̄̄
x=1

for t ≥ 0, (2)

subject to the initial conditions

R(0) = 0 and T (x, 0) = 0 for x ∈ [0, 1], (3)

and the boundary conditions

αT (0, t) + β
∂T (x, t)

∂x

¯̄̄̄
x=0

= f (t) and T (1, t) = 0 for t > 0, (4)

where T (x, t) is the temperature, R(t) ≥ 0 gives the position of the mov-

ing boundary, Ste denotes a constant known as the Stefan number and the

constants α and β (not both zero) and the function f(t) are assumed to be

suitably prescribed such that R(t) is an increasing function of t. Note that

(2) is known as the Stefan condition.

Equations (1)-(4) arise in the formulation of the one-dimensional moving

boundary problem for the liquid region of a melting solid at the phase change

temperature. They are derived from the original formulation of the Stefan

problem to immobilize the solution domain from the physical region given

by [0, R(t)] to the non-dimensionalized interval [0, 1] (Rizwan-uddin [13]). A

semi-analytical technique known as the nodal integral method for solving the
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problem for the special case α = 1 and β = 0 was proposed by Rizwan-uddin

[14]. Caldwell, Savović and Kwan [6] and Savović and Caldwell [15] presented

a finite-difference method for determining T (x, t) and R(t) numerically, also

for α = 1 and β = 0. The more general boundary condition at x = 0

as in (4) (with α2 + β2 6= 0) allows for the heat flux to be specified at

x = 0, as may occur when heat transfer takes place through convective

process on the boundary. Reviews on numerical methods for solving various

one-dimensional Stefan problems were recently given by Caldwell and Kwan

[5] and Javierre, Vuik, Vermolen and van der Zwaag [9]. Other earlier related

references which may be of interest here include Asaithambi [3], [4], Crank

[8], Kutluay, Bahadir and Özdeş [10] and Lesaint and Touzani [11].

In the present paper, an alternative numerical method based on an integro-

differential equation of (1) is proposed for solving the Stefan problem de-

fined by (1)-(4). Together with the boundary conditions in (4), the integro-

differential equation is reduced to a system of algebraic-differential equations

by approximating T (x, t) through the use of local interpolating spatial func-

tions. The system contains functions of t giving the unknown temperature

at selected nodal points, the boundary heat flux functions (at x = 0 and

x = 1) and the unknown position R(t) of the moving boundary. The first

order time derivatives of the nodal temperature functions are approximated

using quadratic functions of t in order to further reduce algebraic-differential

equations to purely algebraic equations. A predictor-corrector approach is

used to solve the non-linear algebraic equations and (2). The numerical pro-

cedure here does not require the boundary heat flux to be approximated

using a finite-difference formula for the first order spatial derivative of the

temperature. Instead, the heat flux function at either x = 0 or x = 1 is

to be determined directly as a function of t, if it is not known. To test its
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validity, the proposed numerical method is applied to solve some specific test

problems.

The integro-differential approach offers an interesting and viable alter-

native to more conventional numerical techniques like the finite-difference

method for solving initial-boundary value problems in engineering and phys-

ical science. The main advantage in using the approach for the numerical

solution of (1)-(4) is that the formulation does not contain any spatial deriva-

tive of the unknown function in the interior of the solution domain. Thus, it

is not necessary to approximate any spatial derivative using finite-difference

formulae. For some examples of problems solved using integro-differential

formulations, one may refer to Ang [1], [2] and Chen and You [7].

