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1 Introduction

In the 1970s, Snyder and Cruse [20] pioneered the approach of using special

Green’s functions (modified fundamental solutions) in the boundary inte-

gral method for solving crack problems. They derived an analytical Green’s

function for a stress free planar crack in an infinite orthotropic elastic space

and applied it to analyze the stress distribution around the crack in a body

of finite extent. The work in [20] was subsequently extended by other re-

searchers to solve more complicated crack problems (see, for example, Ang

[2], Ang and Clements [3] and Clements and Haselgrove [8]). The main ad-

vantage of the Green’s function approach is that the singular behaviors of

the stress at the crack tips are accurately captured in the boundary integral

formulation of the crack problem. Furthermore, through the use of an ap-

propriate Green’s function, no integration over the crack faces is required in

the boundary integral method.

In general, Green’s functions for cracks with arbitrary geometries, config-

urations and boundary conditions are, however, difficult (if not impossible)

to derive analytically. To solve a wider range of crack problems, Telles,

Castor and Guimarães [18] and Guimarães and Telles [15] proposed a nu-

merical hypersingular integral approach for deriving the required Green’s

function. Such a numerical Green’s function approach was also used by Ang

and Telles [4] to solve an elastostatic problem involving multiple interacting

planar cracks in an anisotropic body.

Recently, Athanasius, Ang and Sridhar [5] extended the analysis in [4] to

a plane electro-elastostatic crack problem, deriving numerical Green’s func-

tions for arbitrarily located stress free planar cracks which are either electri-
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cally impermeable or permeable. In the present paper, the numerical Green’s

function for the impermeable cracks is used to obtain boundary integral equa-

tions for multiple stress free electrically semi-permeable cracks. Because of

the electrically semi-permeable conditions on the cracks, the boundary inte-

gral equations contain integrals whose integrands are given by a nonlinear

function of the crack opening displacement and the electrical potential jump

on the cracks. The boundary integral equations can be solved by using a

simple numerical procedure if the crack opening displacement and the elec-

tric potential jump are known. Those physical quantities on the cracks are,

however, not known a priori. A predictor-corrector approach which iterates

to and fro estimating the crack opening displacement and the electrical po-

tential jump and solving the boundary integral equations is presented here

for the numerical solution of the semi-permeable crack problem.

A brief review of existing boundary integral approaches for solving piezo-

electric crack problems may be appropriate at this juncture. Analytical

closed form Green’s functions which can be used to derive boundary element

solutions for a single stress free planar crack which is either impermeable or

conducting (permeable) are given in Rajapakse and Xu [17]. Garcia-Sanchez,

Saez and Dominguez [12] and Groh and Kuna [13] presented numerical pro-

cedures based on boundary integral equations derived by using fundamental

solution which does not satisfy the boundary conditions on the crack faces.

In [13], opposite crack faces were modeled by using the so called subdomain

technique and quarter-point elements were employed to deal with the singu-

lar behaviors of the stress and electric displacement at the crack tips, while

a dual (mixed) boundary integral formulation was used in [12] with the con-

ditions on the cracks treated by a differentiated form of the usual boundary

3



integral equations. Some earlier works on boundary element methods for elec-

troelastic crack problems include Ding, Wang and Chen [10], Gao and Fan

[11], Pan [16] and Xu and Rajapakse [19]. The boundary element solutions

in the references above are mostly for impermeable and conducting cracks.

It appears that the only boundary element treatment of the semi-permeable

crack problem is given in Denda [9]. In [9], the whole crack singular element is

employed together with an iterative scheme to treat a single semi-permeable

crack in a piezoelectric solid. The iterative procedure is different from the

one adopted in the present paper.

2 The problem

With reference to a Cartesian co-ordinate frame denoted by Ox1x2x3, con-

sider a homogeneous piezoelectric solid whose geometry does not vary along

the x3 axis. The interior of the solid contains M arbitrarily located planar

cracks. The exterior boundary of the solid is denoted by B and the k-th

crack by γ(k). The cracks do not intersect with one another or the exterior

boundary B. On the Ox1x2 plane, the boundary B appears as a simple closed

curve and the crack γ(k) as a straight cut with tips (a(k), b(k)) and (c(k), d(k)).

For our purpose of the analysis in the present paper, γ(k) may be regarded

as a straight line segment between (a(k), b(k)) and (c(k), d(k)).

Either the displacements or the tractions and either the electric potential

or the normal electric displacement are prescribed at each and every point on

B. The prescribed conditions on B are independent of the spatial coordinate

x3 and time t. The cracks are assumed to open up and become stress free

under the prescribed boundary conditions. They are also assumed to be
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electrically semi-permeable. Mathematically, the stress free conditions on

the cracks are given by

σij(x1, x2)m
(k)
j → 0 as (x1, x2)→ (y1, y2) ∈ γ(k) for k = 1, 2, · · · ,M, (1)

and the electrical conditions for semi-permeable cracks as proposed in Hao

and Shen [14] are given by

Dj(x1, x2)m
(k)
j ∆up(x1, x2)m

(k)
p = −²c∆φ(x1, x2)

for (x1, x2) ∈ γ(k) for k = 1, 2, · · · ,M, (2)

where ²c is the permittivity of the medium filling the cracks, σij and Di are

respectively the stresses and the electric displacements, [m
(k)
1 ,m

(k)
2 ,m

(k)
3 ] =

[(d(k)− b(k))/`(k), (a(k)− c(k))/`(k), 0] is a unit normal vector to the crack γ(k),
`(k) is the length of γ(k) (that is, `(k) =

p
(d(k) − b(k))2 + (a(k) − c(k))2), ∆φ

is the jump in the electric potential φ across opposite crack faces as defined

by

∆φ(x1, x2) = lim
²→0
[φ(x1 − |²|m(k)

1 , x2 − |²|m
(k)
2 )

− φ(x1 + |²|m(k)
1 , x2 + |²|m

(k)
2 )]

for (x1, x2) ∈ γ(k), (3)

and ∆up is the jump in the displacement up across opposite crack faces, that

is,

∆up(x1, x2) = lim
ε→0
[up(x1 − |²|m(k)

1 , x2 − |²|m
(k)
2 )

− up(x1 + |²|m(k)
1 , x2 + |²|m

(k)
2 )]

for (x1, x2) ∈ γ(k). (4)
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The usual Einsteinian convention of summing over a repeated index applies

here for Latin subscripts running from 1 to 3.

