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I. INTRODUCTION

Of interest here is the non-linear Schrödinger equation of the form

i
∂ψ

∂t
+

2∑
k=1

∂

∂xk

(
A(x1, x2)

∂ψ

∂xk

)
= (B(x1, x2, t) + C(x1, x2)|ψ|p)ψ (1.1)

where i =
√
−1, xk are the spatial Cartesian co-ordinates, t denotes time, ψ is an

unknown complex-valued function of x1, x2 and t, A(x1, x2) is a given real function such
that A(x1, x2) is strictly positive and and twice partially differentiable with respect to
both x1 and x2 in the region of interest, B(x1, x2, t) and C(x1, x2) are given functions
which may possibly be complex-valued, and p is a positive real constant.
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We are interested in solving (1.1) in a two-dimensional region R subject to the initial-
boundary conditions

ψ(x1, x2, 0) = f(x1, x2), (x1, x2) ∈ R (1.2)
ψ(x1, x2, t) = g(x1, x2, t), (x1, x2) ∈ C1 (1.3)

∂

∂n
ψ(x1, x2, t) = h(x1, x2, t), (x1, x2) ∈ C2 (1.4)

where f , g and h are suitably given complex-valued functions, C1 and C2 are non-
intersecting curves such that C1 ∪ C2 = C, C is the simple closed curve bounding the
region R, ∂ψ/∂n = n1∂ψ/∂x1 + n2∂ψ/∂x2 and [n1, n2] is the unit normal vector to C
pointing away from R.

The Schrödinger equation is an important partial differential equation in modern
physics. It governs the quantum mechanical behaviours of dynamic systems. It can be
solved analytically only for very simple systems. Thus, many researchers, such as Dai and
Nassar [1], Ramos [2], Subaşi [3] and Ismail and Taha [4], have proposed finite-difference
schemes for the numerical solution of various complicated forms of the Schrödinger equa-
tion. Although these schemes may be regarded as successful to a certain extent, it is still
useful to develop alternative numerical approaches for solving the Schrödinger equation.
An approach worthwhile considering is the boundary element method as it is well known
for its flexibility and accuracy in dealing with the boundary conditions of many problems
of practical interest in engineering.

In this paper, a dual-reciprocity boundary element method (DRBEM) is proposed for
the numerical solution of the initial-boundary value problem defined by (1.1)–(1.4). The
DRBEM was initially proposed by Brebbia and Nardini [5] for the numerical solution of
dynamic problems in solid mechanics. It has now been successfully extended to a wide
range of problems in engineering, such as those involving diffusion processes, inhomoge-
neous media and non-linearity. For some examples of these problems, one may refer to
Partridge and Brebbia [6] (Helmholtz equation), Zhu et al [7] (diffusion problems), Profit
et al [8] (semi-conductor simulation), Harrouni et al [9] (flow in porous media), Ang
[10] (microscale heat conduction), Ang et al [11] (inverse problems) and other references
therein.

For the purpose of deriving a DRBEM that does not require the partial derivatives of
ψ with respect to xi to be approximated, the Schrödinger equation (1.1) is re-written as:

2∑
k=1

∂2

∂x2
k

(√
Aψ

)
= − i√

A

∂ψ

∂t
+ ψ (F (x1, x2, ψ) +G(x1, x2, t)) , (1.5)

where

F (x1, x2, ψ) =
C(x1, x2)√

A
|ψ|p (1.6)

G(x1, x2, t) =
2∑

k=1

∂2

∂x2
k

(√
A

)
+

1√
A
B(x1, x2, t). (1.7)

The DRBEM can be easily implemented on the computer for arbitrarily shaped so-
lution domains with mixed boundary conditions. To test the method, specific problems
are solved.
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II. INTEGRO-DIFFERENTIAL EQUATION

If we treat (1.5) as a Poisson-like equation and use the fundamental solution of the two-
dimensional Laplace’s equation, we may apply the reciprocal theorem given in Clements
[12] to derive an integro-differential equation for the Schrödinger equation under consid-
eration. Specifically, we obtain

γ(ξ1, ξ2)
√
A(ξ1, ξ2) ψ(ξ1, ξ2, t) =

∫∫
R

{
− i√

A(x1, x2)
∂

∂t
(ψ(x1, x2, t))

