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Abstract
A plane electroelastic problem involving planar cracks in a piezo-

electric body is considered. The deformation of the body is assumed
to be independent of time and one of the Cartesian coordinates. The
cracks are traction free and are electrically either permeable or im-
permeable. Numerical Green’s functions which satisfy the boundary
conditions on the cracks are derived using the hypersingular integral
approach and applied to obtain a boundary integral solution for the
electroelastic crack problem considered here. As the conditions on the
cracks are built into the Green’s functions, the boundary integral so-
lution does not contain integrals over the cracks. It is used to derive
a boundary element procedure for computing the crack tip stress and
electrical displacement intensity factors.
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1 Introduction

A well established boundary element approach for solving crack problems is

to use special Green’s functions (modified fundamental solutions) chosen to

satisfy the boundary conditions on the cracks. With an appropriate Green’s

function, the boundary integral formulation of the crack problem under con-

sideration does not require integration over the crack faces. Consequently,

difficulties associated with modeling the crack faces, such as singular stress

at the crack tips and degenerate systems of linear algebraic equations, may

be neatly avoided.

Such an approach for solving crack problems numerically was pioneered

by Snyder and Cruse [22] when they derived an analytical Green’s function

for a single planar crack in an orthotropic elastic space of infinite extent.

Subsequently, Clements and Haselgrove [10] extended the work in [22] to a

general anisotropic elastic space, and Ang and Clements [4] further modified

the Green’s function to include the case of a fully closed planar crack. Special

Green’s functions for a planar crack and an arc crack in an isotropic elastic

space were derived by Ang in [2] and [3] respectively.

In general, it is difficult (if not impossible) to derive Green’s functions

analytically for cracks with arbitrary geometries, configurations and bound-

ary conditions. To solve a wider range of crack problems, Telles, Castor and

Guimarães [23] proposed to derive the required Green’s function numerically

based on the hypersingular integral formulation of a suitable crack problem

(see also Guimarães and Telles [15]). (For some details on the hypersingular

approach, one may refer to, for example, Chen and Hong [8].) More recently,

Ang and Telles [6] extended the numerical Green’s function approach in [23]

to solve an elastostatic problem involving multiple interacting planar cracks

in an anisotropic body.

During the last ten years or so, there has been considerable interest in

the development of the boundary element method for fracture analysis of

piezoelectric materials. Using the Lekhnitskii’s formalism and dislocation

2



modeling, Rajapakse and Xu [20] obtained an analytical Green’s function for

a single traction free and electrically impermeable crack in a piezoelectric

space. More recently, Garcia-Sanchez, Saez and Dominguez [13] and Groh

and Kuna [14] presented boundary element procedures based on boundary

integral equations derived by using fundamental solution which does not

satisfy the boundary conditions on the crack faces. In [14], opposite crack

faces were modeled by using the so called subdomain technique and quarter-

point elements were employed to deal with the singular behaviors of the stress

and electric displacement at the crack tips, while a dual (mixed) boundary

integral formulation was used in [13] with the conditions on the cracks treated

by a differentiated form of the usual boundary integral equations. Earlier

works on boundary element methods for electroelastic crack problems include

Xu and Rajapakse [25], Ding, Wang and Chen [11] and Gao and Fan [12].

In the present paper, using the hypersingular integral approach, we derive

numerical Green’s functions for an arbitrary number of arbitrarily located

planar cracks in an infinite piezoelectric space. The Green’s functions are

chosen to satisfy particular electroelastic boundary conditions on the cracks.

Specifically, the boundary conditions are such that the cracks are traction

free and electrically either permeable or impermeable. The analysis in Ang

and Telles [6], based on the Stroh’s formalism for anisotropic elasticity, serves

as a useful guide here for the derivation of the numerical Green’s functions,

as piezoelectric materials exhibit anisotropic behaviors when they deform.

With the use of the special Green’s functions, a boundary integral solution

which does not require integration over the crack faces is obtained for a

plane electroelastic problem involving planar cracks in a piezoelectric body.