The problem is to determine the displacements uk and the electric poten-

tial φ throughout the cracked piezoelectric solid.

3 Equations of electroelasticity

The governing partial differential equations for the displacements uk and the

electric potential φ in the piezoelectric solid are given by

cijkp
∂2uk

∂xj∂xp
+ epij

∂2φ

∂xj∂xp
= 0,

ejkp
∂2uk

∂xj∂xp
− κjp

∂2φ

∂xj∂xp
= 0, (5)

where cijkp, epij and κjp are the constant elastic moduli, piezoelectric coeffi-

cients and dielectric coefficients respectively.

The constitutive equations relating (σij, Dj) and (uk,φ) are

σij = cijkp
∂uk
∂xp

+ epij
∂φ

∂xp
,

Dj = ejkp
∂uk
∂xp
− κjp

∂φ

∂xp
. (6)

Following closely the approach of Barnett and Lothe [6], one may let

UJ =

½
uj for J = j = 1, 2, 3,
φ for J = 4,

SIj =

½
σij for I = i = 1, 2, 3,
Dj for I = 4,

CIjKp =

⎧⎪⎪⎨⎪⎪⎩
cijkp for I = i = 1, 2, 3 and K = k = 1, 2, 3,
epij for I = i = 1, 2, 3 and K = 4,
ejkp for I = 4 and K = k = 1, 2, 3,
−κjp for I = 4 and K = 4,

(7)
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so that (5) and (6) may be written more compactly as

CIjKp
∂2UK
∂xj∂xp

= 0 (8)

and

SIj = CIjKp
∂UK
∂xp

(9)

respectively. Note that the uppercase Latin subscripts have values 1, 2, 3

and 4. Summation is also implied for repeated uppercase Latin subscripts

running from 1 to 4.

The general solution of (8) can be written as

UK(x1, x2) = Re{
4X

α=1

AKαfα(zα)}, (10)

where Re denotes the real part of a complex number, fα are analytic functions

of zα = x1+ταx2 in the domain of interest, τα are the solutions, with positive

imaginary parts, of the 8-th order polynomial (characteristic) equation

det[CI1K1 + (CI1K2 + CI2K1)τ + CI2K2τ
2] = 0 (11)

and AKα are solutions of the homogeneous system

[CI1K1 + (CI1K2 + CI2K1)τα + CI2K2τ
2
α]AKα = 0. (12)

Physical constraints on CIjKp ensures that the characteristic equation (11)

admits solutions which occur in complex conjugate pairs (Barnett and Lothe

[6]). It is assumed that we can find τ 1, τ 2, τ 3 and τ 4 such that an invertible

4 × 4 matrix [AKα] can be constructed from (12). For a certain degenerate

case in which the deformation of the material is isotropic, it may not be
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possible to construct [AKα] which is invertible. For such a case, a very small

perturbation may be introduced into the elastic constants of the material to

construct invertible [AKα] (as shown in Athanasius, Ang and Sridhar [5]).

The generalized stress functions SIj corresponding to (10) are given by

SIj = Re{
4X

α=1

LIjαf
0
α(zα)}, (13)

where the prime denotes differentiation with respect to the relevant argument

and

LIjα = (CIjK1 + ταCIjK2)AKα. (14)

4 Boundary integral equations and numerical

Green’s function

If the generalized elliptic system in (5) holds in a two-dimensional region R

with boundary ∂R then

λ(ξ1, ξ2)UK(ξ1, ξ2) =

Z
∂R

[UI(x1, x2)ΓIK(x1, x2; ξ1, ξ2)

− PI(x1, x2)ΦIK(x1, x2; ξ1, ξ2)]ds(x1, x2), (15)

where λ(ξ1, ξ2) = 1 if (ξ1, ξ2) lies in the interior of R and λ(ξ1, ξ2) = 1/2 if

(ξ1, ξ2) lies on a smooth part of ∂R, PI(x1, x2) = SIj(x1, x2)nj(x1, x2), nj is

the xj component of the unit normal outward vector to the boundary ∂R,

the functions ΦRS(x1, x2; ξ1, ξ2) and ΓIK(x1, x2; ξ1, ξ2) are given by

ΦRS(x1, x2; ξ1, ξ2) = Φ
[1]
RS(x1, x2; ξ1, ξ2) + Φ

[2]
RS(x1, x2; ξ1, ξ2),

Φ[1]RS(x1, x2; ξ1, ξ2) =
1

2π
Re

4X
α=1

{ARαNαJ ln([x1 − ξ1] + τα[x2 − ξ2])} dJS,

ΓIK(x1, x2; ξ1, ξ2) = CIjRsnj(x1, x2)
∂

∂xs
[ΦRK(x1, x2, ξ1, ξ2)], (16)
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the matrix [NαJ ] is the inverse of [AKα], dJS are real constants defined by

Im{
4X

α=1

LI2αNαR}dRJ = δIJ , (17)

δIJ is the Kronecker-delta and Φ
[2]
RS(x1, x2; ξ1, ξ2) is any function such that

cIjKp
∂2Φ

[2]
KS

∂xj∂xp
= 0 for (x1, x2) in R ∪ ∂R. (18)

Note that Im denotes the imaginary part of a complex number. For details

on the derivation of (15), refer to Clements [7].

