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Abstract

The problem of determining the electro-elastic fields around an

array of parallel planar cracks in an infinitely long piezoelectric strip

is considered. The cracks, acted upon by dynamic loads, are either

electrically impermeable or permeable. A semi-analytic method based

on the theory of exponential Fourier transformation is presented for

solving the problem in the Laplace transform domain. The Laplace

transforms of the jumps in the displacements and electric potential

across opposite crack faces are determined by solving a system of hy-

persingular integral equations. Once these displacement and electric

potential jumps are obtained, the displacements and electric poten-

tial and other physical quantities of interest, such as the crack tip

stress and electric displacement intensity factors, can be recovered

with the help of a suitable algorithm for inverting Laplace transforms.

The stress and electric displacement intensity factors are computed

for some specific cases of the problem.
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1 Introduction

During the last few decades, the analysis of cracks in piezoelectric materials

has been investigated by many researchers. The vast majority of works on

piezoelectric crack problems are, however, concerned with electro-elastostatic

deformations (see, for example, Athanasius, Ang and Sridhar [3], Li [16],

Shindo, Watanabe and Narita [24] and Wang and Mai [27]). In a recent

paper, Kuna [14] pointed out that there are comparatively fewer works on

piezoelectric cracks that are acted upon by time dependent loads.

Most papers presenting semi-analytic solutions for dynamic piezoelectric

crack problems assume that the cracks undergo out of plane or antiplane

deformations. For example, Chen [6] studied the dynamic response of a single

electrically impermeable planar crack in an infinite transversely isotropic

piezoelectric material under pure electric load and undergoing an antiplane

deformation; Chen and Karihaloo [7], Chen and Meguid [8], Li and Fan

[17] and Li and Tang [20] solved problems involving a single planar crack

in an infinitely long piezoelectric strip under antiplane deformations; Chen

and Worswick [9] and Meguid and Chen [22] examined the behaviours of

coplanar cracks undergoing antiplane deformations in piezoelectric materials;

and Kwon and Lee [15] and Li and Lee [18]-[19] investigated the antiplane

deformation of edge cracks in piezoelectric materials.

Apparently fewer papers giving semi-analytic solutions for cracks under-

going dynamic inplane deformations in piezoelectric materials may be found

in the literature. Shindo [23] formulated the problem of a single planar crack

in a piezoelectric ceramic under normal in terms of a pair of integral equa-

tions by representing the displacement and electric potential in the Laplace

transform domain by suitable Fourier sine and cosine transform representa-

tions. The integral equations were reduced to Fredholm integral equations of
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the second kind solved as explained in Sneddon and Lowengrub [25]. Using

the method of dislocations, Wang and Yu [28] reduced the two-dimensional

analysis of a mode I planar crack in an infinitely long piezoelectric strip to

solving Cauchy singular integral equations. The approach in [23] and [28]

was extended by Liu and Zhong [21] to analyze the transient response of a

pair of collinear cracks in a piezoelectric space of infinite extent.

Through the use of boundary integral equations for piezoelectricity, the

dynamic piezoelectric crack problems may also be formulated in terms of

hypersingular integral equations using the approach in a recent paper by

García-Sánchez, Zhang, Sládek and Sládek [10]. In [10], the kernels of the

hypersingular integral formulation contain second order spatial derivatives

of a suitable dynamic Green’s function for piezoelectric solids. Such an ap-

proach has been successfully used for solving elastostatic crack problems (see

Chen and Hong [5] and Hong and Chen [12]). Nevertheless, the evaluation

of the dynamic Green’s function (unlike the static one) is a rather involved

exercise, requiring the computation of a line integral over a unit circle with

integrand that is expressed in terms of exponential integrals (see, for example,

Wang and Zhang [29]).

Recently, Ang and Athanasius [2] derived a semi-analytic solution for an

electro-elastic problem involving an arbitrary number of arbitrarily oriented

planar cracks in an infinite piezoelectric space. The displacement and electric

potential in the Laplace transform domain are expressed as a linear combina-

tion of suitably constructed exponential Fourier transform representations.