2 Integro-differential formulation

Integrating (1) partially with respect to x over the interval 0 ≤ x ≤ η (with

0 < η < 1) yields

∂T (η, t)

∂η
− ∂T (x, t)

∂x

¯̄̄̄
x=0

=

ηZ
0

[R2(t)
∂T (x, t)

∂t
− xR(t)dR(t)

dt

∂T (x, t)

∂x
]dx. (5)

Equation (5) is now partially integrated with respect to η over the interval

0 ≤ η ≤ ξ (with 0 < ξ < 1) to obtain

T (ξ, t)− T (0, t)− ξ
∂T (x, t)

∂x

¯̄̄̄
x=0

=

ξZ
0

ηZ
0

[R2(t)
∂T (x, t)

∂t
− xR(t)dR(t)

dt

∂T (x, t)

∂x
]dxdη. (6)
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Interchanging the order of integration in the double integral on the right

hand side of (6) leads to

T (ξ, t)− T (0, t)− ξ
∂T (x, t)

∂x

¯̄̄̄
x=0

=

ξZ
0

|x− ξ|[R2(t)∂T (x, t)
∂t

− xR(t)dR(t)
dt

∂T (x, t)

∂x
]dx. (7)

If the exercise above is repeated using the intervals η ≤ x ≤ 1 and

ξ ≤ η ≤ 1 in place of 0 ≤ x ≤ η and 0 ≤ η ≤ ξ respectively, one obtains

T (1, t)− T (ξ, t) + (ξ − 1) ∂T (x, t)
∂x

¯̄̄̄
x=1

= −
1Z

ξ

|x− ξ|[R2(t)∂T (x, t)
∂t

− xR(t)dR(t)
dt

∂T (x, t)

∂x
]dx. (8)

Taking the difference between (7) and (8) and using the boundary condi-

tion at x = 1 in (4) give

2T (ξ, t)− T (0, t)− ξ
∂T (x, t)

∂x

¯̄̄̄
x=0

− (ξ − 1) ∂T (x, t)
∂x

¯̄̄̄
x=1

= R2(t)

1Z
0

|x− ξ|∂T (x, t)
∂t

dx−
1Z
0

x|x− ξ|R(t)dR(t)
dt

∂T (x, t)

∂x
dx. (9)

Performing an integration by part on the second integral in (9) (to remove

the first order spatial derivative of T ), one may derive the integro-differential

equation

2T (ξ, t) = T (0, t) + ξθ0(t) + (ξ − 1)θ1(t) +R2(t)
1Z
0

|x− ξ|∂T (x, t)
∂t

dx

+R(t)
dR(t)

dt
[

ξZ
0

(ξ − 2x)T (x, t)dx+
1Z

ξ

(2x− ξ)T (x, t)dx], (10)
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where θ0(t) and θ1(t) are the flux functions defined by

θ0(t) =
∂T (x, t)

∂x

¯̄̄̄
x=0

and θ1(t) =
∂T (x, t)

∂x

¯̄̄̄
x=1

. (11)

Similar integro-differential equations were used to obtain numerical meth-

ods for solving one-dimensional heat and wave equations in Ang [1], [2].

The one-dimensional Stefan problem stated in Section 1 may now be

reformulated as one which requires solving for T (x, t), θ0(t), θ1(t) and R(t)

from (10) together with (2) subject to the initial conditions (3) and the

boundary condition at x = 0 in (4). In view of (11), one may rewrite the

Stefan condition (2) as

R(t)
dR(t)

dt
= −Ste θ1(t) for t ≥ 0. (12)

3 Approximation of T (x, t)

As in Ang [1], [2], the temperature T (x, t) is approximated using

T (x, t) '
NX
m=1

Tm(t)
NX
n=1

cnmσn(x), (13)

where Tm(t) = T (ξm, t), ξ1, ξ2, · · · , ξN−1 and ξN are N distinct well-spaced

nodes selected from the interval [0, 1] with ξ1 = 0 and ξN = 1, σn(x) =

1 + |x − ξn|3/2 is the local interpolating function centred about ξn and cnm
are constant coefficients defined by

NX
k=1

σn(ξk)cpk =

½
1 if n = p,
0 if n 6= p. (14)

Equation (14) implies that [cpk] is the inverse matrix of [aij ], where aij =

σj(ξi).
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Note that the choice of the local interpolating function σn(x) in (13) is

not unique. The function σn(x) = 1 + |x− ξn|3/2 may be regarded as a one-
dimensional analogue of the local interpolating function proposed in Zhang

and Zhu [16] for use in the dual-reciprocity boundary element method.