For the problem stated in Section 2, the boundary consists of the outer

boundary B and the faces of the cracks γ(1), γ(2), · · · , γ(M−1) and γ(M). Thus,

the boundary integral equations in (15) may be rewritten as

λ(ξ1, ξ2)UK(ξ1, ξ2) =

Z
B

[UI(x1, x2)ΓIK(x1, x2; ξ1, ξ2)

−PI(x1, x2)ΦIK(x1, x2; ξ1, ξ2)]ds(x1, x2)

+
MX
k=1

Z
γ
(k)
+

[∆UI(x1, x2)ΓIK(x1, x2; ξ1, ξ2)

−PI(x1, x2)∆ΦIK(x1, x2; ξ1, ξ2)]ds(x1, x2), (19)

where ∆UI(x1, x2) is the jump in the generalized displacements across op-

posite crack faces defined in (3) and (4), γ
(k)
+ (the “upper face” of the crack

γ(k)) is taken to be the straight line from (a(k), b(k)) to (c(k), d(k)) and

∆ΦIK(x1, x2; ξ1, ξ2) = lim
²→0
[ΦIK(x1 − |²|m(k)

1 , x2 − |²|m
(k)
2 ; ξ1, ξ2)

− ΦIK(x1 + |²|m(k)
1 , x2 + |²|m

(k)
2 ; ξ1, ξ2)]

for (x1, x2) ∈ γ(k). (20)

Now if the Green’s function ΦIK(x1, x2; ξ1, ξ2) is chosen such that

ΓIK(x1, x2; ξ1, ξ2) = 0 for (x1, x2) ∈ γ(k), (21)
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then (20) together with (1) and (2) gives

λ(ξ1, ξ2)UK(ξ1, ξ2) =

Z
B

[UI(x1, x2)ΓIK(x1, x2; ξ1, ξ2)

−PI(x1, x2)ΦIK(x1, x2; ξ1, ξ2)]ds(x1, x2)

−1
2

MX
n=1

`(n)
Z 1

−1
D(n)(t)∆Φ

(n)
4K(t; ξ1, ξ2)dt, (22)

where ∆Φ
(n)
4K(t; ξ1, ξ2) = ∆Φ4K(X

(n)
1 (t), X

(n)
2 (t); ξ1, ξ2), 2X

(n)
1 (t) = [c(n) +

a(n)] + [c(n) − a(n)]t, 2X(n)
2 (t) = [d(n) + b(n)] + [d(n) − b(n)]t and

D(n)(t) = − ²c∆U4(X
(n)
1 (t), X

(n)
2 (t))

∆U1(X
(n)
1 (t), X

(n)
2 (t))m

(n)
1 +∆U2(X

(n)
1 (t), X

(n)
2 (t))m

(n)
2

. (23)

The function Φ[2]RS(x1, x2; ξ1, ξ2) chosen to satisfy (21) can be constructed

numerically as explained in Athanasius, Ang and Sridhar [5]. Specifically,

Φ
[2]
RS(x1, x2; ξ1, ξ2) is approximately given by

Φ
[2]
RS(x1, x2; ξ1, ξ2) =

1

2

MX
n=1

`(n)
Z 1

−1
∆Φ

(n)
PS(t; ξ1, ξ2)

×Λ(n)PR(x1, x2;X
(n)
1 (t),X

(n)
2 (t))dt,

∆Φ
(n)
PS(t; ξ1, ξ2) = ∆ΦPS(X

(n)
1 (t), X

(n)
2 (t); ξ1, ξ2)

'
√
1− t2

JX
j=1

φ
(nj)
PS (ξ1, ξ2)U

(j−1)(t), (24)

where Λ
(n)
IS (x1, x2; y1, y2) is defined by

Λ
(n)
IS (x1, x2; y1, y2) = −

1

2π
Re

4X
α=1

{
TIjαSm

(n)
j

[x1 − y1] + τα[x2 − y2]
}, (25)

TIjαS = LIjαNαRdRS, U
(j)(x) = sin([j + 1] arccos(x))/ sin(arccos(x)) (−1 <

x < 1) is the j-th order Chebyshev polynomial of the second kind and
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φ
(nj)
PS (ξ1, ξ2) are determined by solving the system

−
JX
j=1

jπφ
(qj)
PS (ξ1, ξ2)χ

(q)
PKU

(j−1)(t(i))

+
JX
j=1

MX
n=1
n6=q

φ
(nj)
PS (ξ1, ξ2)

Z 1

−1

√
1− v2U (j−1)(v)Y (nq)PK (v, t

(i))dv

= Λ
(q)
KS(X

(q)
1 (t

(i)),X
(q)
2 (t

(i)), ξ1, ξ2)

for i = 1, 2, · · · , J, K = 1, 2, 3, 4, S = 1, 2, 3, 4 and q = 1, 2, · · · ,M, (26)

where t(i) = cos([2i− 1]π/[2J ]), χ(q)PK and Y
(nq)
PK (v, t) are defined by

χ
(q)
PK =

1

π
Re

4X
α=1

{
`(q)QPKrjαm

(q)
r m

(q)
j

[(c(q) − a(q)) + τα(d(q) − b(q))]2
},

Y
(nq)
PK (v, t) =

1

4π
Re

4X
α=1

{
`(n)QPKrjαm

(q)
r m

(n)
j

[Ξ(nq)(v, t) + ταΘ(nq)(v, t)]2
}, (27)

with Ξ(nq)(v, t) = X
(n)
1 (v) − X(q)

1 (t), Θ
(nq)(v, t) = X

(n)
2 (v) − X(q)

2 (t) and

QPKrjα = (CKrI1 + ταCKrI2)TPjαI .

5 Numerical procedure

A numerical method based on the boundary integral equations in (22) to-

gether with the Green’s function defined by (16) and (24) is given below for

solving the crack problem stated in Section 2.

5.1 Boundary elements

From the given boundary conditions on the exterior boundary B, either UI =

ui or PI = pi for I = i = 1, 2, 3, and either U4 = φ or P4 are known at each

and every point on B. If D(n)(t) is assumed known, the boundary B and
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the integral equations (22) can be discretized to determine approximately

the unknown generalized displacements UI and/or tractions PI on B. To

do this, the boundary B is approximated using N straight line segments

denoted by B(1), B(2), · · · , B(N−1) and B(N). Across the segment B(m), the
displacements UI and the tractions PI are approximated by constants U

(m)
I

and P
(m)
I respectively. Through approximating (22), the unknown constants

on the boundary elements U
(m)
I and/or tractions P

(m)
I can be determined

from the system of linear algebraic equations

1

2
U
(m)
K =

NX
n=1

U
(n)
I

Z
B(n)

ΓIK(x1, x2; ξ
(m)
1 , ξ

(m)
2 )ds(x1, x2)

−
NX
n=1

P
(n)
I

Z
B(n)

ΦIK(x1, x2; ξ
(m)
1 , ξ

(m)
2 )ds(x1, x2)

− 1
2

MX
n=1

`(n)
Z 1

−1
D(n)(t)∆Φ

(n)
4K(t; ξ

(m)
1 , ξ

(m)
2 )dt

for m = 1, 2, · · · ,N, (28)

where (ξ
(m)
1 , ξ

(m)
2 ) is the midpoint of B(m).