The integrands of the Fourier integrals contain unknown functions that are

directly related to the jumps in the Laplace transforms of the displacement

and electrical potential across opposite crack faces. The task of determining

the unknown functions is eventually reduced to solving numerically a system
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of hypersingular integral equations.

In the present paper, we extend the analysis in [2] to the case of an ar-

ray of planar cracks in an infinitely long piezoelectric strip. The cracks are

parallel to the edges of the strip and are arbitrarily located relative to one

another. As in [2], once the Laplace transforms of the jumps in displace-

ment and electrical potential across opposite crack faces are determined, the

displacements and electric potential and other physical quantities of inter-

est, such as the crack tip stress and electric displacement intensity factors,

can be extracted with the aid of a suitable algorithm for inverting Laplace

transforms. The crack tip stress and electric displacement intensity factors

are calculated for some specific cases of the problem. To check the validity

of the analysis presented here, values of the stress and electric displacement

intensity factors are computed for the special case of a single crack in a strip

and compared with those published in the literature.

2 The problem

Referring to an 123 Cartesian coordinate system, consider an infinitely

long piezoelectric strip −∞  1  ∞ 0  2   −∞  3  ∞,
where  is a given positive constant. The interior of the strip contains 

arbitrarily oriented non-intersecting planar cracks that are parallel to its

edges 2 = 0 and 2 = . The geometries of the cracks do not change along

the 3 axis. The cracks are denoted by Γ(1) Γ(2) · · ·  Γ(−1) and Γ().

The -th planar crack Γ() lies in the region −() + 
()
1  1  () + 

()
1 

2 = 
()
2  −∞  3  ∞ On the 12 plane, the crack Γ() is a straight

line cut, 2() is the length of the crack and (
()
1  

()
2 ) is the midpoint of the

crack.

It will be assumed that here the electroelastic deformation of the cracked
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piezoelectric space does not vary along the 3 direction. The problem is to

determine the displacements (1 2 ) and electric potential (1 2 ) in

the piezoelectric strip for time   0 such that suitably prescribed boundary

conditions on the cracks and the edges of the strip are satisfied.

More specifically, the conditions the cracks are given by

2(1 2 ) → − ()
 (1 2 ) ( = 1 2 3)

as (1 2)→ (1 2) ∈ Γ()( = 1 2 · · ·  ) (1)

and either

2(1 2 ) → − ()
4 (1 2 )

as (1 2)→ (1 2) ∈ Γ()( = 1 2 · · ·  )
if the cracks are electrically impermeable, (2)

or

∆()(1 ) = 0 for − () + 
()
1  1  () + 

()
1 ( = 1 2 · · ·  )

if the cracks are electrically permeable, (3)

where  and  are respectively the stresses and electric displacements,


()
1 (1 2 ) 

()
2 (1 2 ) 

()
3 (1 2 ) and 

()
4 (1 2 ) are suitably pre-

scribed functions for (1 2) ∈ Γ() giving the internal dynamic loads on the

cracks and ∆()(1 ) denotes the jump in the electrical potential  across

the crack Γ() as defined by

∆()(1 ) = lim
→0
[(1 

()
2 + || )− (1 

()
2 − || )]

for − () + 
()
1  1  () + 

()
1  (4)

The conditions on the edges of the strip are given by

2(1 0 ) = 0
2(1 0 ) = 0
2(1  ) = 0
2(1  ) = 0

⎫⎪⎪⎬⎪⎪⎭ for −∞  1 ∞ (5)
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Furthermore, it is assumed here that the displacements  and and its

partial derivative with respect time (that is, ) are both zero at time

 = 0 and the stresses 1(1 2 ) and electric displacement 1(1 2 )

generated by the cracks vanish as |1|→∞

3 Basic equations of electroelasticity

The governing equations for the displacements  and electric potential  in

a homogeneous piezoelectric material are given by


2


+ 

2


= 

2

2



2


− 

2


= 0 (6)

where ,  and  are the constant elastic moduli, piezoelectric co-

efficients and dielectric coefficients respectively and  is the density. The

Einstenian convention of summing over a repeated index applies here for

lowercase Latin subscripts.

