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1 Introduction

Of particular interest here is the numerical solution of the elliptic partial

differential equation (PDE)

∂

∂xi
(λij

∂u

∂xj
) = 0 in R, (1)

subject to

u(x1, x2) = t(x1, x2) for (x1, x2) ∈ C1,
v(x1, x2) = h(x1, x2) for (x1, x2) ∈ C2, (2)

where the Einsteinian convention of summing over a repeated index is adopted

for latin subscripts running from 1 to 2, R is a two-dimensional region

bounded by a simple closed curve C on the 0x1x2 plane, u(x1, x2) is the

unknown function to be determined, λij are non-negative coefficients satisfy-

ing the symmetry property λij = λji and the strict inequality λ
2
12−λ11λ22 < 0

at all points in the region R∪C, C1 and C2 are non-intersecting curves such
that C1 ∪ C2 = C, v(x1, x2) = λij(x1, x2)ni(x1, x2)∂u/∂xj, ni(x1, x2) are the

components of the unit normal outward vector to R at the point (x1, x2) on

C, and t and h are suitably prescribed functions. (Refer to Figure 1.) If v

is specified at all points on C (i.e. if C1 = ∅) then, to ensure compatibility
with (1), the function h in (2) is required to satisfyI

C

h(x1, x2)ds(x1, x2) = 0. (3)

The boundary value problem (BVP) defined by (1) and (2) has exten-

sive applications in engineering problems involving both nonhomogeneous

isotropic and anisotropic media (such as functionally graded materials). For

example, if u denotes the steady-state temperature in a two-dimensional solid

then under certain assumptions (1) is a manifestation of the law of conserva-

tion of energy, λij are the thermal conductivity coefficients of the solid and

−v represents the heat flux. In general, the thermal conductivity coefficients
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Figure 1: A sketch of the geometry of the problem. The solution domain R
is bounded by a simple closed curve which consists of two parts C1 and C2
on which u and v = λijni∂u/∂xj are respectively specified. The unit normal
outward vector to R is given by [n1, n2].

may vary from one point to another in the solid. For a thermally isotropic

solid, λij take the form λij = kδij, where δij is the Kronecker-delta. The

coefficients λij are constant if the solid is thermally homogeneous. Thus, for

a solid which is both thermally homogeneous and isotropic, (1) reduces to

the two-dimensional Laplace equation.

Another practical example in which the BVP is applicable involves the

antiplane static deformation of an infinitely-long anisotropic elastic cylin-

der with a uniform cross-section given by R. The antiplane deformation is

such that the only non-zero components of the displacement and the trac-

tion are perpendicular to the 0x1x2 plane and are given by u(x1, x2) and

v(x1, x2) respectively. For this example, λij are the elastic shear moduli of

the anisotropic solid, the only non-zero stresses are given by σi3 = λij∂u/∂xj,

and (1) is the equilibrium equation.

3



The boundary element method (BEM) for the numerical solution of the

BVP for the special case in which λij are constants (i.e. the case of ho-

mogeneous media) is well established, see e.g. Clements [8]. In general,

for spatially varying λij, it is mathematically difficult to derive a suitable

fundamental solution of (1) which can be employed to obtain a boundary

integral formulation for the BVP. If the fundamental solution for the homo-

geneous media is used instead, the resulting integral formulation includes

not only a boundary integral but also a domain integral. To deal with

the domain integral in an effective manner or to obtain alternative formu-

lations that do not require the solution domain to be discretized, various

approaches were proposed for particular nonhomogeneous isotropic media,

e.g. Clements [7] and Ang, Kusuma and Clements [2] [special fundamental

solutions for the case λij = δijX(x)Y (y)], Rangogni [12] [BEM and perturba-

tion techniques], Kassab and Divo [10] [the idea of a generalized fundamental

solution], Park and Ang [11] and Ang, Park and Kang [1] [a complex vari-

able BEM for λij = δijX(x)Y (y)], and Tanaka, Matsumoto and Suda [13]

[a dual-reciprocity method for treating the domain integral]. Other relevant

references on the BEM for nonhomogeneous isotropic media include Cheng

[5]-[6] and Gipson, Ortiz and Shaw [9].