From (24), the last integral in (28) can be approximated asZ 1

−1
D(n)(t)∆Φ

(n)
4K(t; ξ

(m)
1 , ξ

(m)
2 )dt

'
JX
j=1

φ
(nj)
4S (ξ

(m)
1 , ξ

(m)
2 )

Z 1

−1

√
1− t2U (j−1)(t)D(n)(t)dt. (29)

The integral whose integrand is given by
√
1− t2U (j−1)(t)D(n)(t) can be eas-

ily and accurately computed by using the numerical quadrature formula

(25.4.40) listed in Abramowitz and Stegun [1] if the functionD(n)(t) is known.
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5.2 Generalized crack opening displacements

Once U (m)I and P (m)I are all known, the generalized crack opening displace-

ments on the crack γ(n), that is, ∆U
(n)
P (t) = ∆UP (X

(n)
1 (t), X

(n)
2 (t)) for −1 <

t < 1, can be computed numerically. Specifically, ∆U
(n)
P (t) is given approxi-

mately by

∆U
(n)
P (t) '

√
1− t2

JX
j=1

ψ
(nj)
P U (j−1)(t), (30)

where the constants ψ
(nj)
P are determined by the system of linear algebaic

equations

−
JX
j=1

jπψ
(qj)
P χ

(q)
PKU

(j−1)(t(i))

+
JX
j=1

MX
n=1
n6=q

ψ
(nj)
P

Z 1

−1

√
1− v2U (j−1)(v)Y (nq)PK (v, t

(i))dv

= S
(q)
K (t

(i)) for i = 1, 2, · · · , J , K = 1, 2, 3, 4 and q = 1, 2, · · · ,M, (31)

where t(i) = cos([2i− 1]π/[2J ]) as in (26) and S(q)K (t) is given by

S
(q)
K (t) =

NX
n=1

CKjRsm
(q)
j

Z
B(n)

{P (n)I

∂

∂ξs
[Φ
[1]
IR(x1, x2, ξ1, ξ2)]

¯̄̄̄
(ξ1,ξ2)=(X

(q)
1 (t),X

(q)
2 (t))

− U (n)I

∂

∂ξs
[Γ
[1]
IR(x1, x2, ξ1, ξ2)]

¯̄̄̄
(ξ1,ξ2)=(X

(q)
1 (t),X

(q)
2 (t))

}ds(x1, x2)

+ δK4D
(q)(t). (32)

For an idea on how (30), (31) and (32) may be obtained, one may refer to

Athanasius, Ang and Sridhar [5].
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5.3 Iterative solution

From (23), the function D(n)(t) is given by an expression which is a nonlinear

function of the generalized crack opening displacements ∆U
(n)
1 (t), ∆U

(n)
2 (t)

and∆U
(n)
4 (t).Thus, it is an unknown function to be determined in the process

of solving the crack problem under consideration. An iterative procedure for

solving the problem is given in the steps below.

1. Make a guess of D(n)(t). If a solution of the problem for some value

of ²c which is close to the desired permittivity of the medium filling

the cracks is known, it can be used to provide an initial estimate of

D(n)(t) through the formula (23). For a cold start, D(n)(t) = 0 which

corresponds to the case of impermeable cracks may be used. Go to

Step 2.

2. Solve (28) for the unknown generalized displacements UI and/or trac-

tions PI on the exterior boundary B using the latest estimate ofD
(n)(t).

Go to Step 3.

3. Solve (31) for ψ
(qj)
P using the latest values of U

(n)
I and P

(n)
I and use (23)

and (30) to obtain a new estimate of D(n)(t), that is,

D(n)(t) = −²c{
JX
j=1

ψ
(nj)
4 U (j−1)(t)}[

2X
p=1

JX
j=1

ψ(nj)p U (j−1)(t)m(n)
p ]

−1. (33)

Check whether the newly obtained values D(n)(t(i)) (t(i) = cos([2i −
1]π/[2J ]) for i = 1, 2, · · · , J) agree with the previous values to within
a specified number of significant figures. If the required convergence is

not achieved, go back to Step 2.
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In Step 2, (28) gives a system of 4N linear algebraic equations in 4N

unknowns, that is, it can be written in the matrix form AX = B, where A

and B are respectively known 4N × 4N and 4N × 1 matrices and X is an

unknown 4N × 1 matrix. The square matrix A does not change during the

iterations between Steps 2 and 3. Similarly, the square matrix in the linear

system of algebraic equations in (31) for determining ψ
(qj)
P in Step 3 remains

the same throughout the iterative procedure. Thus, those square matrices

have to be set up and processed only once for solving the systems of linear

algebraic equations.

Note that the iterative procedure proposed above differs from the one

given in Denda [9] for a single semi-permeable crack. In [9], the jump in the

electric potential over the impermeable crack is first obtained. This jump in

electric potential is then progressively decreased to zero over the entire crack

by gradually changing the value of a control parameter p. For each value of

p, the solution for the corresponding permeable crack is used to compute the

normal electric displacement and the generalized displacement jumps over

the crack in order to estimate the permittivity ²c which corresponds to the

control parameter p. Physical quantities of interest such as the generalized

stress intensity factors may then be plotted against ²cor p. The desired

solution for any other value of ²c is finally obtained through interpolation.

For each value of p, the approximation of ²c from the solution of the permeable

crack may, however, contain some errors, particularly for the case in which

the crack lies in a body of finite extent, and further investigation is needed

to improve the algorithm in [9].

Our iterative approach here is a more direct one. The numerical Green’s

function for the impermeable cracks is used in each iterative step and the
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iteration is between the calculation of the generalized displacements and

tractions on the exterior boundary and the normal electric displacements on

the cracks. As explained above, for any desired value of ²c, we start with an

initial guess of the normal electric displacement D(n)(t) and iterate until the

change in D(n)(t) is sufficiently small. As shown in the numerical examples,

convergence to the final solution may be slow for ²cwhich is relatively large.