+(F (x1, x2, ψ(x1, x2, t)) +G(x1, x2, t))
}

Φ(x1, x2, ξ1, ξ2) dx1 dx2

+
∮
C

(
Γ(x1, x2, ξ1, ξ2)

√
A(x1, x2)− Φ(x1, x2, ξ1, ξ2)

∂

∂n

√
A(x1, x2)

)
ψ(x1, x2, t) ds(x1, x2)

−
∮
C

Φ(x1, x2, ξ1, ξ2)
√
A(x1, x2)

∂

∂n
(ψ(x1, x2, t)) ds(x1, x2) (2.1)

where γ(ξ1, ξ2) = 0 if (ξ1, ξ2) /∈ R ∪ C, γ(ξ1, ξ2) = 1 if (ξ1, ξ2) ∈ R, 0 < γ(ξ1, ξ2) < 1 if
(ξ1, ξ2) ∈ C [γ(ξ1, ξ2) = 1

2 if (ξ1, ξ2) lies on a smooth part of C], the fundamental solution
of the Laplace’s equation is given by

Φ(x1, x2, ξ1, ξ2) =
1
2π

Re{ln(x1 − ξ1 + i(x2 − ξ2))}, (2.2)

and its normal derivative by

Γ(x1, x2, ξ1, ξ2) =
1
2π

Re
{
n1(x1, x2) + in2(x1, x2)
x1 − ξ1 + i(x1 − ξ2)

}
. (2.3)

III. NUMERICAL SOLUTION

A. Overview of approach

We shall use (2.1) together with (1.2)–(1.4) to determine ψ numerically. In general,
(2.1) is non-linear in ψ as F depends on ψ. To deal with the non-linearity, we adopt an
iterative approach. We estimate F (x1, x2, ψ(x1, x2, t)) as F (x1, x2, ψ̃(x1, x2, t)), where
ψ̃(x1, x2, t) is the latest available approximation of ψ(x1, x2, t). With this estimation, we
solve (2.1) as a linear integro-differential equation in ψ. The newly obtained approxi-
mate ψ is used to re-calculate F (x1, x2, ψ̃(x1, x2, t)), and replacing F (x1, x2, ψ(x1, x2, t))
with the re-computed F (x1, x2, ψ̃(x1, x2, t)), we solve (2.1) again for ψ. We can iterate
between estimating F (x1, x2, ψ(x1, x2, t)) and solving (2.1) approximately for ψ until a
satisfactory convergence is achieved in the numerical solution.

A description of a time-stepping DRBEM for solving (2.1) with F (x1, x2, ψ(x1, x2, t))
superseded by F (x1, x2, ψ̃(x1, x2, t)) is given below.

B. DRBEM

The boundary C is discretized into N straight line elements denoted by C(1), C(2), . . .,
C(N−1) and C(N). Over an element, ψ and ∂ψ/∂n are approximated as spatially invariant
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functions, which, in general, may be complex-valued. That is,

ψ ≈ ψ(k)(t) and
∂ψ

∂n
≈ µ(k)(t) for (x1, x2) ∈ C(k). (3.1)

For a given k, either ψ(k)(t) or µ(k)(t), but not both, is known from the boundary
conditions (1.3) and (1.4). Thus there are N unknown functions in (3.1).

To obtain an approximation for the domain integral over R in (2.1), we need to choose
N +M collocation points. The first N collocation points are taken to be the midpoints
of the N elements. The remaining M collocation points are well-spaced points in the
interior of the solution domain.

We denote all the N+M collocation points by (ξ(1)1 , ξ
(1)
2 ), (ξ(2)1 , ξ

(2)
2 ), . . ., (ξ(N)

1 , ξ
(N)
2 ),

(ξ(N+1)
1 , ξ

(N+1)
2 ), . . ., (ξ(N+M−1)

1 , ξ
(N+M−1)
2 ) and (ξ(N+M)

1 , ξ
(N+M)
2 ), where (ξ(k)

1 , ξ
(k)
2 ) is

the midpoint of C(k) for k = 1, 2, . . ., N .
Following Brebbia and Nardini [5], we make the approximation

− i√
A(x1, x2)