In the present paper, we consider the case in which coefficients of the

nonhomogeneous anisotropic media take the form

λij(x1, x2) = λ
(0)
ij g(x1, x2), (4)

where g is a given positive function that can be partially differentiated at

least twice with respect to xi and λ
(0)
ij are non-negative constants satisfying

λ
(0)
ij = λ

(0)
ji and [λ

(0)
12 ]

2 − λ
(0)
11 λ

(0)
22 < 0. After using a substitution to re-write

(1) in a suitable form, we employ the fundamental solution for the corre-

sponding homogeneous anisotropic media, which takes the form of a simple

logarithmic function, to derive an integral formulation for the BVP under

consideration. With such a fundamental solution, the integral formulation

inevitably contains a domain integral over the region R. To use the formu-

lation for deriving a BEM for the numerical solution of the BVP, we apply
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the dual-reciprocity method (DRM) proposed by Brebbia and Nardini [4] to

convert the domain integral into a line integral approximately. The DRM

requires us to collocate at points in R∪C, but the discretization of the region
R into tiny elements is not needed. Thus, in the proposed approach for solv-

ing numerically (1) and (2) with (4), only the curve boundary C has to be

discretized. In the literature, the term ‘dual-reciprocity boundary element

method’ (DRBEM) is used to describe such a BEM approach. The DRBEM

outlined in the present paper is applicable for physically suitable g given by

any general function that varies spatially in a sufficiently smooth manner.

To assess the applicability of the method, it is used to solve some specific

problems.

2 Integral equation

With the substitution

u(x1, x2) =
1p

g(x1, x2)
w(x1, x2), (5)

we find that (1) with (4) can be re-written as

λ
(0)
ij

∂2w

∂xi∂xj
= κ(x1, x2)w, (6)

where κ is given by

κ(x1, x2) =
1p

g(x1, x2)
λ
(0)
ij

∂2

∂xi∂xj
[
p
g(x1, x2)]. (7)

If we pretend that the right hand side of (6) is known, i.e. if we regard (6)

as a Poisson’s equation, we can apply the analysis in Clements [8] to derive

the integral equation
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γ(ξ1, ξ2)w(ξ1, ξ2)

=

ZZ
R

κ(x1, x2)w(x1, x2)Φ(x1, x2, ξ1, ξ2)dx1dx2

+

I
C

[Γ(x1, x2, ξ1, ξ2)w(x1, x2)

− Φ(x1, x2, ξ1, ξ2)λ
(0)
ij ni(x1, x2)

∂

∂xj
{w(x1, x2)}]ds(x1, x2), (8)

where γ(ξ1, ξ2) = 0 if (ξ1, ξ2) /∈ R ∪ C, γ(ξ1, ξ2) = 1 if (ξ1, ξ2) ∈ R, 0 <
γ(ξ1, ξ2) < 1 if (ξ1, ξ2) ∈ C [γ(ξ1, ξ2) = 1/2 if (ξ1, ξ2) lies on a smooth part of
C] and

Φ(x1, x2, ξ1, ξ2) =
1

2π

q
λ
(0)
11 λ

(0)
22 − [λ(0)12 ]2

Re{ln(x1 − ξ1 + τ [x2 − ξ2])},

Γ(x1, x2, ξ1, ξ2) =
1

2π

q
λ
(0)
11 λ

(0)
22 − [λ(0)12 ]2

Re

½
L(x1, x2)

(x1 − ξ1 + τ [x2 − ξ2])

¾
,

L(x1, x2) = (λ
(0)
11 + τλ

(0)
12 )n1(x1, x2) + (λ

(0)
21 + τλ

(0)
22 )n2(x1, x2),

τ =
−λ(0)12 + i

q
λ
(0)
11 λ

(0)
22 − [λ(0)12 ]2

λ
(0)
22

(i =
√−1). (9)