A simple boundary element procedure is outlined for the numerical solution

of the crack problem. The displacement and electric potential jumps across

opposite crack faces as well as the crack tip stress and electric displacement

intensity factors may be readily and accurately computed once the elastic

displacements, tractions, electric potential and electric displacement are all
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known on the boundary. To check the validity of the numerical Green’s

functions, the boundary element procedure is applied to solve some specific

problems.

Figure 1. A geometrical sketch of the problem.

2 An electroelastic crack problem

With reference to a Cartesian co-ordinate frame denoted by 0x1x2x3, consider

a homogeneous piezoelectric solid which contains M arbitrarily orientated

planar cracks. The geometries of the solid and the cracks do not change

along the x3 direction. The interior of the solid is denoted by R, the exterior

boundary by B and the k-th crack by γ(k). It is assumed that the cracks

do not intersect with one another or the exterior boundary B. On the plane

x3 = 0, the boundary B appears as a simple closed curve and the crack γ(k)

as a straight cut with tips (a(k), b(k)) and (c(k), d(k)). Refer to Figure 1. For

the purpose of the present paper, γ(k) is taken to be the directed straight line
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segment from (a(k), b(k)) to (c(k), d(k)).

At each and every point on the boundary B, either the displacements

or the tractions and either the electric potential or the electric flux are

prescribed. The prescribed conditions on B are independent of the spa-

tial coordinate x3 and time t and are such that the cracks become traction

free. For the electrical conditions on the cracks, we consider separately two

extreme cases: (a) electrically impermeable cracks and (b) electrically per-

meable cracks. Some discussions on electrically impermeable cracks versus

permeable ones may be found in, for example, Shindo, Tanaka and Narita

[21] and Wang and Mai [24].

Mathematically, the boundary conditions on the cracks are given by

σij(x1, x2)m
(k)
j → 0 as (x1, x2)→ (y1, y2) ∈ γ(k) for k = 1, 2, · · · ,M, (1)

and either

Dj(x1, x2)m
(k)
j → 0 as (x1, x2)→ (y1, y2) ∈ γ(k) for k = 1, 2, · · · ,M

if the cracks are electrically impermeable, (2)

or

∆φ(x1, x2)→ 0 and ∆D(x1, x2)→ 0 as (x1, x2)→ (y1, y2) ∈ γ(k)

for k = 1, 2, · · · ,M if the cracks are electrically permeable, (3)

where σij and Di are respectively the stresses and the electric displace-

ments, [m
(k)
1 ,m

(k)
2 ,m

(k)
3 ] = [(d(k) − b(k))/`(k), (a(k) − c(k))/`(k), 0] is a unit

normal vector to the crack γ(k), `(k) is the length of γ(k) (that is, `(k) =p
(d(k) − b(k))2 + (a(k) − c(k))2) and ∆φ is the jump in the electric potential

φ across opposite crack faces as defined by

∆φ(x1, x2) = lim
ε→0
[φ(x1 − |ε|m(k)

1 , x2 − |ε|m(k)
2 )

− φ(x1 + |ε|m(k)
1 , x2 + |ε|m(k)

2 )]

for (x1, x2) ∈ γ(k), (4)
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and ∆D is defined by

∆D(x1, x2) = lim
ε→0
[Dj(x1 − |ε|m(k)

1 , x2 − |ε|m(k)
2 )

−Dj(x1 + |ε|m(k)
1 , x2 + |ε|m(k)

2 )]m
(k)
j

for (x1, x2) ∈ γ(k). (5)

To allow for antiplane deformations (that is, the case in which u3 6= 0), low-
ercase latin subscripts take the values of 1, 2 and 3. The usual Einsteinian

convention of summing a repeated index is assumed for lowercase latin sub-

scripts. In general, the summation over a repeated lowercase latin subscript

(such as the subscript k in (6) and (7)) runs from 1 to 3. Nevertheless, for

some cases, the summation may run from 1 to 2 only. For example, the

summation over j in (1) and (2) is from 1 to 2 only as m
(k)
3 = 0, and so is

the summation over j and p in (6) and (7) since the displacements uk are

independent of x3.