∂

∂t
ψ(x1, x2, t) + ψ(x1, x2, t)

(
G(x1, x2, t) + F (x1, x2, ψ̃(x1, x2, t))

)
(3.2)

≈
N+M∑
j=1

ωj(t)σj(x1, x2)

where ωj(t) are complex-valued functions of t and the interpolating functions σ(j)(x1, x2)
are chosen to be given by

σj(x1, x2) = 1 +
(
(x1 − ξ

(j)
1 )2 + (x2 − ξ

(j)
2 )2

)
(3.3)

+
(
(x1 − ξ

(j)
1 )2 + (x2 − ξ

(j)
2 )2

)3/2

for j = 1, 2, . . . , N +M.

The choice of the interpolating functions is not unique. The ones used in (3.3) are
those proposed by Zhang and Zhu [13].

With the approximation (3.2), it can be shown that∫∫
R

{
− i√

A(x1, x2)
∂

∂t
(ψ(x1, x2, t))

+(F (x1, x2, ψ(x1, x2, t)) +G(x1, x2, t))
}

Ψ(x1, x2, ξ1, ξ2) dx1 dx2

≈
N+M∑
j=1

ωj(t)Ψ(j)(ξ1, ξ2), (3.4)

where

Ψ(j)(ξ1, ξ2) = γ(ξ1, ξ2)θ(j)(ξ1, ξ2) +
∮
C

Φ(x1, x2, ξ1, ξ2)β(j)(x1, x2) dx1 dx2

−
∮
C

Γ(x1, x2, ξ1, ξ2)θ(j)(x1, x2) ds(x1, x2) (3.5)

for j = 1, 2, . . . , N +M,
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with

θ(j)(x1, x2) =
1
4

(
(x1 − ξ

(j)
1 )2 + (x2 − ξ

(j)
2 )2

)
+

1
16

(
(x1 − ξ

(j)
1 )2 + (x2 − ξ

(j)
2 )2

)2

+
1
25

(
(x1 − ξ

(j)
1 )2 + (x2 − ξ

(j)
2 )2

)5/2

(3.6)

and

β(j)(x1, x2) = n1(x1, x2)
∂

∂x1

(
θ(j)(x1, x2)

)
+ n2(x1, x2)

∂

∂x2

(
θ(j)(x1, x2)

)
. (3.7)

The functions Ψ(j)(ξ1, ξ2) in (3.5) can be computed approximately using

Ψ(j)(ξ1, ξ2) ≈ γ(ξ1, ξ2)θ(j)(ξ1, ξ2) +
N∑

k=1

β(j)(ξ(k)
1 , ξ

(k)
2 )

∫
C(k)

Φ(x1, x2, ξ1, ξ2) ds(x1, x2)

+
N∑

k=1

θ(j)(ξ(k)
1 , ξ

(k)
2 )

∫
C(k)

Γ(x1, x2, ξ1, ξ2) ds(x1, x2). (3.8)

To eliminate ω(j)(t) from (3.4), we let (x1, x2) in (3.2) be given by (ξ(n)
1 , ξ

(n)
2 ) for

n = 1, 2, . . . , N + M to form a system of N + M linear algebraic equations in ω(j)(t).
The system is then inverted to give

ω(j)(t) =
N+M∑
n=1

a(jn)
{
− i√

A(ξ(n)
1 , ξ

(n)
2 )

d

dt
(ψ(n)(t))

+
(
G(ξ(n)

1 , ξ
(n)
2 , t) + F (ξ(n)

1 , ξ
(n)
2 , ψ̃(ξ(n)

1 , ξ
(n)
2 , t))

)
ψ(n)(t)

}
(3.9)

where a(jn) are implicitly defined by
N+M∑
m=1

a(jm)σ(k)(ξ(m)
1 , ξ

(m)
2 ) =

{
1 if j = k
0 if j 6= k

for j, k = 1, 2, . . . , N +M. (3.10)

Note that in (3.9), ψ(n)(t) = ψ(ξ(n)
1 , ξ

(n)
2 , t) for n = 1, 2, . . . , N + M . Also, see (3.1)

where ψ(n)(t) are defined for n = 1, 2, . . . , N .
Using all the approximations made above and letting (ξ1, ξ2) in (2.1) be (ξ(m)