The constitutive equations relating (  ) and ( ) are

 = 



+ 






 = 



− 




 (7)

Following closely the approach of Barnett and Lothe [4], we define

 =

½
 for  =  = 1 2 3
 for  = 4

 =

½
 for  =  = 1 2 3
 for  = 4

 =

⎧⎪⎪⎨⎪⎪⎩
 for  =  = 1 2 3 and  =  = 1 2 3
 for  =  = 1 2 3 and  = 4
 for  = 4 and  =  = 1 2 3
− for  = 4 and  = 4

(8)
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so that (6) and (7) may be respectively written more compactly as


2


= 

2

2
( = 1 2 3 4) (9)

and

 = 



( = 1 2 3 4;  = 1 2 3) (10)

where

 =

½
 if  =  and  6= 4
0 otherwise.

(11)

Note that uppercase Latin subscripts have values 1 2 3 and 4 Summation

is also implied for repeated uppercase Latin subscripts.

It follows that the problem stated in Section 2 requires solving (9) within

the piezoelectric strip for time   0 subject to initial-boundary conditions

stated as follows.

The initial conditions are

 = 0 and



= 0 at  = 0 ( = 1 2 3) (12)

The conditions on the cracks are given by

2(1 2 ) → − () (1 2 ) ( = 1 2 3)

as (1 2) → (1 2) ∈ Γ() ( = 1 2 · · · ) (13)

and either

42(1 2 ) → − ()4 (1 2 )

as (1 2) → (1 2) ∈ Γ() ( = 1 2 · · · )
if the cracks are electrically impermeable, (14)

or

∆
()
4 (1 )→ 0 for− () + 

()
1  1  () + 

()
1 ( = 1 2 · · ·  )

if the cracks are electrically permeable, (15)
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where

∆
()
 (1 ) = lim

→0
[(1 

()
2 + ||)− (1 

()
2 − ||)]

for − () + 
()
1  1  () + 

()
1  (16)

From (5), the conditions on the edges of the strip are given by

2(1 0 ) = 0
2(1  ) = 0

¾
for −∞  1 ∞ ( = 1 2 3 4) (17)

In addition, it is required that 1(1 2 )→ 0 as |1|→∞

4 Formulation in Laplace transform domain

We denote the Laplace transformation of  (1 2 ) over time  ≥ 0 byb (1 2 ) that is, we define
b (1 2 ) = ∞Z

0

 (1 2 ) exp(−) (18)

where  is the Laplace transformation parameter.

Application of the Laplace transformation on both sides of (9) together

with the initial conditions (12) yields


2 b


− 2

b = 0 ( = 1 2 3 4) (19)

In the Laplace transform domain, the problem is to solve (19) subject to

boundary conditions stated as follows.

On the cracks, the boundary conditions are given by

b2(1 2 ) → − b ()
 (1 2 ) ( = 1 2 3)

as (1 2) → (1 2) ∈ Γ() ( = 1 2 · · ·  ) (20)
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and by either

b42(1 2 ) → − b ()
4 (1 2 )

as (1 2) → (1 2) ∈ Γ() ( = 1 2 · · ·  )
if the cracks are electrically impermeable, (21)

or

∆b ()
4 (1 )→ 0 for− () + 

()
1  1  () + 

()
1 ( = 1 2 · · · )

if the cracks are electrically permeable. (22)

On the edges of the strip, the boundary conditions are given by either

b2(1 0 ) = 0b2(1  ) = 0
)
for −∞  1 ∞ ( = 1 2 3 4) (23)

It is also required that b1(1 2 )→ 0 as |1|→∞

5 Method of solution

In this section, a semi-analytical method is proposed for solving (19) subject

to (20)-(23). As in Ang and Athanasius [2], the generalized displacements

and stresses in the Laplace transform domain are expressed explicitly in

terms of Fourier integral representations. As we shall see, the integrands of

the Fourier integrals contain unknown functions which are directly related to

the Laplace transform of the generalized displacement jumps across opposite

crack faces. The method of solution here is regarded as semi-analytical as

the unknown functions are to be determined by solving numerically a system

of hypersingular integral equations. Moreover, a numerical technique for

inverting Laplace transformation will be employed to recover the required

physical quantities in the real time domain.
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5.1 Explicit solution in Fourier integral form