The problem is to determine the displacements uk and the electric poten-

tial φ throughout the cracked piezoelectric solid.

3 Equations of electroelasticity

The governing equations for the displacements uk and the electric potential

φ in the piezoelectric solid are given by

cijkp
∂2uk

∂xj∂xp
+ epij

∂2φ

∂xj∂xp
= 0,

ejkp
∂2uk

∂xj∂xp
− κjp

∂2φ

∂xj∂xp
= 0, (6)

where cijkp, epij and κjp are the constant elastic moduli, piezoelectric coeffi-

cients and dielectric coefficients respectively.
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The constitutive equations relating (σij ,Dj) and (uk,φ) are given by

σij = cijkp
∂uk
∂xp

+ epij
∂φ

∂xp
,

Dj = ejkp
∂uk
∂xp
− κjp

∂φ

∂xp
. (7)

Following closely the approach of Barnett and Lothe [7], we let

UJ =

½
uj for J = j = 1, 2, 3,
φ for J = 4,

SIj =

½
σij for I = i = 1, 2, 3,
Dj for I = 4,

CIjKp =


cijkp for I = i = 1, 2, 3 and K = k = 1, 2, 3,
epij for I = i = 1, 2, 3 and K = 4,
ejkp for I = 4 and K = k = 1, 2, 3,
−κjp for I = 4 and K = 4,

(8)

so that (6) and (7) may be written more compactly as

CIjKp
∂2UK
∂xj∂xp

= 0 (9)

and

SIj = CIjKp
∂UK
∂xp

(10)

respectively. Note that uppercase latin subscripts have values 1, 2, 3 and 4.

Summation is also implied for repeated uppercase latin subscripts running

from 1 to 4.

The general solution of (9) can be written as

UK(x1, x2) = Re{
4X

α=1

AKαfα(zα)}, (11)
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where Re denotes the real part of a complex number, fα are analytic functions

of zα = x1+ταx2 in the domain of interest, τα are the solutions, with positive

imaginary parts, of the 8-th order polynomial (characteristic) equation

det[CI1K1 + (CI1K2 + CI2K1)τ + CI2K2τ
2] = 0 (12)

and AKα are solutions of the homogeneous system

[CI1K1 + (CI1K2 + CI2K1)τα + CI2K2τ
2
α]AKα = 0. (13)

The characteristic equation (12) admits solutions which occur in complex

conjugate pairs (Barnett and Lothe [7]). It is assumed that we can find τ1,

τ2, τ3 and τ4 such that an invertible 4 × 4 matrix [AKα] can be constructed

from (13).

The generalized stress functions SIj corresponding to (11) are given by

SIj = Re{
4X

α=1

LIjαf
0
α(zα)}, (14)

where the prime denotes differentiation with respect to the relevant argument

and

LIjα = (CIjK1 + ταCIjK2)AKα. (15)

4 Numerical Green’s functions

For the crack problem stated in Section 2, we seek to derive a function

ΦKS(x1, x2; ξ1, ξ2) satisfying the system of partial differential equations

CIjKp
∂2ΦKS
∂xj∂xp

= δISδ(x1 − ξ1, x2 − ξ2), (16)

and the conditions on the cracks given by either

ΨIjS(x1, x2; ξ1, ξ2)m
(k)
j → 0

as (x1, x2)→ (y1, y2) ∈ γ(k) for I = 1, 2, 3, 4 and k = 1, 2, · · · ,M
if the cracks are electrically impermeable, (17)

8



or

ΨIjS(x1, x2; ξ1, ξ2)m
(k)
j → 0, ∆Φ4S(x1, x2; ξ1, ξ2)→ 0

and ∆ΨS(x1, x2; ξ1, ξ2)→ 0 as (x1, x2)→ (y1, y2) ∈ γ(k)

for I = i = 1, 2, 3 and k = 1, 2, · · · ,M
if the cracks are electrically permeable, (18)

where δIS is the Kronecker-delta, δ is the Dirac-delta function, ΨIjS and ∆ΨS

are defined by

ΨIjS(x1, x2; ξ1, ξ2) = CIjRp
∂ΦRS
∂xp

,

∆ΨS(x1, x2; ξ1, ξ2) = lim
ε→0
[Ψ4jS(x1 − |ε|m(k)