From (4), TN(t) is known, that is, TN (t) = 0. In general, the functions

T1(t), T2(t), · · · , TN−2(t) and TN−1(t) may be regarded as unknowns yet to
be determined.

4 An initial-value problem

If one substitutes (13) into (10) and lets ξ = ξr for r = 1, 2, · · · , N, one
obtains

2Tr(t) = T1(t) + ξrθ0(t) + (ξr − 1)θ1(t)

+R2(t)
N−1X
m=1

Frm
dTm(t)

dt
+R(t)

dR(t)

dt

N−1X
m=1

GrmTm(t)

for r = 1, 2, · · · , N, (15)

where

Frm =

NX
n=1

cnm(
1

2
[(1− ξr)

2 + ξ2r ] +
2

5
[(1− ξr)(1− ξn)

5/2 + ξrξ
5/2
n ]

− 4

35
[(1− ξn)

7/2 + ξ7/2n ] +
8

35
|ξr − ξn|7/2), (16)

Grm =
NX
n=1

cnm(1− ξr +
4

7
[(1− ξn)

7/2 − 2 |ξr − ξn|7/2]

+ (
4

5
ξn − 2

5
ξr)[(1− ξn)

5/2 − 2 sgn(ξr − ξn) |ξr − ξn|5/2]

− 8

35
ξ7/2n +

2

5
ξ5/2n ξr). (17)
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Note that if R(t) is known then (15) constitutes a system of N lin-

ear algebraic-differential equations containing (N + 1) unknown functions

of t. The unknown functions are θ0(t), θ1(t), T1(t), T2(t), · · · , TN−2(t) and
TN−1(t). To obtain another equation, the boundary condition at x = 0 in (4)

is written as

αT1(t) + βθ0(t) = f(t). (18)

Thus, the Stefan problem under consideration is now approximately re-

duced to an initial-value problem which requires solving (12), (15) and (18)

subject to

R(0) = 0 and Tr(0) = 0 for r = 1, 2, · · · , N − 1. (19)

Note that (19) is obtained from (3). Mathematically, initial values of θ0(t)

and θ1(t) are not required, as (15) does not contain any time derivative of

these functions. Nevertheless, if needed, they may be deduced from the initial

condition T (x, 0) = 0 in (3) to be given by θ0(0) = 0 and θ1(0) = 0.

5 Numerical method

The unknown functions Tn(t) (n = 1, 2, · · · , N − 1) are approximated as
cubic functions of time t over the interval [τ, τ +3∆t], that is (as in Ang [1]),

Tn(t) ' 1

(∆t)3
[−1
6
(t− τ −∆t)(t− τ − 2∆t)(t− τ − 3∆t)Tn(τ )

+
1

2
(t− τ )(t− τ − 2∆t)(t− τ − 3∆t)Tn(τ +∆t)

− 1
2
(t− τ )(t− τ −∆t)(t− τ − 3∆t)Tn(τ + 2∆t)

+
1

6
(t− τ )(t− τ −∆t)(t− τ − 2∆t)Tn(τ + 3∆t)]

for t ∈ [τ, τ + 3∆t], (20)
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Differentiation of (20) with respect to t gives

dTn(t)

dt
' 1

(∆t)3
[−(1

2
[t− τ ]2 − 2[t− τ ]∆t+

11

6
[∆t]2)Tn(τ )

+ (
3

2
[t− τ ]2 − 5[t− τ ]∆t+ 3[∆t]2)Tn(τ +∆t)

− (3
2
[t− τ ]2 − 4[t− τ ]∆t+

3

2
[∆t]2)Tn(τ + 2∆t)