With (6), we can re-write the integral equation (10) as:

γ(ξ1, ξ2)
p
g(ξ1, ξ2)u(ξ1, ξ2)

=

ZZ
R

κ(x1, x2)
p
g(x1, x2)u(x1, x2)

×Φ(x1, x2, ξ1, ξ2)dx1dx2
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+

I
C

[Γ(x1, x2, ξ1, ξ2)
p
g(x1, x2)u(x1, x2)

− [u(x1, x2)λ(0)ij ni(x1, x2)
∂

∂xj
{
p
g(x1, x2)}

+
v(x1, x2)p
g(x1, x2)

]Φ(x1, x2, ξ1, ξ2)]ds(x1, x2). (10)

Notice that v(x1, x2) = λij(x1, x2)ni(x1, x2)∂u/∂xj (as defined earlier on).

In the following section, the integral equation (10) is used to derive a

DRBEM for the numerical solution of the boundary value problem defined

by (1) and (2) with λij as given by (4).

3 DRBEM

For the DRBEM, let us discretize the curve C into N straight line (bound-

ary) elements denoted C(1), C(2), · · · , C(N−1) and C(N), i.e. we make the
approximation:

C ' C(1) ∪ C(2) ∪ · · · ∪ C(N−1) ∪ C(N) (11)

As we shall see later on, the DRBEM requires us to collocate equations

at points on the boundary C and in the interior of R. For this purpose,

we select N points on the boundary C given by (ξ
(1)
1 , ξ

(1)
2 ), (ξ

(2)
1 , ξ

(2)
2 ), · · · ,

(ξ
(N−1)
1 , ξ

(N−1)
2 ) and (ξ

(N)
1 , ξ

(N)
2 ), and L well-spaced out points in the inte-

rior of the region R as denoted by (ξ
(N+1)
1 , ξ

(N+1)
2 ), (ξ

(N+2)
1 , ξ

(N+2)
2 ), · · · ,

(ξ
(N+L−1)
1 , ξ

(N+L−1)
2 ) and (ξ

(N+L)
1 , ξ

(N+L)
2 ). For convenience, for p = 1, 2,

· · · , N, we take (ξ(p)1 , ξ(p)2 ) to be the midpoint of the line element C(p).
To apply the dual-reciprocity method (DRM) of Brebbia and Nardini [4]

to transform the domain integral in (6) into a line integral, we first make the

approximation

κ(x1, x2)
p
g(x1, x2)u(x1, x2) '

N+LX
p=1

a(p)σ(p)(x1, x2), (12)
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where a(p) are constants to be determined and

σ(p)(x1, x2) = 1 +
³
[x1 − ξ

(p)
1 +Re{τ}{x2 − ξ

(p)
2 }]2 + [Im{τ}{x2 − ξ

(p)
2 }]2

´
+
³
[x1 − ξ

(p)
1 +Re{τ}{x2 − ξ

(p)
2 }]2 + [Im{τ}{x2 − ξ

(p)
2 }]2

´3/2
.

(13)

It should be noted that for λ
(0)
ij = δij (Kronecker-delta) we find that τ = i and

(13) reduces to give the local interpolating functions suggested by Zhang and

Zhu [14]. Of course, the choice of the interpolating functions is not unique,

and for reasons why (13) is preferred to some other forms, refer to [14].

We can let (x1, x2) in (12) be given by (ξ
(m)
1 , ξ

(m)
2 ) form = 1, 2, · · · , N+L,

to set up a system of linear algebraic equations in a(p) which can be inverted

to obtain

a(p) =
N+LX
m=1

q
g(ξ

(m)
1 , ξ

(m)
2 )u(m)κ(ξ

(m)
1 , ξ

(m)
2 )χ(mp), (14)

where u(m) = u(ξ
(m)
1 , ξ

(m)
2 ) (m = 1, 2, · · · , N + L) and χ(mp) are constants

defined by

N+LX
m=1

σ(p)(ξ
(m)
1 , ξ

(m)
2 )χ(mr) =

½
1 if p = r,
0 if p 6= r. (15)