1 , x2 − |ε|m(k)
2 ; ξ1, ξ2)

−Ψ4jS(x1 + |ε|m(k)
1 , x2 + |ε|m(k)

2 ; ξ1, ξ2)]m
(k)
j

for (x1, x2) ∈ γ(k), (19)

and ∆Φ4S denotes the jump of Φ4S across opposite crack faces as defined in

(26) below.

Let ΦRS(x1, x2; ξ1, ξ2) be given by

ΦRS(x1, x2; ξ1, ξ2) = Φ
[1]
RS(x1, x2; ξ1, ξ2) + Φ

[2]
RS(x1, x2; ξ1, ξ2), (20)

Φ
[1]
RS(x1, x; ξ1, ξ2) =

1

2π
Re

4X
α=1

{ARαNαJ ln([x1 − ξ1] + τα[x2 − ξ2])} dJS,

(21)

where [NαJ ] is the inverse of [AKα], dJS are real constants defined by

Im{
4X

α=1

LI2αNαR}dRJ = δIJ , (22)

Note that Im denotes the imaginary part of a complex number.

The function Φ
[1]
RS(x1, x2; ξ1, ξ2) in (21) is a solution of (16) (see, for ex-

ample, Clements [9]). It follows that Φ
[2]
RS(x1, x2; ξ1, ξ2) is required to satisfy

cIjKp
∂2Φ[2]KS
∂xj∂xp

= 0 (23)
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everywhere in the infinite piezoelectric space with the cracks γ(1), γ(2), · · · ,
γ(M−1) and γ(M).

Guided by the analysis in Ang and Park [5] and Ang and Telles [6], we

take

Φ
[2]
RS(x1, x2; ξ1, ξ2) =

MX
k=1

Z
γ(k)

∆ΦPS(y1, y2; ξ1, ξ2)Λ
(k)
PR(x1, x2; y1, y2)ds(y1, y2),

(24)

where

Λ
(k)
IS (x1, x2; y1, y2) = −

1

2π
Re

4X
α=1

{ TIjαSm
(k)
j

[x1 − y1] + τα[x2 − y2]},

TIjαS = LIjαNαRdRS, (25)

and

∆ΦPS(x1, x2; ξ1, ξ2) = lim
ε→0
[ΦPS(x1 − |ε|m(k)

1 , x2 − |ε|m(k)
2 ; ξ1, ξ2)

− ΦPS(x1 + |ε|m(k)
1 , x2 + |ε|m(k)

2 ; ξ1, ξ2)]

for (x1, x2) ∈ γ(k). (26)

Note that the integration over γ(k) in (24) is one over a directed straight line

segment from (a(k), b(k)) to (c(k), d(k)). It is assumed that (ξ1, ξ2) does not lie

on any of the cracks. The system (23) is satisfied by (24).

4.1 Electrically impermeable cracks

The conditions (17) on the electrically impermeable cracks require that

CIjRp
∂Φ[2]RS
∂xp

m
(k)
j → Λ

(k)
IS (x1, x2, ξ1, ξ2)

as (x1, x2)→ (y1, y2) ∈ γ(k) for k = 1, 2, · · · ,M. (27)
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From (24), the conditions (27) for electrically impermeable cracks give

rise to the system of hypersingular integral equations

H
Z 1

−1

χ
(q)
PK∆Φ

(q)
PS(v, ξ1, ξ2)dv

(t− v)2 +
MX
n=1
n6=q

Z 1

−1
∆Φ

(n)
PS(v, ξ1, ξ2)Y

(nq)
PK (v, t)dv

= Λ
(q)
KS(X

(q)
1 (t),X

(q)
2 (t), ξ1, ξ2)

for − 1 < t < 1, K = 1, 2, 3, 4, S = 1, 2, 3, 4 and q = 1, 2, · · · ,M, (28)