The convergence may, however, be improved significantly by replacing (33)

with (45), that is, by introducing a relaxation parameter ω.

6 Generalized stress intensity factors

At the tips (a(n), b(n)) and (c(n), d(n)) of the n-th crack γ(n), define the stress

and electric displacement intensity factors:

KI(a
(n), b(n)) = lim

t→−1−

r
`(n)

2

p
−2(t+ 1)(S1j(X(n)

1 (t), X
(n)
2 (t))m

(n)
1

+S2j(X
(n)
1 (t), X

(n)
2 (t))m

(n)
2 )m

(n)
j ,

KII(a
(n), b(n)) = lim

t→−1−

r
`(n)

2

p
−2(t+ 1)(S1j(X(n)

1 (t), X
(n)
2 (t))m

(n)
2

−S2j(X(n)
1 (t), X

(n)
2 (t))m

(n)
1 )m

(n)
j ,

KIII(a
(n), b(n)) = lim

t→−1−

r
`(n)

2

p
−2(t+ 1)S3j(X(n)

1 (t), X
(n)
2 (t))m

(n)
j ,

KIV (a
(n), b(n)) = lim

t→−1−

r
`(n)

2

p
−2(t+ 1)S4j(X(n)

1 (t),X
(n)
2 (t))m

(n)
j ,

KI(c
(n), d(n)) = lim

t→1+

r
`(n)

2

p
2(t− 1)(S1j(X(n)

1 (t), X
(n)
2 (t))m

(n)
1

+S2j(X
(n)
1 (t), X

(n)
2 (t))m

(n)
2 )m

(n)
j ,

16



KII(c
(n), d(n)) = lim

t→1+

r
`(n)

2

p
2(t− 1)(S1j(X(n)

1 (t), X
(n)
2 (t))m

(n)
2

−S2j(X(n)
1 (t), X

(n)
2 (t))m

(n)
1 )m

(n)
j ,

KIII(c
(n), d(n)) = lim

t→1+

r
`(n)

2

p
2(t− 1)S3j(X(n)

1 (t), X
(n)
2 (t))m

(n)
j ,

KIV (c
(n), d(n)) = lim

t→1+

r
`(n)

2

p
2(t− 1)S4j(X(n)

1 (t), X
(n)
2 (t))m

(n)
j . (34)

Once the constants ψ
(nj)
P in (30) are determined, the generalized stress

intensity factors can be computed by

KI(a
(n), b(n)) '

r
`(n)

2
π(χ

(n)
P1m

(n)
1 + χ

(n)
P2m

(n)
2 )

JX
j=1

ψ
(nj)
P U (j−1)(−1),

KII(a
(n), b(n)) '

r
`(n)

2
π(χ

(n)
P1m

(n)
2 − χ

(n)
P2m

(n)
1 )

JX
j=1

ψ
(nj)
P U (j−1)(−1),

KIII(a
(n), b(n)) ' −

r
`(n)

2
πχ

(n)
P3

JX
j=1

ψ
(nj)
P U (j−1)(−1),

KIV (a
(n), b(n)) ' −

r
`(n)

2
πχ

(n)
P4

JX
j=1

ψ
(nj)
P U (j−1)(−1),

KI(c
(n), d(n)) '

r
`(n)

2
π(χ

(n)
P1m

(n)
1 + χ

(n)
P2m

(n)
2 )

JX
j=1

ψ
(nj)
P U (j−1)(+1),

KII(c
(n), d(n)) '

r
`(n)

2
π(χ

(n)
P1m

(n)
2 − χ

(n)
P2m

(n)
1 )

JX
j=1

ψ
(nj)
P U (j−1)(+1),

KIII(c
(n), d(n)) ' −

r
`(n)

2
πχ

(n)
P3

JX
j=1

ψ
(nj)
P U (j−1)(+1),

KIV (c
(n), d(n)) ' −

r
`(n)

2
πχ

(n)
P4

JX
j=1

ψ
(nj)
P U (j−1)(+1). (35)
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7 Specific problems

The numerical procedure in Section 5 is applied here to some specific prob-

lems involving semi-permeable cracks in piezoelectric solids.

Let us first consider a single crack −a < x1 < a, x2 = 0, in the square

region −h < x1 < h, −h < x2 < h, where a and h are given positive

constants. The boundary conditions on the exterior boundary B are given

by

P1 = 0 and P3 = 0 on B,

P2 =

⎧⎨⎩ T0 for − h < x1 < h, x2 = h,
−T0 for − h < x1 < h, x2 = −h,
0 for − h < x2 < h, x1 = ±h,

P4 =

⎧⎨⎩ D0 for − h < x1 < h, x2 = h,
−D0 for − h < x1 < h, x2 = −h,
0 for − h < x2 < h, x1 = ±h,

where T0 and D0 are given positive constants.

The electrical poling direction is taken to be along the x2 direction with

the constitutive equations given by

σ11 = Aγ11 + Fγ22 +Nγ33 − e2E2,

σ22 = Fγ11 + Cγ22 + Fγ33 − e3E2,

σ33 = Nγ11 + Fγ22 +Aγ33 − e2E2,

σ32 = 2Lγ32 − e1E3,

σ31 = (A−N) γ31,

σ12 = 2Lγ12 − e1E1, (36)
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and

D1 = 2e1γ12 + ²1E1,

D2 = e2γ11 + e3γ22 + e2γ33 + ²2E2,

D3 = 2e1γ32 + ²1E3, (37)

where 2γkj = ∂uk/∂xj+∂uj/∂xk and Ek = −∂φ/∂xk. Note that γ33 = 0 and
E3 = 0 here since uk and φ are independent of x3.