For the solution of the piezoelectric crack problem in the Laplace transform

space, let

b(1 2 ) =
4X

=1

Re{
∞Z
0

( )[1( ) exp((1 + 2)

+2( ) exp(−(1 + 2))]}

+
X
=1

Re{
4X

=1

∞Z
0

( )[(2 − 
()
2 ))

()
1 ( )

× exp((1 − 
()
1 + (2 − 

()
2 )))

+(−2 + 
()
2 )

()
2 ( )

× exp(−(1 − 
()
1 + (2 − 

()
2 )))]} (24)

where the overhead bar denotes the complex conjugate of a complex number,

() is the unit-step Heaviside function, 
()
1 ( ), 

()
2 ( ), 

()
1 ( ) and


()
2 ( ) are functions yet to be determined, ( ) are roots, with positive

imaginary parts, of the 8-th order polynomial equation (in ) given by

det[
2

2
 + 11 + (12 + 21) +  222] = 0 (25)

( ) are non-trivial solutions of the system

[
2

2
 +11+ ( )(12+21)+ (( ))

222] = 0 (26)
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From (10) and (24), we obtain

b(1 2 ) = Re{
4X

=1

∞Z
0

( )[1( ) exp((1 + 2)

−2( ) exp(−(1 + 2))]}

+
X
=1

Re{
4X

=1

∞Z
0

( )[(2 − 
()
2 )

()
1 ( )

× exp((1 − 
()
1 + (2 − 

()
2 )))

−(−2 + 
()
2 )

()
2 ( )

× exp(−(1 − 
()
1 + (2 − 

()
2 )))]} (27)

( ) are given by

( ) = [1 + ( )2]. (28)

Note that b(1 2 ) and b(1 2 ) in (24) and (27) respectively are
represented by different integral expressions in different parts of the piezo-

electric strip. Thus, to ensure that b2(1 2 ) are continuous on 2 = 
()
2 ,

the functions 
()
1 ( ) and 

()
2 ( ) are chosen to be given by


()
1 ( ) = ( )

()
 ( ) and 

()
2 ( ) = ( )

()

 ( )  (29)

where 
()
 ( ) are functions to be determined and  ( ) are defined by

4X
=1

2( ) ( ) =   (30)

where  is the kronecker-delta.

The functions b(1 2 ) are continuous on the plane 2 = 
()
2 at points

not on any of the cracks if 
()
 ( ) are chosen to be


()
 ( ) = ( )

()Z
−()


()
 ( ) exp(−) (31)
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where  =
√−1, 

()
 ( ) are real functions yet to be determined and

( ) are real functions defined by



4X
=1

[( ) ( )− ( ) ( )]( ) =   (32)

Use of (32) in (24) together with

lim
→0+



Z
−

()

2 + ( − )2
 = () for −      (33)

gives


()
 (1 − 

()
1  ) =

1


∆b ()

 (1 ) for − ()  1 − 
()
1  () (34)

where ∆b(1 ) are the Laplace transform of the generalized crack opening

displacements as defined in (16).

The functions b(1 2 ) in (27) can now be written as
b(1 2 ) =

4X
=1

Re{
∞Z
0

( )[1( ) exp((1 + 2)

−2( ) exp(−(1 + 2))]}

−
X
=1

()Z
−()


()
 ( )Re{

4X
=1

∞Z
0

[(2 − 
()
2 )

×( ) ( ) exp(( )(2 − 
()
2 ))

+((−2 + 
()
2 ))( ) ( )

× exp(( )(2 − 
()
2 ))]

×( ) exp([(1 − 
()
1 )− ])} (35)
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If we let

1( ) =  ( )
X
=1


()
1( )

()Z
−()


()
 ( ) exp(−)

2( ) =  ( )
X
=1


()

2( )

()Z
−()