where H indicates that the integral is to be interpreted in the Hadamard

finite-part sense and

∆Φ
(n)
PS(v, ξ1, ξ2) = ∆ΦPS(X

(n)
1 (v), X

(n)
2 (v); ξ1, ξ2),

χ
(q)
PK =

1

π
Re

4X
α=1

{ `(q)QPKrjαm
(q)
r m

(q)
j

[(c(q) − a(q)) + τα(d(q) − b(q))]2},

Y
(nq)
PK (v, t) =

1

4π
Re

4X
α=1

{ `(n)QPKrjαm
(q)
r m

(n)
j

[Ξ(nq)(v, t) + ταΘ(nq)(v, t)]2
}, (29)

where QPKrjα = (cKrI1 + ταcKrI2)TPjαI , Ξ
(nq)(v, t) = X

(n)
1 (v) − X(q)

1 (t),

Θ(nq)(v, t) = X
(n)
2 (v) − X(q)

2 (t), 2X
(n)
1 (t) = [c(n) + a(n)] + [c(n) − a(n)]t and

2X
(n)
2 (t) = [d(n) + b(n)] + [d(n) − b(n)]t.
The method in Kaya and Erdogan [17] is chosen to solve (28) numerically

for ∆Φ
(n)
PS(v, ξ1, ξ2). Let ∆Φ(n)PS(v, ξ1, ξ2) be given approximately by

∆Φ
(n)
PS(v, ξ1, ξ2) '

√
1− v2

JX
j=1

φ
(nj)
PS (ξ1, ξ2)U

(j−1)(v), (30)

where U (j)(x) = sin([j + 1] arccos(x))/ sin(arccos(x)) (−1 < x < 1) is the

j-th order Chebyshev polynomial of the second kind and φ
(nj)
PS (ξ1, ξ2) are

parameters to be determined.

Through substituting (30) into (28) and collocating (28) by letting t =

t(i) ≡ cos([2i − 1]π/[2J ]) for i = 1, 2, · · · , J, a system of linear algebraic
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equations containing the unknowns φ
(ni)
PS (ξ1, ξ2) can be obtained as follows:

−
JX
j=1

jπφ
(qj)
PS (ξ1, ξ2)χ

(q)
PKU

(j−1)(t(i))

+
JX
j=1

MX
n=1
n6=q

φ
(nj)
PS (ξ1, ξ2)

Z 1

−1

√
1− v2U (j−1)(v)Y (nq)PK (v, t

(i))dv

= Λ
(q)
KS(X

(q)
1 (t

(i)),X
(q)
2 (t

(i)), ξ1, ξ2)

for i = 1, 2, · · · , J, K = 1, 2, 3, 4, S = 1, 2, 3, 4 and q = 1, 2, · · · ,M. (31)

Once φ
(ni)
PS (ξ1, ξ2) are determined from (31), Φ

[2]
RS(x1, x2, ξ1, ξ2) can be cal-

culated approximately using

Φ[2]RS(x1, x2, ξ1, ξ2) '
1

2

MX
n=1

`(n)
JX
j=1

φ(nj)PS (ξ1, ξ2)

Z 1

−1

√
1− t2

× U (j−1)(t)Λ(n)PR(x1, x2, X(n)
1 (t),X

(n)
2 (t))dt. (32)

If the points (x1, x2) and (ξ1, ξ2) do not lie on any of the cracks, the

numerical evaluation of Φ
[2]
RS(x1, x2, ξ1, ξ2) as given by (32) does not pose any

mathematical difficulties. The definite integrals over the interval [−1, 1] in
(31) and (32) can be easily and accurately computed by using the numerical

quadrature formula (25.4.40) listed in Abramowitz and Stegun [1].

Note that in (31) the coefficient of the unknown φ
(qj)
PS (ξ1, ξ2) is independent

of the uppercase latin subscript S and the point (ξ1, ξ2). Thus, in solving

(31) to determine φ
(qj)
PS (ξ1, ξ2) for different values of the subscript S and for

different points (ξ1, ξ2), the square matrix containing the coefficients of the

unknowns has to be computed and processed only once. For example, if the

LU decomposition technique together with backward substitutions is used

to solve (31), we have to decompose the square matrix only once.