It follows that the non-zero coefficients CIjKp are

C1111 = C3333 = A, C1133 = C3311 = N, C2222 = C,

C1122 = C2211 = C2233 = C3322 = F ,

C1212 = C2112 = C2121 = C1221 = C2323 = C3223 = C3232 = C2332 = L,

C1313 = C3113 = C3131 = C1331 =
1

2
(A−N),

C2141 = C1241 = C3243 = C2343 = C4121 = C4112 = C4332 = C4323 = e1,

C1142 = C3342 = C4211 = C4233 = e2,

C2242 = C4222 = e3, C4141 = C4343 = −²1, C4242 = −²2. (38)

and the matrix [AKα] can then be obtained by finding non-trivial solutions

of the homogeneous systems¡
A+ Lτ 2α

¢
A1α + (F + L) ταA2α + (e1 + e2) ταA4α = 0,

(F + L) ταA1α +
¡
L+ Cτ2α

¢
A2α +

¡
e1 + e3τ

2
α

¢
A4α = 0,

(
1

2
(A−N) + Lτ 2α)A3α = 0,

(e1 + e2) ταA1α +
¡
e1 + e3τ

2
α

¢
A2α +

¡
−²1 − ²2τ2α

¢
A4α = 0, (39)

where

τ 3 = i

r
A−N
2L

(A > N), (40)
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and τ 1, τ2 and τ 4 are solutions (with positive imaginary parts) of the sextic

equation in τ given by

det

⎛⎝ A+ Lτ 2 (F + L)τ (e1 + e2)τ
(F + L)τ L+ Cτ2 e1 + e3τ

2

(e1 + e2)τ e1 + e3τ
2 −²1 − ²2τ2

⎞⎠ = 0. (41)

For α = 3, a non-trivial solution of (39) which forms the third column of

the matrix [AKα] is given by⎛⎜⎜⎝
A13
A23
A33
A43

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠ . (42)

For α = 1, 2 and 4, if (A+ Lτ 2α)(L + Cτ
2
α)− (F + L)2τ2α 6= 0, we may take

A3α = 0 and A4α = 1 and find A1α and A2α by solving¡
A+ Lτ 2α

¢
A1α + (F + L) ταA2α = 0,

(F + L) ταA1α +
¡
L+ Cτ2α

¢
A2α = 0, (43)

in order to construct the first, second and fourth columns of the matrix [AKα].

For illustrative purpose, we use the material constants of a class of PZT4

piezoceramics in our calculation, that is,

A = 13.9× 1010, N = 7.78× 1010, F = 7.43× 1010,

C = 11.3× 1010, L = 2.56× 1010,

e1 = 13.44, e2 = −6.98, e3 = 13.84,

²1 = 60× 10−10, ²2 = 54.7× 10−10. (44)

The values of A, N, F , C and L above are in N/m2, e1, e2 and e3 are in

C/m2, and ²1 and ²2 are in C/(Vm). The load ratio is taken to be given by

D0/T0 = 10
−10 C/N.
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Table 1. Numerical and analytical values of KIV (a, 0)/(D0
√
a) for selected val-

ues of ²cT0/D
2
0.

²cT0/D
2
0 Numerical Analytical

0 1.00006 1.00000
0.001 1.00013 1.00007
0.01 1.00074 1.00068
0.05 1.00346 1.00339
0.1 1.00683 1.00677
0.2 1.01353 1.01346
0.5 1.03323 1.03314
1 1.06478 1.06467
5 1.27215 1.27151
10 1.45431 1.45496
20 1.69190 1.69216
50 2.02325 2.02027
∞ 2.53459 2.53300

For the limiting case in which h/a→∞ (the case of a piezoelectric solid

of an infinite extent), an analytical solution of the problem can be derived as

shown in the Appendix, if the electric displacement D2 can be assumed to

be a constant on the crack. To check the validity of the iterative scheme pro-

posed in Section 5 for electrically semi-permeable cracks, the numerical elec-

tric displacement intensity factor KIV (a, 0)/(D0
√
a) (at the crack tip (a, 0))

obtained from the iterative scheme using h/a = 30, 40 equal length elements

and J = 10 (10 collocation points on the crack) are compared in Table 1

with the exact one extracted from the analytical solution in the Appendix

for various values of the non-dimensionalized permittivity ²cT0/D
2
0.

It is clear there is a good agreement between the numerical and ana-

lytical values of KIV (a, 0)/(D0
√
a) in Table 1. The numerical values are
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obtained by gradually increasing ²cT0/D
2
0. For example, to solve the prob-

lem ²cT0/D
2
0 = 10.0, the solution for ²cT0/D

2
0 = 5.0 may be used as an initial

solution to find the numerical solution for ²cT0/D
2
0 = 5.50. Subsequently, the

solution for ²cT0/D
2
0 = 5.50 is used to obtain the solution for ²cT0/D

2
0 = 6.0.

The value of ²cT0/D
2
0 is gradually increased by 0.5 until the final solution

for ²cT0/D
2
0 = 10.0 is obtained. For smaller ²cT0/D

2
0, the required numerical

solution may be obtained in three or four iterations. (In the iterative scheme,

the convergence criterion used is that the values of D(n)(t) (at the colloca-

tion points on the crack) as calculated in (33) do not change by more than

0.5% in two consecutive iterations.) For ²cT0/D
2
0 > 10, D

(n)(t) as calculated

using (33) may converge very slowly or in an oscillatory manner. For larger

²cT0/D
2
0, the convergence of the solution may be improved significantly by

modifying (33) for updating D(n)(t) as

D(n)(t) = −ω²c{
JX
j=1

ψ
(nj)
4 U (j−1)(t)}[

2X
p=1

JX
j=1

ψ(nj)p U (j−1)(t)m(n)
p ]

−1

+(1− ω)D
(n)
last(t) (45)

where D
(n)
last(t) is the approximation of D

(n)(t) in the last iteration and ω

is an appropriately chosen relaxation parameter. Using ω = 1/2, we man-

age to obtain convergence for D(n)(t) for up to ²cT0/D
2
0 = 50. (The values

of KIV (a, 0)/(D0
√
a) in Table 1 for ²cT0/D

2
0 = 20 and ²cT0/D

2
0 = 50 are

computed by using ω = 1/2.) The numerical value of KIV (a, 0)/(D0
√
a) in

Table 1 for ²cT0/D
2
0 →∞ is obtained directly by using the numerical Green’s

function for permeable cracks as given in Athanasius, Ang and Sridhar [5].
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Figure 1. Plots of KIV (a, 0)/(D0
√
a) against D2

0/(²cT0) for h/a = 5, 10

and 30.

Figure 2. Plots of D2(x1, 0)/D0 against −1 < x1/a < 1 for selected values
of h/a with ²cT0/D

2
0 = 0.01.