1 , ξ
(m)
2 )

for m = 1, 2, . . . , N +M , we obtain

γ(ξ(m)
1 , ξ

(m)
2 )

√
A(ξ(m)

1 , ξ
(m)
2 ) ψ(m)(t) =

N+M∑
k=1

{
− i√

A(ξ(k)
1 , ξ

(k)
2 )

d

dt
(ψ(k)(t))

+
(
G(ξ(k)

1 , ξ
(k)
2 , t) + F (ξ(k)

1 , ξ
(k)
2 , ψ̃(ξ(k)

1 , ξ
(k)
2 , t))

)
ψ(k)(t)

} N+M∑
k=1

a(jk)Ψ(j)(ξ(m)
1 , ξ

(m)
2 )

+
N∑

k=1

{
D(mk)ψ(k)(t)− E(mk)µ(k)(t)

}
for m = 1, 2, . . . , N +M, (3.11)
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where

D(mk) =
√
A(ξ(k)

1 , ξ
(k)
2 )

∫
C(k)

Γ(x1, x2, ξ
(m)
1 , ξ

(m)
2 ) ds(x1, x2)

(3.12)

−
∂
√
A(x1, x2)
∂n

∣∣∣∣∣
(x1,x2)=(ξ

(k)
1 ,ξ

(k)
2 )

∫
C(k)

Φ(x1, x2, ξ
(m)
1 , ξ

(m)
2 ) ds(x1, x2)

and

E(mk) =
√
A(ξ(k)

1 , ξ
(k)
2 )

∫
C(k)

Φ(x1, x2, ξ
(m)
1 , ξ

(m)
2 ) ds(x1, x2). (3.13)

Note that γ(ξ(m)
1 , ξ

(m)
2 ) = 1

2 for m = 1, 2, . . . , N and γ(ξ(m)
1 , ξ

(m)
2 ) = 1 for m =

N + 1, N + 2, . . . , N + M . Also, F (ξ(k)
1 , ξ

(k)
2 , ψ̃(ξ(k)

1 , ξ
(k)
2 , t)) is assumed to be known

since ψ̃(ξ(k)
1 , ξ

(k)
2 , t) is a known estimate of ψ(k)(t) at that particular time t, as described

earlier.
The line integrals over C(k) in (3.8), (3.12) and (3.13) can be evaluated either analyt-

ically or numerically as described in Clements et al [14], [15].

C. Time-stepping scheme

To step forward in time in the numerical scheme, we make the approximations

d

dt

(
ψ(k)(t)

)
≈

ψ(k)(t+ 1
2∆t)− ψ(k)(t− 1

2∆t)
∆t

ψ(k)(t) ≈ 1
2

(
ψ(k)(t+

1
2
∆t) + ψ(k)(t− 1

2
∆t)

)
, (3.14)

where ∆t is a small positive real number. In the above approximations, the errors are
of order O{(∆t)2}.

Using (3.14) in (3.11), we obtain

1
2
γ(ξ(m)

1 , ξ
(m)
2 )

√
A(ξ(m)

1 , ξ
(m)
2 )

(
ψ(m)(t+

1
2
∆t) + ψ(m)(t− 1

2
∆t)

)
=

N+M∑
k=1

{
−
i
(
ψ(k)(t+ 1

2∆t) + ψ(k)(t− 1
2∆t)

)
∆t

√
A(ξ(k)

1 , ξ
(k)
2 )

+
1
2

(
ψ(k)(t+

1
2
∆t) + ψ(k)(t− 1

2
∆t)

)

×
(
G(ξ(k)

1 , ξ
(k)
2 , t) + F (ξ(k)

1 , ξ
(k)
2 , ψ̃(ξ(k)

1 , ξ
(k)
2 , t))

) } N+M∑
k=1

a(jk)Ψ(j)(ξ(m)
1 , ξ

(m)
2 )

+
N∑

k=1

{1
2
D(mk)

(
ψ(m)(t+

1
2
∆t) + ψ(m)(t− 1

2
∆t)

)
− E(mk)µ(k)(t)

}
for m = 1, 2, . . . , N +M. (3.15)