Using (12) and (14) and applying the DRM, we find that the double

integral in (10) can be approximately re-written as

ZZ
R

κ(x1, x2)
p
g(x1, x2)u(x1, x2)Φ(x1, x2, ξ1, ξ2)ds(x1, x2)

'
N+LX
m=1

q
g(ξ

(m)
1 , ξ

(m)
2 )u(m)κ(ξ

(m)
1 , ξ

(m)
2 )

N+LX
p=1

χ(mp)Ψ(p)(ξ1, ξ2), (16)
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where

Ψ(p)(ξ1, ξ2) = γ(ξ1, ξ2)θ
(p)(ξ1, ξ2) +

I
C

Φ(x1, x2, ξ1, ξ2)β
(p)(x1, x2)ds(x1, x2)

−
I
C

θ(p)(x1, x2)Γ(x1, x2, ξ1, ξ2)ds(x1, x2) (17)

withÃ
λ
(0)
11 λ

(0)
22 − [λ(0)12 ]2
λ
(0)
22

!
θ(p)(x1, x2)

=
1

4

³
[x1 − ξ

(p)
1 +Re{τ}{x2 − ξ

(p)
2 }]2 + [Im{τ}{x2 − ξ

(p)
2 }]2

´
+
1

16

³
[x1 − ξ

(p)
1 +Re{τ}{x2 − ξ

(p)
2 }]2 + [Im{τ}{x2 − ξ

(p)
2 }]2

´2
+
1

25

³
[x1 − ξ

(p)
1 +Re{τ}{x2 − ξ

(p)
2 }]2 + [Im{τ}{x2 − ξ

(p)
2 }]2

´5/2
. (18)

and

β(p)(x1, x2) = λ
(0)
ik ni(x1, x2)

∂θ(p)

∂xk
. (19)

The integral equation (10) together with (11) and (16) may be used to

derive

γ(ξ
(n)
1 , ξ

(n)
2 )

q
g(ξ

(n)
1 , ξ

(n)
2 )u

(n)

=
N+LX
m=1

q
g(ξ

(m)
1 , ξ

(m)
2 )u(m)κ(ξ

(m)
1 , ξ

(m)
2 )

N+LX
p=1

χ(mp)Ψ(p)(ξ
(n)
1 , ξ

(n)
2 )

+
NX
m=1

q
g(ξ

(m)
1 , ξ

(m)
2 )u(m)

Z
C(m)

Γ(x1, x2, ξ
(n)
1 , ξ

(n)
2 )ds(x1, x2)

−
NX
m=1

[u(m)λ
(0)
ij n

(m)
i

∂

∂xj
{
p
g(x1, x2)}

¯̄̄̄
(x1,x2)=(ξ

(m)
1 ,ξ

(m)
2 )

+
v(m)q

g(ξ
(m)
1 , ξ

(m)
2 )

]

Z
C(m)

Φ(x1, x2, ξ
(n)
1 , ξ

(n)
2 )ds(x1, x2),

for n = 1, 2, · · · , N + L, (20)
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where v(m) = v(ξ
(m)
1 , ξ

(m)
2 ) (m = 1, 2, · · · , N) and [n(m)1 , n

(m)
2 ] is the outward

unit normal vector to C(m). Notice that, in deriving (20), we let (x1, x2) in

(10) be given by (ξ
(n)
1 , ξ

(n)
2 ) for n = 1, 2, · · · , N + L, and in the integrands

of the line integrals over C(m), we approximate the functions multiplied to

Φ(x1, x2, ξ
(n)
1 , ξ

(n)
2 ) and Γ(x1, x2, ξ

(n)
1 , ξ

(n)
2 ) as constants given by the values (of

the functions) at the midpoint of C(m).