+ (
1

2
[t− τ ]2 − [t− τ ]∆t+

1

3
[∆t]2)Tn(τ + 3∆t)]

for t ∈ [τ, τ + 3∆t]. (21)

If one lets t = τ + j∆t (for j = 1, 2, 3) in (15), after using (21), one

obtains

2Tr(τ + j∆t)− T1(τ + j∆t)
= ξrθ0(τ + j∆t) + (ξr − 1)θ1(τ + j∆t)

+R(τ + j∆t)
dR

dt

¯̄̄̄
t=τ+j∆t

N−1X
m=1

GrmTm(τ + j∆t)

+
R2(τ + j∆t)

∆t

N−1X
m=1

Frm[−(1
2
j2 − 2j + 11

6
)Tm(τ)

+ (
3

2
j2 − 5j + 3)Tm(τ +∆t)− (3

2
j2 − 4j + 3

2
)Tm(τ + 2∆t)

+ (
1

2
j2 − j + 1

3
)Tm(τ + 3∆t)]

for r = 1, 2, · · · , N and j = 1, 2, 3. (22)

In a similar manner, (18) gives

αT1(τ + j∆t) + βθ0(τ + j∆t) = f(τ + j∆t) for j = 1, 2, 3. (23)

Integrating (12) with respect to t over the interval [τ, τ + j∆t] (for j = 1,

2, 3) gives

R2(τ + j∆t)−R2(τ ) = −2 Ste
τ+j∆tZ
τ

θ1(t)dt for j = 1, 2, 3. (24)
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If θ1(t) is approximately given by

θ1(t) ' 1

(∆t)3
[−1
6
(t− τ −∆t)(t− τ − 2∆t)(t− τ − 3∆t)θ1(τ)

+
1

2
(t− τ )(t− τ − 2∆t)(t− τ − 3∆t)θ1(τ +∆t)

− 1
2
(t− τ )(t− τ −∆t)(t− τ − 3∆t)θ1(τ + 2∆t)

+
1

6
(t− τ )(t− τ −∆t)(t− τ − 2∆t)θ1(τ + 3∆t)]

for t ∈ [τ, τ + 3∆t], (25)

then

R2(τ + j∆t)−R2(τ ) ' −2 Ste (∆t)[(− 1
24
j4 +

1

3
j3 − 11

12
j2 + j)θ1(τ )

+ (
1

8
j4 − 5

6
j3 +

3

2
j2)θ1(τ +∆t)

+ (−1
8
j4 +

2

3
j3 − 3

4
j2)θ1(τ + 2∆t)

+ (
1

24
j4 − 1

6
j3 +

1

6
j2)θ1(τ + 3∆t)]

for j = 1, 2, 3. (26)

Letting t = τ + j∆t (for j = 1, 2, 3) in (12) gives

R(τ + j∆t)
dR(t)

dt

¯̄̄̄
t=τ+j∆t

= −Ste θ1(τ + j∆t) for j = 1, 2, 3. (27)

Assuming that R(τ), θ1(τ ), Tm(τ ) (m = 1, 2, 3, · · · , N − 1) are known,
one may solve for the unknowns R(τ + j∆t), θi(τ + j∆t) and Tm(τ + j∆t)

(j = 1, 2, 3; i = 0, 1; m = 1, 2, · · · , N − 1) by using a predictor-corrector
procedure which iterates between (22)-(23) and (26)-(27).