The time-stepping scheme is carried out as described below.
The system (3.15) is to be solved at consecutive time levels t = (2s − 1) 1

2∆t for
s = 1, 2, . . ., with ψ(m)(t− 1

2∆t) regarded as known for m = 1, 2, . . . , N +M .
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For the first time level, let t = 1
2∆t and so ψ(m)(t − 1

2∆t) = ψ(m)(0) are given by
the initial conditions. We compute F (ξ(k)

1 , ξ
(k)
2 , ψ̃(ξ(k)

1 , ξ
(k)
2 , 1

2∆t)) using ψ̃(ξ(k)
1 , ξ

(k)
2 , t) ≈

ψ(k)(0). With this, (3.15) is solved for the N + M unknowns given by ψ(m)(∆t) for
m = N + 1, N + 2, . . . , N + M , and either ψ(k)(∆t) or µ(k)( 1

2∆t) for k = 1, 2, . . . , N .
The expression F (ξ(k)

1 , ξ
(k)
2 , ψ̃(ξ(k)

1 , ξ
(k)
2 , 1

2∆t)) is then re-computed using ψ̃(ξ(k)
1 , ξ

(k)
2 , t) ≈

1
2 (ψ(k)(0)+ψ(k)(∆t)). A new set of approximate values of the N +M unknowns is again
obtained by solving (3.15). We iterate between calculating F (ξ(k)

1 , ξ
(k)
2 , ψ̃(ξ(k)

1 , ξ
(k)
2 , 1

2∆t))
and solving for approximate values of the unknowns, until two consecutive approxima-
tions agree to a prescribed number of significant figures. The final iteration then gives
the approximate values required. These are then used in the next time step.

We proceed in this manner for t = 3
2∆t, 5

2∆t, 7
2∆t and so on until we reach the time

level required.

IV. SPECIFIC TEST PROBLEMS

In this section, we describe two specific problems that are used to test the method
described above. These are problems whose exact solutions are known and comparisons
between the exact and numerical solutions are made and discussed.

In each of the problems discussed below, the boundary of the solution domain is
discretized into N staight line elements of equal lengths. The midpoints of each element
are then taken as collocation points on the boundary. Inside the region R, we choose M
interior points which are well spaced out and as evenly distributed as possible.

A. A linear test problem

Consider solving the equation

i
∂ψ

∂t
+

2∑
k=1

∂

∂xk

((
1 +

2
π
x1 + x2

2

)
∂ψ

∂xk

)
= −π

2

4

(
1 +

2
π
x1 + x2

2

)
ψ (4.1)

subject to

ψ(x1, x2, 0) = exp
(
iπx1

2

)
, for (x1, x2) ∈ R, (4.2)

ψ(0, x2, t) = exp(−t), for 0 < x2 < 1 and t > 0, (4.3)
ψ(1, x2, t) = i exp(−t), for 0 < x2 < 1 and t > 0, and (4.4)
∂ψ

∂n

∣∣∣∣
x2=0

=
∂ψ

∂n

∣∣∣∣
x2=1

= 0, for 0 < x1 < 1 and t > 0, (4.5)

in the region R defined by 0 < x1 < 1 and 0 < x2 < 1.
The exact solution for this problem is

ψ(x1, x2, t) = exp
(
−t+ i

πx1

2

)
. (4.6)

The N boundary elements are chosen to be evenly distributed on the boundary. Since
R is a square, this means that each side has N

4 elements. Thus, N has to be divisible
by 4. The test point chosen to make comparison with the exact solution is (0.5,0.5).
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Therefore, to choose the interior points, we start by selecting this test point as one of the
collocation points. The other interior collocation points are then generated by taking a
fixed distance vertically and horizontally from already generated points, until the whole
interior is covered with M points.

The DRBEM is applied to solve the problem using three different sets of boundary
elements and interior collocation points. The three sets are (A) N = 40, M = 25 with
∆t = 0.3, (B)N = 80, M = 81 with ∆t = 0.15 and (C)N = 120, M = 225 with ∆t = 0.1.
Results obtained are summarized in Table 1. For the purpose of comparison, we define
the error in each approximated value as the distance between the the approximation and
the exact value in the complex plane. To show more clearly the improvement in the
approximations as the number of boundary elements and interior collocation points is
increased, Table 2 is presented.