4.2 Electrically permeable cracks

Conditions (18) for electrically permeable cracks require the hypersingular

integral equations (28) to be modified by taking ∆Φ
(n)
4S (v, ξ1, ξ2) = 0 and
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replacing K = 1, 2, 3, 4 with K = k = 1, 2, 3. Consequently, if the cracks are

electrically permeable, Φ
[2]
RS(x1, x2, ξ1, ξ2) can still be computed by using (32)

but with φ
(nj)
4S (ξ1, ξ2) = 0. The remaining functions φ

(nj)
1S (ξ1, ξ2), φ

(nj)
2S (ξ1, ξ2)

and φ
(nj)
3S (ξ1, ξ2) required by (32) for computing Φ

[2]
RS(x1, x2, ξ1, ξ2) are to be

determined by solving the system (31) (with φ
(nj)
4S (ξ1, ξ2) = 0) for K = k =

1, 2, 3 (instead of K = 1, 2, 3, 4).

5 A boundary element procedure

If the Green’s function ΦIK(x1, x2, ξ1, ξ2) satisfying either (17) or (18) (de-

pending on the electrical boundary conditions on the cracks), as given in

Section 4 is used, a direct boundary integral formulation for the crack prob-

lem in Section 2 is given by:

λ(ξ1, ξ2)UK(ξ1, ξ2) =

Z
B

[UI(x1, x2)ΓIK(x1, x2; ξ1, ξ2)

− PI(x1, x2)ΦIK(x1, x2, ξ1; ξ2)]ds(x1, x2), (33)

where λ(ξ1, ξ2) = 1 if (ξ1, ξ2) lies in the interior of R and λ(ξ1, ξ2) = 1/2 if

(ξ1, ξ2) lies on a smooth part of B, PI(x1, x2) = SIj(x1, x2)nj(x1, x2), nj are

the components of the unit normal vector to the boundary B (as shown in

Figure 1) and

ΓIK(x1, x2; ξ1, ξ2) = CIjRsnj(x1, x2)
∂

∂xs
[ΦRK(x1, x2, ξ1, ξ2)].

Note that the path of integration in (33) is over only the exterior boundary

B of the piezoelectric solid. To see how the boundary integral equations for

the system (9) may be derived, one may refer to Clements [9].

From the boundary conditions on the exterior boundary B, either UI = ui

or PI = pi for I = i = 1, 2, 3, and either U4 = φ or P4 are known at each and

every point on B. The boundary B and the integral equations (33) can be dis-

cretized to determine approximately the unknown generalized displacements

UI and/or tractions PI on B. To do this, the boundary B is approximated
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using N straight line segments denoted by B(1), B(2), · · · , B(N−1) and B(N).
Across the segment B(m), the displacements UI and the tractions PI are ap-

proximated by constants U
(m)
I and P

(m)
I respectively. Through approximating

(33), the unknown constants on the boundary elements U
(m)
I and/or tractions

P
(m)
I can be determined from the system of linear algebraic equations:

1

2
U
(m)
K =

NX
n=1

U
(n)
I

Z
B(n)

ΓIK(x1, x2; ξ
(m)
1 , ξ

(m)
2 )ds(x1, x2)

−
NX
n=1

P
(n)
I

Z
B(n)

ΦIK(x1, x2; ξ
(m)
1 , ξ

(m)
2 )ds(x1, x2)

for m = 1, 2, · · · ,N, (34)

where (ξ
(m)
1 , ξ

(m)
2 ) is the midpoint of B(m).