In view of the boundary conditions (2), either u(m) or v(m) (not both)

is known for m = 1, 2, · · · , N. Being the values of u at the interior collo-
cation points (ξ

(N+1)
1 , ξ

(N+1)
2 ), (ξ

(N+2)
1 , ξ

(N+2)
2 ), · · · , (ξ(N+L−1)1 , ξ

(N+L−1)
2 ) and

(ξ
(N+L)
1 , ξ

(N+L)
2 ), the constants u(N+1), u(N+2), · · · , u(N+L−1) and u(N+L) are

not known. Thus, the system (20) consists of N + L linear algebraic equa-

tions which can be solved for N + L unknowns given by either u(m) or v(m)

for m = 1, 2, · · · , N and u(N+n) for n = 1, 2, · · · , L.

4 Specific problems

We shall now apply the DRBEM proposed above to solve some specific prob-

lems.

Problem 1

Solve the elliptic PDE

∂

∂x1

µ
[x21 − 2x1x2 + 2]2[2

∂u

∂x1
+

∂u

∂x2
]

¶
+

∂

∂x2

µ
[x21 − 2x1x2 + 2]2[

∂u

∂x1
+

∂u

∂x2
]

¶
= 0 in the region 0 < x1 < 1, 0 < x2 < 1, (21)

subject to the boundary conditions

v(x1, 0) = 0 for 0 < x1 < 1,

v(1, x2) = −1 + 8x2 − 4x22 for 0 < x2 < 1,
v(x1, 1) = 2x1 for 0 < x1 < 1,

u(0, x2) =
1

2
(1− x2) for 0 < x2 < 1. (22)
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Notice that for this particular BVP we may take

1

2
λ11 = λ22 = λ12 = λ21 = [x

2
1 − 2x1x2 + 2]2. (23)

and the function v(x1, x2) [for (x1, x2) lying on the boundary of the square

region 0 < x1 < 1, 0 < x2 < 1] is defined by

v = [x21 − 2x1x2 + 2]2[(2n1 + n2)
∂u

∂x1
+ (n1 + n2)

∂u

∂x2
]. (24)

It is easy to check that the BVP defined by (21)-(22) has the exact solution

u(x1, x2) =
1 + x1 − x2
x21 − 2x1x2 + 2

. (25)

Table 1: A comparison of the numerical values of v with the exact

ones at various points on the boundary x1 = 0, 0 < x2 < 1.

(x1, x2)
N0 = 10
N1 = 4

N0 = 30
N1 = 9

Exact

(0.000, 0.950) −2.2882 −2.1509 −2.1900
(0.000, 0.750) −2.7379 −2.7475 −2.7500
(0.000, 0.550) −2.9822 −2.9883 −2.9900
(0.000, 0.350) −2.8974 −2.9073 −2.9100
(0.000, 0.150) −2.4769 −2.5035 −2.5100

We shall attempt to solve the BVP approximately by using the DRBEM

and compare the numerical solution obtained with the exact one in (25). For

the DRBEM, each side of the square is divided into N0 boundary elements,

each of length 1/N0. The interior collocation points are taken to be (k/(N1+

1), p/(N1+1)) for k, p = 1, 2, · · · , N1. (Thus, in the notation of the preceding
section, N = 4N0 and L = N

2
1 .) For this particular BVP, v is not known on

the boundary x1 = 0, 0 < x2 < 1. Thus, to assess the accuracy of the

DRBEM, we make a comparison of the numerical values of v on that part

of the boundary with the exact ones given by v(0, x2) = −2− 4x2 + 4x22 for

11



0 < x2 < 1. The numerical values of v at selected points on the boundary

x1 = 0, 0 < x2 < 1 as obtained using (N0, N1) = (10, 4) and (N0, N1) =

(30, 9) are given in the second and third columns of Table 1 respectively, and

compared with the exact values in the last column. Similarly, in Table 2,

we compare the numerical values of u at various points in the interior of the

square region with the exact ones. In both tables, it is clear that the accuracy

of the numerical values improve significantly when N0 increases from 10 to

30 and N1 from 4 to 9.

Table 2: A comparison of the numerical values of u with the exact

ones at various points in the interior of the square.