TABLE I. Approximate and exact values of ψ(0.5, 0.5, t) at selected values of t for the linear
test problem

Time
Exact (A) (B) (C)

Real Imaginary Real Imaginary Real Imaginary Real Imaginary

0.30 0.52384 0.52384 0.52172 0.52227 0.52299 0.52354 0.52336 0.52380
0.60 0.38807 0.38807 0.38622 0.38946 0.38826 0.38830 0.38820 0.38810
0.90 0.28749 0.28749 0.28852 0.28754 0.28697 0.28705 0.28714 0.28749
1.20 0.21298 0.21298 0.21154 0.21133 0.21304 0.21348 0.21321 0.21293
1.50 0.15778 0.15778 0.15658 0.15949 0.15748 0.15727 0.15738 0.15778
1.80 0.11688 0.11688 0.11836 0.11653 0.11676 0.11739 0.11712 0.11696
2.10 0.08659 0.08659 0.08532 0.08540 0.08669 0.08602 0.08642 0.08655
2.40 0.06415 0.06415 0.06335 0.06550 0.06390 0.06455 0.06425 0.06394
2.70 0.04752 0.04752 0.04908 0.04750 0.04792 0.04704 0.04717 0.04777
3.00 0.03520 0.03520 0.03407 0.03364 0.03485 0.03545 0.03560 0.03515

TABLE II. Errors in the approximation for the linear test problem

Time (A) (B) (C)

0.30 2.64× 10−3 9.01× 10−4 4.82× 10−4

0.60 2.31× 10−3 2.98× 10−4 1.33× 10−4

0.90 1.03× 10−3 6.81× 10−4 3.50× 10−4

1.20 2.19× 10−3 5.04× 10−4 2.35× 10−4

1.50 2.09× 10−3 5.92× 10−4 4.00× 10−4

1.80 1.52× 10−3 5.24× 10−4 2.53× 10−4

2.10 1.74× 10−3 5.79× 10−4 1.75× 10−4

2.40 1.57× 10−3 4.72× 10−4 2.33× 10−4

2.70 1.56× 10−3 6.25× 10−4 4.30× 10−4

3.00 1.93× 10−3 4.30× 10−4 4.03× 10−4

It is clear from the results presented that the numerical values obtained by the pro-
posed DRBEM are in excellent agreement with the exact solution.
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B. A non-linear test problem

As a second test problem, consider solving (1.1) to (1.4) with

A(x1, x2) = C(x1, x2) = 1 (4.7)
B(x1, x2, t) = −(x2

1 − x2
2)

2 exp(−2t)− (1 + x1x2)2

− i(x
2
1 − x2

2) exp(−t)[(x2
1 − x2

2) exp(−t)− i(1 + x1x2)]
(x2

1 − x2
2)2 exp(−2t) + (1 + x1x2)2

, (4.8)

p = 2, (4.9)

and initial-boundary conditions given by

ψ(x1, x2, 0) = (x2
1 − x2

2) + i(1 + x1x2) for (x1, x2) ∈ R, (4.10)
ψ = i(1 + x2

1) on x2 = x1 for 0 < x1 < 1, (4.11)
∂ψ

∂n
= −ix1 on x2 = 0 for 0 < x1 < 1, and (4.12)

∂ψ

∂n
= 2 exp(−t) + ix2 on x1 = 1 for 0 < x2 < 1, (4.13)

where the region R is bounded by x2 = x1, x2 = 0 and x1 = 1.
The exact solution for this problem is

ψ(x1, x2, t) = (x2
1 − x2

2) exp(−t) + i(1 + x1x2). (4.14)

Using a similar approach as before, N boundary elements are chosen to discretize the
boundary of the domain. For the problem considered here, the region R is triangular,
and so each side has N

3 boundary elements. Thus, N has to be divisible by 3.
The interior collocation points are chosen to include the test point, which, in this case

is (0.7,0.3). A procedure similar to that described earlier for the linear test problem is
adopted to generate the other points to make a total of M well spaced out and evenly
distributed interior collocation points.