In Figure 1, KIV (a, 0)/(D0
√
a) is plotted against D2

0/(²cT0) for h/a = 5,

10 and 30. For a fixed h/a, KIV (a, 0)/(D0
√
a) decreases in magnitude and

tends to a limiting value as D2
0/(²cT0) increases. Note the effects of the
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exterior boundary of the piezoelectric solid on KIV (a, 0)/(D0
√
a). For a

particular D2
0/(²cT0), when the boundary is closer to the crack, it appears

that KIV (a, 0)/(D0
√
a) has a higher magnitude.

In Figure 2, plots of D2(x1, 0)/D0 against −1 < x1/a < 1 are given

for ²cT/D
2
0 = 0.01 and selected values of h/a. For smaller values of h/a, it

may be necessary to employ a larger number of boundary elements. For the

numerical calculation to obtain the plots in Figure 2, up to 80 elements are

employed on the exterior boundary. For larger values of h/a, such as h/a = 5

and h/a = 10, D2(x1, 0)/D0 is almost a constant over −1 < x1/a < 1. This
observation is consistent with the assumption of constant D2 over the crack

used in the derivation of the analytic solution for h/a→∞ (see Appendix).

For smaller values of h/a, the variation of D2(x1, 0)/D0 over −1 < x1/a < 1
is more prominent. The value of D2(x1, 0)/D0 is minimum at the center of

the crack and increases towards the tips, as the field lines ofD2 perpendicular

to the crack always tend to deviates towards the tips.

Figure 3 shows the variation of D2/D0 along the crack for h/a = 30 and

selected values of ²cT/D
2
0. It can be seen that D2/D0 has a bigger magnitude

for a higher value of ²cT0/D
2
0. This is as expected because there is a lower

resistance to the electrical conductance if the permittivity in the crack is

higher.

Figure 4 gives plots of D0∆φ(x1, 0)/(2hT0) against 0 ≤ x1/a ≤ 1 for

h/a = 30 and some selected values of ²cT0/D
2
0. As may be expected, the value

of D0∆φ(x1, 0)/(2hT0) at each point on the crack increases with decreasing

²cT0/D
2
0.
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Figure 3. Plots of D2(x1, 0)/D0 against −1 < x1/a < 1 for selected values
of ²cT0/D

2
0 with h/a = 30.

Figure 4. Plots of D0∆φ(x1, 0)/(2hT0) against 0 ≤ x1/a ≤ 1 for some
selected values of ²cT0/D

2
0 with h/a = 30.
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Figure 5. Three parallel cracks in a square domain.

For another problem, let us consider three parallel cracks γ(1), γ(2) and

γ(3) in the domain −h < x1 < h, −h < x2 < h, where h is a given positive
constant. The crack γ(1) lies in the region −a < x1 < a, x2 = 0, γ(2) in

−b < x1 < b, x2 = d, and γ(3) in −b < x1 < b, x2 = −d, where a, b and d are
given positive constants. Refer to Figure 5.

The boundary conditions on the sides of the square domain are given by

P1 = ±S0
P2 = ±T0
P3 = 0
P4 = ±D0

⎫⎪⎪⎬⎪⎪⎭ for − h < x1 < h on x2 = ±h,

P1 = 0
P2 = ±S0
P3 = 0
P4 = 0

⎫⎪⎪⎬⎪⎪⎭ for − h < x2 < h on x1 = ±h, (46)
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where S0, T0 and D0 are given positive constants.

The constitutive relations are as before in (36) and (37). For the purpose

of computation, the loads S0, T0 and D0 are given the ratios D0/T0 = 10
−10

C/N and D0/S0 = 10
−10 C/N and the material constants in (44) are used.

For fixed h/a = 30 and b/a = 1, in Figures 6, 7 and 8, KI(a, 0)/(T0
√
a),

KII(a, 0)/(S0
√
a) andKIV (a, 0)/(D0

√
a) (at the tip (a, 0) of the center crack)

are plotted against d/a for some values of ²cT0/D
2
0 including ²cT0/D

2
0 = 0

(impermeable cracks) and ²cT0/D
2
0 →∞ (permeable cracks). The calculation

for ²cT0/D
2
0 → ∞ is carried out using the numerical Green’s function for

permeable cracks in Athanasius, Ang and Sridhar [5].

Figure 6. Plots of KI(a, 0)/(T0
√
a) against d/a for ²cT0/D

2
0 = 0,

²cT0/D
2
0 = 1 and ²cT0/D

2
0 →∞ with h/a = 30 and b/a = 1.
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Figure 7. Plots of KII(a, 0)/(S0
√
a) against d/a for ²cT0/D

2
0 = 0,

²cT0/D
2
0 = 1 and ²cT0/D

2
0 →∞ with h/a = 30 and b/a = 1.

Figure 8. Plots of KIV (a, 0)/(D0
√
a) against d/a for ²cT0/D

2
0 = 0,

²cT0/D
2
0 = 1, ²cT0/D

2
0 = 5 and ²cT0/D

2
0 →∞ with h/a = 30 and b/a = 1.
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In Figure 6, the graphs of KI(a, 0)/(T0
√
a) for ²cT0/D

2
0 = 0, ²cT0/D

2
0 = 1

and ²cT0/D
2
0 → ∞ are visually indistinguishable. Similarly, there is no dis-

tinction between the graphs of KII(a, 0)/(S0
√
a) for ²cT0/D

2
0 = 0, ²cT0/D

2
0 =

1 and ²cT0/D
2
0 → ∞ in Figure 7. It appears that the permittivity of the

medium filling the cracks has no significant effect on KI(a, 0)/(T0
√
a) and

KII(a, 0)/(S0
√
a). In Figure 8, however, the magnitude of KIV (a, 0)/(D0

√
a)

appears to increase with ²cT0/D
2
0. Note that the non-dimensionalized stress

intensity factors KI(a, 0)/(T0
√
a) and KII(a, 0)/(S0

√
a) in Figures 6 and 7

are close to unity for large d/a. This is as expected since KI(a, 0)/(T0
√
a)

and KII(a, 0)/(S0
√
a) should both be unity for the corresponding case of a

single crack in an infinite piezoelectric space.