More specifically, the procedure starts off with an initial guess of R2(j∆t)

and R(j∆t)R0(j∆t) (j = 1, 2, 3).With this initial guess and τ = 0, (22)-(23)

may be solved as a system of 3(N + 1) linear algebraic equations for the
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3(N + 1) unknowns given by θi(j∆t) and Tm(j∆t) (j = 1, 2, 3; i = 0, 1;

m = 1, 2, · · · , N − 1). From (3), one may use R(0) = 0 and Tm(0) = 0 (m =

1, 2, · · · , N−1) in (22)-(23) and (26)-(27) when τ = 0. Once these unknowns

are determined, R(j∆t)R0(j∆t) and R2(j∆t) (j = 1, 2, 3) are calculated from

(26)-(27) respectively, with τ = 0, using the values of θ1(j∆t) (j = 1, 2, 3)

just obtained. The newly updated values of R(j∆t)R0(j∆t) and R2(j∆t)

(j = 1, 2, 3) are checked for convergence against those values from the initial

guess. If the two sets of values do not agree to within a prescribed level, one

returns to (22)-(23) (still with τ = 0), solve again for θi(j∆t) and Tm(j∆t)

(j = 1, 2, 3; i = 0, 1; m = 1, 2, · · · , N − 1), applies (26)-(27) with the latest
values of θ1(j∆t) (j = 1, 2, 3) to recompute R(j∆t)R0(j∆t) and R2(j∆t)

(j = 1, 2, 3) respectively, and checks again for convergence in the values of

R(j∆t)R0(j∆t) and R2(j∆t) (j = 1, 2, 3) . The iteration between (22)-(23)

and (26)-(27) for τ = 0 continues until the values of R(j∆t)R0(j∆t) and

R2(j∆t) (j = 1, 2, 3) converge to within the prescribed level.

The iterative process above may be repeated by letting τ = 3∆t and using

R2(j∆t) and R(j∆t)R0(j∆t) (as computed with τ = 0) as starting values for

R2((3 + j)∆t) and R((j + 3)∆t)R0((j + 3)∆t) (j = 1, 2, 3) respectively, in

order to solve for R((j +3)∆t), θi((j +3)∆t) and Tm((j +3)∆t) (j = 1, 2, 3;

i = 0, 1; m = 1, 2, · · · , N − 1) Once convergence is achieved for τ = 3∆t, the
process is repeated with τ = 6∆t, 9∆t, 12∆t, · · · (consecutively) to solve for
the unknowns at higher and higher time levels.

6 Test problems

The numerical method proposed above is applied here to solve two specific

test problems. In both problems, the predictor-corrector procedure which

iterates between (22)-(23) and (26)-(27) is stopped once R2(t) and R(t)R0(t)
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at the relevant time levels achieve a convergence of 9 significant figures.

Problem 1. In (4), take α = 1, β = −1, f(t) = −1+ exp(t) + t exp(t) and
Ste = 1.

With Ste = 1, one may verify that the analytic solution to this problem

is given by

T (x, t) = −1 + exp(t[1− x]) and R(t) = t. (28)

Table 1. A comparison of numerical values of T (x, 0.90) with the exact

solution at selected points (Problem 1).

x
N = 11

∆t = 0.10
N = 51

∆t = 0.01
Exact

0 1.459215 1.459591 1.459603
0.10 1.247512 1.247896 1.247908
0.20 1.054071 1.054422 1.054433
0.30 0.877280 0.877601 0.877611
0.40 0.715709 0.715998 0.716007
0.50 0.568046 0.568304 0.568312
0.60 0.433094 0.433322 0.433329
0.70 0.309759 0.309958 0.309965
0.80 0.197043 0.197212 0.197217
0.90 0.094025 0.094169 0.094174

In Table 1, the numerical values of the temperature T (x, t) at selected

points and at time t = 0.90, obtained using N = 11 and ∆t = 0.10, are

found to be in good agreement with the exact solution in (28). Convergence

of the numerical values to the exact ones is obviously observed when the

calculation is refined using N = 51 and ∆t = 0.01, that is, significantly

more accurate numerical values of the temperature are obtained when the
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number of collocation points is increased by more than 4 times and the time-

step reduced by ten times. To obtain the numerical values using N = 11

and ∆t = 0.10, the predictor-corrector procedure requires no more than 19

iterations. For the refined calculation using N = 51 and ∆t = 0.01, less

than 11 iterations are needed. (Note that the criterion for convergence used

here is rather stringent. At any particular time level, the functions R2(t) and

R(t)R0(t) are required to converge to at least 9 significant figures. If a less

stringent criterion is used instead, much fewer iterations are required in the

numerical calculation.)