()
 ( ) exp() (36)

then the boundary conditions on the edges of the strip given by (23) give


()
1( ) + 

()
2( )

= −
4X

=1

2( ) ( )( )

× exp(−[()1 + ( )
()
2 ]) for  = 1 2 3 4 (37)

and

4X
=1

{2( ) ( ) exp()
()
1( )

+2( ) ( ) exp()
()
2( )}

= −
4X

=1

2( ) ( )( ) exp([−()1 + ( )(− 
()
2 )])

for  = 1 2 3 4 (38)
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5.2 Electrically impermeable cracks

From (35), conditions (20) and (21) for electrically impermeable cracks give

the hypersingular integral equations

1

()
=

1Z
−1

∆
()
 ( )

( − )2
+ ()

1Z
−1

∆
()
 ( )Ω

()
(  )

+ () −
1Z

−1
2∆

()
 ( ) cosh(()| − |) ln(()| − |)

+
X
=1
6=

()
1Z

−1

∆
()
 ( )Θ()

 (  )

+
X
=1

()
1Z

−1

∆
()
 ( )Λ() (  )

= − b () (
()
1 + () 

()
2  ) ( = 1 2 3 4)

for − 1    1 ( = 1 2 · · ·  ) (39)

where ∆
()
 ( ) = ∆b () (

()
1 +() ) = 

()
 (

() ), −
R
denotes that the

integral is to be interpreted in the Cauchy principal sense and =
R
denotes that

the integral is to be interpreted in the Hadamard finite-part sense, , 

and ( ) are given by

 = lim
()→∞

( )

 = lim
()→∞

(



)2[( )−] (  0)

( ) = ( )− − 2

2 + 2
 (40)
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and Ω
()
(  ) and Θ

()
 (  ) are respectively defined by

Ω
()
(  ) = −

∞Z
0

( ) cos(
()[ − ])

−2[Shi(
()| − |) sinh(()| − |)

−1
2
cosh(()| − |)(Ei(()| − |)− 1(

()| − |))
+ cosh(()| − |) ln(()| − |)] (41)

Θ
()
 (  ) = −Re{

4X
=1

∞Z
0

[(
()
2 ( ))

×2( ) ( ) exp(( )
()
2 ( ))

+(− ()
2 ( ))2( ) ( )

× exp(( ) ()
2 ( ))]

×( ) exp( ()
1 ( ))}

if 
()
2 ( ) 6= 0 (42)

Θ
()
 (  ) =



[
()
1 ( )]2

−
∞Z
0

( ) cos(
()
1 ( ))

−2[Shi(| ()
1 ( )|) sinh(| ()

1 ( )|)
−1
2
cosh(| ()

1 ( )|)
×(Ei(| ()

1 ( )|)−1(| ()
1 ( )|))]

if 
()
2 ( ) = 0 (43)

and

Λ
()
 (  ) = Re{

4X
=1

∞Z
0

[2( ) ( )
()
1( ) exp(

()
2 )

+2( ) ( )
()
2( ) exp(

()
2 )]

× exp([()1 + () − ()]) (44)
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with 
()
 ( ) = 1(

()
1 + () − ()1) + 2

()
2 − 

()
 and

Shi() =

Z
0

sinh()




Ei() = − −
∞Z

−

exp(−)




1() =

∞Z


exp(−)


 (45)

The functions ( ) behave as (
44) for very large  Thus, the im-

proper integral over [0∞) which appears in the definition of Ω(  ) in

(41) is well defined.

The derivations of (39) and (43) make use of the following results:

lim
→0+

1Z
−1

(2 − ( − )2)()

(2 + ( − )2)2
 = − =

1Z
−1

()

( − )2
 for − 1    1

∞Z
0



2 + 2
cos() = −1

2
cosh()(Ei()− 1())

+ Shi() sinh() (  0)(46)

Note that Ei()−1() tend to 2 ln() as → 0+ This explains the presence

of the Cauchy principal integral in (39).

If the cracks are electrically impermeable, the functions ∆
()
 ( ) ( =

1 2 · · · ) in (31) are to be determined by solving the hypersingular integral
equations in (39).