Figure 9. Plots of KI(a, 0)/(T0
√
a) against b/a for ²cT0/D

2
0 = 0,

²cT0/D
2
0 = 1 and ²cT0/D

2
0 →∞ with h/a = 30 and d/a = 1.
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Figure 10. Plots of KII(a, 0)/(S0
√
a) against b/a for ²cT0/D

2
0 = 0,

²cT0/D
2
0 = 1 and ²cT0/D

2
0 →∞ with h/a = 30 and d/a = 1.

Figure 11. Plots of KIV (a, 0)/(D0
√
a) against b/a for ²cT0/D

2
0 = 0,

²cT0/D
2
0 = 1, ²cT0/D

2
0 = 5 and ²cT0/D

2
0 →∞ with h/a = 30 and d/a = 1.

For fixed h/a = 30 and d/a = 1, Figures 9, 10 and 11 show the plots

of KI(a, 0)/(T0
√
a), KII(a, 0)/(S0

√
a) and KIV (a, 0)/(D0

√
a) against b/a

(0 ≤ b/a ≤ 1) for various values of ²cT0/D
2
0. As in Figures 6 and 7,
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KI(a, 0)/(T0
√
a) and KII(a, 0)/(S0

√
a) for ²cT0/D

2
0 → ∞ in Figures 9 and

10 are not distinguishable from the corresponding non-dimensionalized in-

tensity factors for ²cT0/D
2
0 = 0 and ²cT0/D

2
0 = 1. For very small b/a,

KI(a, 0)/(T0
√
a) and KII(a, 0)/(S0

√
a) are close to one. This is consistent

with the observation in Figures 6 and 7 that the non-dimensionalized inten-

sity factors are close to one for larger d/a.

For fixed ²cT0/D
2
0 = 1, h/a = 30 and d/a = 1, Figure 12 shows the varia-

tion of D2/D0 along the center crack and various values of the crack length

ratio b/a. It appears that as b/a increases the non-dimensionalized normal

electrical displacement D2/D0 becomes larger in magnitude and exhibits a

greater variation over the center crack.

Figure 12. Plots of D2(x1, 0)/D0 against x1/a for various values of b/a

with ²cT0/D
2
0 = 1, h/a = 30 and d/a = 1.
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8 Summary

An iterative method based on the electro-elastostatic boundary integral equa-

tions together with the numerical Green’s function for impermeable cracks

(as derived in Athanasius, Ang and Sridhar [5]) has been successfully imple-

mented for the analysis of electrically semi-permeable cracks in a piezoelectric

solid. As the conditions on the semi-permeable cracks are not fully satisfied

by the Green’s function (for impermeable cracks), the resulting boundary

integral formulation involves integrals whose integrands are given by a non-

linear function of the crack opening displacement and the electrical potential

jump on the cracks. Nevertheless, if the crack opening displacement and

the electric potential jump are assumed known, a simple boundary element

procedure which involves only unknowns on the exterior boundary of the

piezoelectric solid can be devised. The approach proposed here for the nu-

merical solution of the electroelastic crack problem is to iterate to and fro

estimating the crack opening displacement and the electrical potential jump

and using the simple boundary element procedure to determine the unknowns

on the exterior boundary.

For a particular problem involving a single planar crack which is centrally

located in a very large piezoelecric plate under uniform loads, the numerical

values obtained for the crack tip stress and electric displacement intensity fac-

tors are found to be in good agreement with those computed using analytical

formulae. Qualitatively acceptable results are also obtained for some specific

problems including one which involves the interaction of three parallel planar

cracks.
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Appendix
An analytic solution to the problem of a semi-permeable crack in an

infinite piezoelectric medium is given here. The crack lies in the region

−a < x1 < a, x2 = 0.
For the solution of the problem, let the generalized stress be given by

SKj = S
(0)
Kj + S

(1)
Kj , (A1)

where S
(0)
Kj are the constants giving the uniform state of the generalized stress

in the absence of the crack and S
(1)
Kj are induced by the crack such that

S(0)K2 + S
(1)
K2 = 0 on the crack for K = 1, 2 and 3.
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The induced generalized stress S
(1)
Kj and its corresponding generalized dis-

placement U
(1)
K are given by

U (1)K = Re{
4X

α=1

AKαMαSPS[−zα + (z2α − a2)1/2]},

S(1)Kj = Re{
4X

α=1

LKjαMαSPS[−1 +
zα

(z2α − a2)1/2
]}, (A2)

where P1 = S
(0)
12 , P2 = S

(0)
22 , P3 = S

(0)
32 and, as in Hao and Shen [14], P4 is

assumed to be a constant yet to be determined and (z2α− a2)1/2 is defined in
such a way that

lim
|zα|→∞

zα
(z2α − a2)1/2

= 1. (A3)

It is easy to check that S
(1)
K2 = −PK on the crack. Thus, S

(1)
Kj satisfies the

traction free conditions on the crack, that is, S
(0)
K2+S

(1)
K2 = 0 on the crack for

K = 1, 2 and 3, as required. Furthermore, it can be shown that S
(1)
Kj → 0 as

|zα|→∞, that is, the generalized stress is given by S(0)Kj at infinity.
The crack is electrically semi-permeable, that is,

S42∆U2 = −²c∆U4 on the crack. (A4)

From (A1) and (A2), S42 = S
(0)
42 − P4 on the crack, and if P4 is to be a real,

then

∆U2 = Re{
4X

α=1

2iA2αMαS}PS(a2 − x21)1/2 for − a < x1 < a. (A5)

It follows that (A4) is satisfied if

(S
(0)
42 − P4)V2SPS = −²cV4SPS, (A6)
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where

VKS = Re{
4X

α=1

2iAKαMαS}. (A7)

Note that (A6) is a quadratic equation in the unknown parameter P4. If

a unique constant P4 satisfying (A6) and the inequality V2SPS > 0 (so that

∆U2 > 0) can be found, we have obtained an analytic solution to the problem

of the single semi-permeable crack. The value of P4 for the special case of an

electrically impermeable crack (εc = 0) or a permeable crack (εc →∞) can
be easily obtained from (A6). Specifically,

P4 =

⎧⎨⎩ S
(0)
42 for an impermeable crack,

−V −144

3P
k=1

V4kPk for a permeable crack.
(A8)

Once P4 is determined, the crack tip stress and electric displacement

intensity factors can be easily extracted from (A2).
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