Like before, the DRBEM is applied to solve the problem using three different sets of
boundary elements and interior collocation points. Here, the three sets chosen are (A)
N = 60, M = 36 with ∆t = 0.3, (B) N = 120, M = 171 with ∆t = 0.1 and (C) N = 180,
M = 630 with ∆t = 0.05.

For this problem, as described in Section 3.1, we need to iterate between finding an
estimate for ψ̃ to re-compute F (x1, x2, ψ̃) and solving the system (3.15) for a new ψ. In
all the cases considered, the iteration was stopped when the absolute values of all the
unknowns in (3.15) from two consecutive iterations differ by less than 10−9. Convergence
was achieved after less than 10 iterations in all cases tested.

Results obtained are summarized in Table 3, and Table 4 shows the errors in these
approximations. As can be seen from the tables, the approximations obtained using the
proposed DRBEM agree very well with the exact solutions, even at large values of t.
It is also clear from the results that as the number of boundary elements and interior
collocation points is increased, better accuracy is attained.
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TABLE III. Approximate and exact values of ψ(0.7, 0.3, t) at selected values of t for the
non-linear test problem

Time
Exact (A) (B) (C)

Real Imaginary Real Imaginary Real Imaginary Real Imaginary

0.30 0.29633 1.21000 0.29079 1.20655 0.29507 1.21036 0.29593 1.21018
0.60 0.21952 1.21000 0.21281 1.21473 0.22008 1.21013 0.21968 1.20997
0.90 0.16263 1.21000 0.16732 1.21098 0.16159 1.20989 0.16242 1.21013
1.20 0.12048 1.21000 0.11575 1.20540 0.12091 1.21043 0.12050 1.20999
1.50 0.08925 1.21000 0.08544 1.21516 0.08863 1.20985 0.08893 1.21008
1.80 0.06612 1.21000 0.07041 1.21032 0.06655 1.21022 0.06638 1.20993
2.10 0.04898 1.21000 0.04686 1.20651 0.04817 1.20986 0.04897 1.21033
2.40 0.03629 1.21000 0.03179 1.21320 0.03689 1.21062 0.03632 1.20984
2.70 0.02688 1.21000 0.03218 1.21255 0.02644 1.20956 0.02678 1.21002
3.00 0.01991 1.21000 0.01830 1.20443 0.02016 1.21049 0.02002 1.20985

TABLE IV. Errors in the approximation for the non-linear test problem

Time (A) (B) (C)

0.30 6.53× 10−3 1.31× 10−3 4.39× 10−4

0.60 8.21× 10−3 5.75× 10−4 1.63× 10−4

0.90 4.79× 10−3 1.05× 10−3 2.47× 10−4

1.20 6.60× 10−3 6.08× 10−4 2.24× 10−5

1.50 6.41× 10−3 6.38× 10−4 3.30× 10−4

1.80 4.30× 10−3 4.83× 10−4 2.69× 10−4

2.10 4.08× 10−3 8.22× 10−4 3.30× 10−4

2.40 5.52× 10−3 8.63× 10−4 1.63× 10−4

2.70 5.88× 10−3 6.22× 10−4 1.02× 10−4

3.00 5.80× 10−3 5.50× 10−4 1.86× 10−4

V. FINAL REMARKS

A time-stepping DRBEM has been formulated and successfully implemented for solving a
generalized non-linear Schrödinger equation. The method is applied to solve two specific
test problems. The numerical results obtained are in excellent agreement with the exact
solutions of the respective problems.

Only constant elements are used in the present work. That is, ψ and ∂ψ/∂n are
assumed to be constant across a boundary element. The computation can possibly
be refined by using higher order elements, although for the same number of boundary
elements and interior collocation points this may result in a system of linear algebraic
equations that would require more CPU time to set up. Furthermore, for the same
number of boundary elements and interior collocation points, the system may be larger,
such as in the case when discontinuous linear elements are used. However, with higher
order elements, a better accuracy in the numerical results may be obtained using fewer
elements.

In the current formulation, the bulk of the computational time is taken up when the
time-independent coefficients of the linear algebraic equations are computed. However,
this is done only once and it is not necessary to re-compute those coefficients from one
time level to the next. Once they are computed and the necessary portions of the system
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are set up, the computations of the approximate solutions take up only a relatively small
amount of computational time.
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