5.3 Electrically permeable cracks

From (15) and (34), ∆
()
4 ( ) = 0 for −1    1 and  = 1 2 · · · 

 if the cracks are electrically permeable. According to (13), the unknown
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functions ∆
()
1 ( ) ∆

()
2 ( ) and ∆

()
3 ( ) are governed by (39) (with

∆
()
4 ( ) = 0) for  = 1 2, 3 (instead of  = 1 2 3 4)

5.4 Solution of hypersingular integral equations

The hypersingular integral equations in (39) may be solved numerically for

∆
()
 ( ) using the collocation technique proposed by Kaya and Erdogan

[13]. Specifically, we make the approximations

∆
()
 ( ) ' √1− 2

X
=1


()
 () (−1)() for − 1    1 (47)

where  ()() = sin([ + 1] arccos()) sin(arccos()) is the  order Cheby-

shev polynomial of the second kind and 
()
 () are unknown coefficients.

Substitution of (47) into (39) yields a system of linear algebraic equations

which can be used to determine 
()
 () for any fixed value of . Some de-

tails on how the linear algebraic equations may be set up may be found in

Athanasius, Ang and Sridhar [3].

5.5 Generalized crack tip stress intensity factors

At the crack tips (
()
1 ± () 

()
2 ) we define the stress and electric displace-

ment intensity factors

(
()
1 ± () 

()
2  )

= lim
1→(()1 ±())±

q
2(±1 − (()1 ± ())22(

()
1 ± () 

()
2  )

(
()
1 ± () 

()
2  )

= lim
1→(()1 ±())±

q
2(±1 − (()1 ± ())12(

()
1 ± () 

()
2  )
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(
()
1 ± () 

()
2  )

= lim
1→(()1 ±())±

q
2(±1 − (()1 ± ())32(

()
1 ± () 

()
2  )

 (
()
1 ± () 

()
2  )

= lim
1→(()1 ±())±

q
2(±1 − (()1 ± ())42(

()
1 ± () 

()
2  ) (48)

Once the coefficients 
()
 () are known, the Laplace transforms of the

generalized stress intensity factors defined in (48) can be easily computed

using

b(
()
1 ± () 

()
2  ) =

1√
()


()
2

X
=1


()
 () (−1)(±1)

b(
()
1 ± () 

()
2  ) =

1√
()


()
1

X
=1


()
 () (−1)(±1)

b(
()
1 ± () 

()
2  ) =

1√
()


()
3

X
=1


()
 () (−1)(±1)

b (
()
1 ± () 

()
2  ) =

1√
()


()
4

X
=1


()
 () (−1)(±1) (49)

We may recover the dynamics stress and electric displacement intensity

factors at any time  using the numerical Laplace transform algorithm in

Stehfest [26], that is, by the formula

() ' ln(2)



2X
=1

 b( ln(2)


) (50)

where b() denotes the Laplace transform of ()  is a positive integer

and

 = (−1)+
min()X

=[(+1)2]

(2)!

( −)!!(− 1)!(−)!(2− )!
 (51)
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with [] denoting the integer part of the real number 

The Stehfest’s algorithm requires the problem under consideration to be

solved for only real Laplace transform parameter  and it has been widely

used by researchers for the numerical inversion of Laplace transforms in solv-

ing many problems in engineering (see, for example, Ang [1] and Hemker

[11]).

6 Specific problems

In this section, some specific cases of the problem stated in Section 2 are

solved. The crack tip stress and electric displacement intensity factors are

computed by using (50) to invert (49).

Figure 1. A sketch of Problem 1.
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Problem 1. Consider the case of a single electrically impermeable crack of

length 2 which is centrally located in the piezoelectric strip of width , as

shown in Figure 1. The electrical poling direction is taken to be along the 2

direction and the crack is acted upon by an internal uniform load such that

the generalized stress on the crack is given by 2 = −()20 where 0
is a positive constant.