(x1, x2)
N0 = 10
N1 = 4

N0 = 30
N1 = 9

Exact

(0.400, 0.200) 0.5979 0.5996 0.6000
(0.600, 0.200) 0.6577 0.6598 0.6604
(0.400, 0.400) 0.5424 0.5433 0.5435
(0.600, 0.400) 0.6365 0.6379 0.6383
(0.400, 0.600) 0.4757 0.4761 0.4762
(0.600, 0.600) 0.6087 0.6095 0.6098
(0.400, 0.800) 0.3945 0.3947 0.3947
(0.600, 0.800) 0.5709 0.5713 0.5714

Problem 2

Find the antiplane displacement u(x1, x2) in an elastic slab occupying the

region 0 < x1 < `, 0 < x2 < `, −∞ < x3 < ∞, where ` is a given positive
real number. The side x2 = 0 of the slab is perfectly bonded to a rigid wall,

the side x2 = ` is acted upon by a constant shear stress and the remaining

two sides x1 = 0 and x1 = ` are stress-free. Thus, the relevant boundary

conditions for the problem are given by

u(x1, 0) = 0 for 0 < x1 < `,

v(x1, `) = v0 for 0 < x1 < `,

v(0, x2) = v(`, x2) = 0 for 0 < x2 < `, (26)
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where v0 is a given constant and v is the antiplane traction. The elastic slab

is nonhomogeneous with its shear moduli given by

λ11 =
1

2
λ22 = λ[(1 +

2x2
`
)2 +

1

10
sin(

πx2
`
)] and λ12 = λ21 = 0, (27)

where λ is a given positive constant.

Azis, Clements and Budhi [3] had computed the non-dimensionalized dis-

placement λu/(v0`) at various points in the slab using a BEM together with

a perturbation scheme. Here we apply the DRBEM to calculate λu/(v0`)

approximately. The boundary of the square region is discretized into 4N0

equal length elements and the N2
1 interior collocation points are selected

as in Problem 1 above. In Table 3, the numerical results obtained using

(N0, N1) = (20, 9) and (N0, N1) = (40, 19) are compared with those given by

Azis, Clements and Budhi [3] and also with those obtained using the AN-

SYS finite element analysis software. For the finite element method (FEM),

the slab is simply modeled as consisting of 10 homogeneous layers denoted

by L(1), L(2), · · · , L(9) and L(10), where L(k) = {(x1, x2, x3) : 0 < x1 < `,

(k − 1)`/10 < x2 < k`/10, −5` < x3 < 5`}. The layers are perfectly bonded
to one another. The shear moduli of the homogeneous layer L(k) are given

by

λ11 =
1

2
λ22 = λ[(1 +

[2k − 1]
10

)2 +
1

10
sin(

π[2k − 1]
20

)] and λ12 = λ21 = 0.

(28)

Several thousand elements are employed in the FEM model. The FEM so-

lution for λu/(v0`) given in the last column of Table 3 are the values of the

non-dimensionalized displacement on the plane x3 = 0 of the FEM model of

the slab.

The numerical values of λu/(v0`) obtained using the DRBEM show con-

vergence when N0 is increased from 20 to 40 and N1 from 9 to 19. The

DRBEM solution also shows a reasonably good agreement with the numer-

ical values given by Azis, Clements and Budhi [3]and the FEM. As the nu-

merical values given in [3] were obtained by taking only a few terms in a

series solution and each of the terms was calculated using a BEM scheme,
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we expect the more direct DRBEM solution as given in the second and the

third columns of Table 3 to be more accurate than the numerical values in

the fourth column. At each of the points, the numerical value of the dis-

placement given by the DRBEM is greater than that of Azis, Clements and

Budhi [3] but less than that given by the FEM.

Table 3: A comparison of the numerical values of λu/(v0`) with those

given by Azis, Clements and Budhi [3] at various points in the interior

of the square.