Figure 1. A graphical comparison between the numerical and the exact of

the function R(t) (which describes the moving front) over the time interval

0 ≤ t ≤ 0.90 (Problem 1).
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A graphical comparison between the numerical and the exact R(t) over

the interval 0 ≤ t ≤ 0.90 is made in Figure 1. The numerical R(t) is calcu-
lated using N = 21 and ∆t = 0.10. Since the numerical and the exact values

agree to at least 4 significant figures, the two graphs in Figure 1 are visually

indistinguishable.

Problem 2. In (4), take α = 1, β = 0 and f (t) = 1− exp(−t).
For this particular problem, no analytic solution is apparently available,

but it may be shown that (Özişik [12])

T (x, t) ' 1− erf(λx)
erf(λ)

and R(t) '
q
4λ2(t− tlarge) +R2(tlarge) for t ≥ tlarge,

(29)

where erf(x) is the error function, tlarge is sufficiently large positive number

and the value of λ is obtained from

√
πλ exp(λ2) erf(λ) = Ste. (30)

For the purpose of carrying out numerical calculation, the Stefan number

Ste is taken to be 1. (With Ste = 1, the constant λ in (29), obtained from

solving (30) numerically, is given by 0. 620063.) The calculation is carried

out using N = 21 and ∆t = 0.05. Less than 14 iterations are required to

satisfy the criterion for convergence in the predictor-corrector procedure. A

plot of the numerical T (0.50, t) against t over the interval 0 ≤ t ≤ 6.0 is

given in Figure 2. As pointed out earlier on, the problem does not have any

known exact solution. One may view the first formula in (29) as a time-

independent asymptotic solution which T (x, t) should approach as time t

increases. According to (29), the numerical value of T (0.50, t) should tend

to the asymptotic value 0.452845 as t→∞. This is observed in Figure 2.
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Figure 2. A plot of the numerical temperature T (0.50, t) (solid line) and

the large time asymptotic solution in (29) (dashed line) over the time

interval 0 ≤ t ≤ 6 (Problem 2).

To check the numericalR(t) against the approximate formula in (29), tlarge

is selected to be 6.0. From the numerical calculation itself, R(tlarge) = R(6)

is found to be 2.775477336 (approximately). A graphical comparison of the

numerical R(t) and the one given in (29) is given over the time interval

6.0 ≤ t ≤ 12.0 in Figure 3. Over the given time interval, the two sets of

approximate values of R(t) agree to least 3 significant figures.
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Figure 3. A graphical comparison between the numerical R(t) and the

asymptotic formula in (29) over the interval 6 ≤ t ≤ 12 (Problem 2).

7 Final remarks

The partial differential equation (1) which governs the one-dimensional Ste-

fan problem under consideration here is reduced to the integro-differential

equation (10). The integro-differential equation is used to derive a numerical

procedure for solving the Stefan problem. No approximation of the boundary

heat flux is necessary. If the boundary heat flux is not known, it appears

as an unknown function of time to be solved directly. Furthermore, the

integro-differential formulation does not contain any spatial derivative of the

temperature in the interior of the solution domain. It is not necessary to

approximate any spatial derivative of the temperature through the use of

finite-difference formulae.

The numerical procedure is implemented on the computer to solve some
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test problems. Numerical results obtained indicate that the numerical proce-

dure can be used to obtain accurate solution for the Stefan problem. Other

numerical results like those in Table 1 and Figures 1, 2 and 3 have also been

obtained for other values of the Stefan number but are not presented here. A

more refined computation (with higher number N of collocation points and

smaller time-step ∆t) is necessary to achieve a certain level of accuracy for

a larger value of the Stefan number Ste.
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