Once U
(m)
I and P

(m)
I are all determined, the generalized displacements

UK (and hence the stresses SIj) at any interior point (ξ1, ξ2) in R can be

computed approximately using

UK(ξ1, ξ2) =
NX
n=1

U (n)I

Z
B(n)

ΓIK(x1, x2; ξ1, ξ2)ds(x1, x2)

−
NX
n=1

P
(n)
I

Z
B(n)

ΦIK(x1, x2; ξ1, ξ2)ds(x1, x2). (35)

The crack displacement jumps ∆UK(x1, x2) defined by

∆UK(x1, x2) = lim
ε→0
[UK(x1 − |ε|m(k)

1 , x2 − |ε|m(k)
2 )

− UK(x1 + |ε|m(k)
1 , x2 + |ε|m(k)

2 )]

for (x1, x2) ∈ γ(k) (36)

can be also computed as explained below when U
(m)
I and P

(m)
I are all known.

5.1 Electrically impermeable cracks

If the cracks are electrically impermeable then ∆UK(x1, x2) can be deter-

mined by solving the hypersingular integral equations (see Ang and Telles
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[6]):

H
Z 1

−1

χ
(q)
PK∆U

(q)
P (v)dv

(t− v)2 +
MX
n=1
n6=q

Z 1

−1
∆U

(n)
P (v)Y

(nq)
PK (v, t)dv = S

(q)
K (t)

for − 1 < t < 1, K = 1, 2, 3, 4 and q = 1, 2, · · · ,M, (37)

where ∆U
(q)
P (v) (−1 < v < 1) is a function that gives ∆UP (x1, x2) at the

point (X
(q)
1 (v),X

(q)
2 (v)) of the crack γ(q), and

S
(q)
K (t) =

NX
n=1

CKjRsm
(q)
j

Z
B(n)

{−U (n)I

∂

∂ξs
[Γ
[1]
IR(x1, x2, ξ1, ξ2)]

¯̄̄̄
(ξ1,ξ2)=(X

(q)
1 (t),X

(q)
2 (t))

+ P
(n)
I

∂

∂ξs
[Φ
[1]
IR(x1, x2, ξ1, ξ2)]

¯̄̄̄
(ξ1,ξ2)=(X

(q)
1 (t),X

(q)
2 (t))

}ds(x1, x2). (38)

Note that the system (37) is derived using the boundary conditions in (1)

and (2) and S
(q)
K (t) is regarded as known after (34) is solved.

The system (37) can be solved numerically using the same method for

(28). The unknown functions ∆U
(n)
P (v) are approximated using

∆U
(n)
P (v) '

√
1− v2

JX
j=1

ψ
(nj)
P U (j−1)(v), (39)

where ψ
(nj)
P are constants determined by the system of linear algebraic equa-

tions

−
JX
j=1

jπψ
(qj)
P χ

(q)
PKU

(j−1)(t(i))

+
JX
j=1

MX
n=1
n6=q

ψ(nj)P

Z 1

−1

√
1− v2U (j−1)(v)Y (nq)PK (v, t

(i))dv

= S
(q)
K (t

(i)) for i = 1, 2, · · · , J , K = 1, 2, 3, 4 and q = 1, 2, · · · ,M, (40)

where t(i) = cos([2i− 1]π/[2J ]) as in (31).
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Note that the unknown ψ
(qj)
p in (40) has the same coefficient as φ

(qj)
PS (ξ1, ξ2)

in (31). Thus, in solving (40) for the unknowns ψ
(qj)
P , it is not necessary to set

up and process again the matrix containing the coefficients of the unknowns.

Once the unknowns ψ
(qj)
P are determined, ∆UK(x1, x2) can be approxi-

mately computed using (39) and crack parameters of practical interest, such

as the stress and electric displacement intensity factors, can also be extracted.

5.2 Electrically permeable cracks

If the cracks are electrically permeable then (37) has to be modified by setting

∆U
(n)
4 (v) = 0 and replacing K = 1, 2, 3, 4 by K = k = 1, 2, 3. It follows that

we can solve (40), with ψ
(qj)
4 = 0 and K = k = 1, 2, 3, for ψ

(qj)
1 , ψ

(qj)
2 and

ψ
(qj)
3 in order to determine ∆U

(n)
1 (v), ∆U

(n)
2 (v) and ∆U

(n)
3 (v).