The material constants of the piezoelectric strip are given by

1111 = 3333 = , 1133 = 3311 =  2222 = 

1122 = 2211 = 2233 = 3322 =  ,

1212 = 2112 = 2121 = 1221 = 2323 = 3223 = 3232 = 2332 = 

1313 = 3113 = 3131 = 1331 =
1

2
(−)

2141 = 1241 = 3243 = 2343 = 4121 = 4112 = 4332 = 4323 = 1

1142 = 3342 = 4211 = 4233 = 2

2242 = 4222 = 3 4141 = 4343 = −1 4242 = −2

where    ,  1 2 3, 1 and 2 are independent constants.

For our calculation here, the material constants for piezoelectric material

PZT-5H as given by

 = 126× 1010  = 778× 1010  = 53× 1010
 = 117× 1010,  = 353× 1010 1 = 170
2 = −65 3 = 233 1 = 151× 10−10
2 = 130× 10−10  = 7500

are used. Note that    ,  and  above are in N/m2 1 2 and 3 in

C/m2, 1 and 2 in C/(Vm) and  in kg/m3

The computed stress intensity factor (0
√
) and electric displace-

ment intensity factor  (30
√
) at the right crack tip (Figure 1) are
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plotted against the non-dimensionalized time 
p
(2) (up to 

p
(2) =

15) in Figures 2 and 3 respectively. The computation here is carried out us-

ing  = 30 in (47) and  = 5 in the Stehfest’s formula (50) for inverting

Laplace transform.

In Figures 2 and 3, the values of (0
√
) and  (30

√
) here

are compared with those extracted directly from one of the graphs in Wang

and Yu [28]. The two sets of (0
√
) and  (30

√
) (the values

computed here and those from [28]) exhibit the same general trends and are

quite close to each other. At sufficiently large time, the intensity factors

computed here settle down to the static values represented by the dashed

horizontal lines (Figures 2 and 3). The static values are calculated using the

electro-elastostatic analysis in Athanasius, Ang and Sridhar [3]. (Note that

the numerical values of the intensity factors are given in [28] for only a narrow

range of time, that is, for 
p
(2)  5 well before the stress intensity

factors become much closer to the corresponding static values. Thus, no

data in [28] is available for direct extraction to check if the dynamic stress

intensity factors converge to the static values at higher time. Nevertheless,

as the stress intensity factors computed here and the ones in [28] are in

good agreement for 
p
(2)  5 the solution of [28] is expected to be in

good agreement with our solution for higher time, as the computation of the

transient stress intensity factors is more difficult for small time.)
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Figure 2. Plots of (0
√
) against 

p
(2)

Figure 3. Plots of  (30
√
) against 

p
(2)
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Problem 2. Consider a pair of coplanar cracks, each of length 2, as shown

in Figure 4. The electrical poling direction is taken to be along the 2 di-

rection and the non-zero components of the generalized stress acting on the

crack faces are given by 22 = −()0 and 42 = −()0. The cracks are

electrically impermeable. The coefficients  of the material occupying

the strip are as in Problem 1.

Figure 4. A sketch of Problem 2.

For  = 050 and selected values of  the stress intensity factor

(0
√
) and electric displacement intensity factor  (0

√
) at the

inner crack tip (− 2) are plotted against the non-dimensionalized time

p
(2) in Figures 5 and 6 respectively. It appears that the peak values of

the intensity factors are higher and occur at earlier time for smaller  The

values of the stress intensity factors for the corresponding static problem, as

calculated using the analysis in [3], are also shown using dotted horizontal

lines in Figures 5 and 6. It is obvious that the dynamic intensity factors tend

to the corresponding static values as time increases.
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Figure 5. Plots of (0
√
) at an inner crack tip against 

p
(2) for

 = 050 and selected values of 

Figure 6. Plots of  (0

√
) at an inner crack tip against 

p
(2) for

 = 050 and selected values of 
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For  = 40 and selected values of  the stress intensity factor