(x1, x2)
N0 = 20
N1 = 9

N0 = 40
N1 = 19

Azis, Clements
and Budhi [3]

FEM

(0.500, 0.100) 0.0411 0.0412 0.0395 0.0413
(0.500, 0.200) 0.0700 0.0701 − 0.0704
(0.500, 0.300) 0.0916 0.0917 0.0901 0.0921
(0.500, 0.400) 0.1085 0.1086 − 0.1091
(0.500, 0.500) 0.1219 0.1221 0.1206 0.1227
(0.500, 0.600) 0.1330 0.1332 − 0.1339
(0.500, 0.700) 0.1422 0.1425 0.1410 0.1432
(0.500, 0.800) 0.1502 0.1504 − 0.1511
(0.500, 0.900) 0.1570 0.1572 0.1556 0.1580

Problem 3

Find the antiplane displacement u(x1, x2) in an infinitely-long elastic

cylinder with a uniform cross-section that occupies the quarter-circular re-

gion x21 + x
2
2 < `

2, x1 > 0, x2 > 0, where ` is a given positive real number.

The boundary conditions are:

u(x1, 0) = 0 for 0 < x1 < `,

v(x1, x2) = v0 for x
2
1 + x

2
2 = `

2, x1 > 0, x2 > 0,

u(0, x2) = 0 for 0 < x2 < `, (29)

where v0 is a given constant and v is the antiplane traction.
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Figure 2: Plots of the non-dimensionalized displacement λu/(v0`) (on the
curved part of the boundary) against the angle θ (0 < θ < π/2) for c = −1.00,
−0.500, 0.000, 0.500 and 1.00.

The elastic property of the cylinder is functionally graded such that its

shear moduli are given by

λ11 =
1

2
λ22 = λ exp[

c

`2
(x21 + x

2
2)] and λ12 = λ21 = 0, (30)

where λ is a given positive constant and c is also a constant.

For the DRBEM, each of the flat parts of the boundary (i.e. x1 = 0, 0 <

x2 < `, and x2 = 0, 0 < x1 < `) as well as the curved part (x
2
1+x

2
2 = `

2, x1 >

0, x2 > 0) is discretized into N0 elements (so that N = 3N0). The interior

collocation points are taken to be given by ({k/(N1 + 1)} cos(nπ/{2(N1 +
1)}), {k/(N1 + 1)} sin(nπ/{2(N1 + 1)})) for k = 1, 2, · · · , N1 and n = 1,

2, · · · , N1, where N1 is a positive integer. (Thus, there are N2
1 interior

collocation points.) The displacement is not known on the curved part of

the boundary. In Figure 2, we plot the non-dimensionalized displacement

λu/(v0`) on (on the curved part of the boundary) (obtained numerically

using (N0, N1) = (40, 8)) against the angle θ [θ = arctan(x2/x1), x
2
1 + x

2
2 =

`2, x1 > 0, x2 > 0] for c = −1.00, −0.500, 0, 0.500 and 1.00. For a given θ, it
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is obvious that the displacement decreases in magnitude as the parameter c

increases from −1.00 to 1.00. (If c increases, the shear modulus at any given
point in the material increases.) The graphs in Figure 2 give qualitatively

acceptable results, as the displacement is expected to be of smaller magnitude

for a material of greater strength.

5 Summary

The task of solving a class of two-dimensional boundary value problems

(BVPs) governed by an elliptic partial differential equation (PDE) that arises

frequently in the formulation of engineering problems involving nonhomoge-

neous anisotropic media is considered. With an appropriate substitution, the

PDE is re-cast in a form that allows the BVPs to be formulated in terms of an

integral equation suitable for the development of a dual-reciprocity bound-

ary element method (DRBEM). An DRBEM is proposed for the numerical

solution of the BVPs. To assess the validity and accuracy of the proposed

DRBEM, it is applied to solve several specific problems. Some of the specific

problems have known solutions. The numerical results obtained by using the

DRBEM agree favorably with the known solution. Convergence in the nu-

merical values obtained is observed when the number of boundary elements

and interior collocation points is increased (at least within the range of the

number of collocation points used in the numerical calculations for the given

specific examples).
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