(0
√
) and electric displacement intensity factor  (0

√
) at the

inner crack tip (− 2) are plotted against the non-dimensionalized time

p
(2) in Figures 7 and 8 respectively. As may be expected, decreasing

the distance between the inner tips of the cracks has the effect of increasing

the magnitudes of the generalized stress intensity factors. For a fixed 

the time taken for the dynamic intensity factors in Figures 7 and 8 to reach

the peak values appear to be roughly the same for the different values of 

Figure 7. Plots of (0
√
) at an inner crack tip against

p
(2) for

 = 40 and selected values of 
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Figure 8. Plots of  (0

√
) at an inner crack tip against

p
(2) for

 = 40 and selected values of 

Problem 3. Consider a pair of parallel cracks, each of length 2, as shown

in Figure 9. The electrical poling direction is taken to be along the 2 di-

rection. The cracks are both taken to be electrically either impermeable or

permeable. The non-zero loads acting on the impermeable cracks are given

by 22 = −()0 and 42 = −()0. For permeable cracks, the only non-

zero load is 22 = −()0. The coefficients  of the material occupying

the strip are as in the last two problems.

For this particular example, plots of the stress intensity factors(0
√
)

and (0
√
) at the crack tips against 

p
(2)for electrically perme-

able cracks are almost indistinguishable from the plots for electrically per-

meable cracks. The plots of (0
√
) and (0

√
) for  = 40 and

selected values of 1 are given Figures 10 and 11. When the parallel cracks

are farther away from each other, the mutual shielding effect tends to in-
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crease (0
√
). The proximity of a crack to the nearest edge of the strip

has the effect of increasing the stress intensity factor (0
√
). In Figure

10, it is obvious that the stress intensity factor (0
√
) increases as the

cracks move away from each other towards the edges of the strip, that is, as

1 decreases. The stress intensity factor(0
√
) is not zero here as the

normal stress distribution on the top and bottom faces of each of the cracks

is not balanced. For the particular problem here, the distance separating the

parallel cracks and the proximity of a crack to the nearest edge of the strip

have opposite effect on the stress intensity factor (0
√
) This explains

why (0
√
) for 1 = 175 in Figure 11 is larger than for 1 = 150

but smaller than for 1 = 075

Figure 9. A sketch of Problem 3.
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Figure 10. Plots of (0
√
) against 

p
(2) for  = 40 and

selected values of 1

Figure 11. Plots of (0
√
) against 

p
(2) for  = 40 and

selected values of 1
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Figure 12. Plots of  (0

√
) against 

p
(2) for  = 40 and

selected values of 1

Figure 13. Plots of  (30
√
)) against 

p
(2) for  = 40 and

selected values of 1

29



For  = 40 and selected values of 1, plots of the non-dimensionalized

electric displacement intensity factors (0

√
) (for electrically imperme-

able cracks) and  (30
√
) (for electrically permeable cracks) against

time 
p
(2) are given in Figures 12 and 13 respectively. It appears that

increasing 1 has the same effect on  (0

√
) and  (30

√
) as

on (0
√
) in Figure 10.

7 Summary

A semi-analytic solution is derived in the Laplace transform domain for an

electro-elastodynamic problem involving an arbitrary number of arbitrarily

located parallel planar cracks in a piezoelectric strip. Although the solution

is explicitly expressed in terms of exponential Fourier integral transforms,

the solution is regarded as semi-analytic as the integrands in the Fourier

integrals contain unknown functions to be determined approximately. The

unknown functions are related to the Laplace transforms of the jumps in the

displacements and electric potential across opposite crack faces. The task of

determining the Laplace transforms of the jumps in the displacements and

electric potential across opposite crack faces is reduced to solving numeri-

cally a system of hypersingular integral equations. Once the hypersingular

integral equations are solved, the crack tip stress and electric displacement

intensity factors in the Laplace transform domain can be easily extracted.

The intensity factors in the physical domain are then recovered by using a

numerical method for inverting Laplace transforms.

To check the solution, the crack tip stress and electric displacement inten-

sity factors are computed for a single crack which is centrally located in the
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strip and subject to uniform impact loads. The computed stress and electric

displacement intensity factors are found to be in reasonably good agreement

with those published in the literature. New results for the stress and electric

displacement intensity factors are obtained for a pair of coplanar cracks and

a pair of parallel cracks in the piezoelectric strip.
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