6 Specific problems

In this section, the boundary element procedure together with the numerical

Green’s functions above is applied to solve some specific problems involving

a particular piezoelectric material. The piezoelectric material is such that

it becomes elastically transversely isotropic under the action of the electric

field, with the transverse plane being perpendicular to the electrical poling

direction. The electroelastic properties of such a material are characterized

by 10 independent constants denoted here by A, N, F, C, L, e1, e2, e3, ²1

and ²2.

Problem 1. The exterior boundary of the solution domain R (on the plane

x3 = 0) is taken to be the sides of a square with vertices (h, h), (−h, h),
(−h,−h) and (h,−h). The interior of R contains a single electrically imper-
meable crack which occupies the region −a < x1 < a, x2 = 0, where h and
a are positive constants such that a < h. Here we take the crack tips to be

(a(1), b(1)) = (−a, 0) and (c(1), d(1)) = (a, 0).
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The electrical poling direction is taken to be along the x2 direction with

the constitutive equations given by
σ11
σ22
σ33
σ32
σ31
σ12

 =


A F N 0 0 0
F C F 0 0 0
N F A 0 0 0
0 0 0 L 0 0
0 0 0 0 1

2
(A−N) 0

0 0 0 0 0 L




γ11
γ22
γ33
2γ32
2γ31
2γ12



−


0 e2 0
0 e3 0
0 e2 0
0 0 e1
0 0 0
e1 0 0


 E1
E2
E3

 (41)

and

 D1
D2
D3

 =

 0 0 0 0 0 e1
e2 e3 e2 0 0 0
0 0 0 e1 0 0




γ11
γ22
γ33
2γ32
2γ31
2γ12

+
 ²1 0 0
0 ²2 0
0 0 ²1

 E1
E2
E3

 .
(42)

where 2γkj = ∂uk/∂xj+∂uj/∂xk and Ek = −∂φ/∂xk. Note that γ33 = 0 and
E3 = 0 here since uk and φ are independent of x3.

From (6), (7), (8), (41) and (42), the non-zero coefficients CIjKp are

C1111 = C3333 = A, C1133 = C3311 = N, C2222 = C,

C1122 = C2211 = C2233 = C3322 = F ,

C1212 = C2112 = C2121 = C1221 = C2323 = C3223 = C3232 = C2332 = L,

C1313 = C3113 = C3131 = C1331 =
1

2
(A−N),

C2141 = C1241 = C3243 = C2343 = C4121 = C4112 = C4332 = C4323 = e1,

C1142 = C3342 = C4211 = C4233 = e2,

C2242 = C4222 = e3, C4141 = C4343 = −²1, C4242 = −²2. (43)
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According to (13), the matrix [AKα] can then be obtained by finding

non-trivial solutions of the homogeneous systems
A+ Lτ 2α (F + L)τα 0 (e1 + e2)τα
(F + L)τα L+ Cτ 2α 0 e1 + e3τ

2
α

0 0 1
2
(A−N) + Lτ2α 0

(e1 + e2)τα e1 + e3τ
2
α 0 −²1 − ²2τ 2α



A1a
A2α
A3α
A4α

 =


0
0
0
0

 ,
(44)

where

τ3 = i

r
A−N
2L

(A > N), (45)

and τ1, τ2 and τ4 are solutions (with positive imaginary parts) of the sextic

equation in τ given by

det

 A+ Lτ 2 (F + L)τ (e1 + e2)τ
(F + L)τ L+ Cτ2 e1 + e3τ

2

(e1 + e2)τ e1 + e3τ
2 −²1 − ²2τ2

 = 0. (46)

For α = 3, a non-trivial solution of (44) which forms the third column of

the matrix [AKα] is given by
A13
A23
A33
A43

 =


0
0
1
0

 . (47)

For α = 1, 2 and 4, if (A + Lτ2α)(L + Cτ
2
α) − (F + L)2τ 2α 6= 0, we may take

A3α = 0 and A4α = 1 and find A1α and A2α by solvingµ
A+ Lτ 2α (F + L)τα
(F + L)τα L+ Cτ2α

¶µ
A1a
A2α

¶
= −

µ
(e1 + e2)τα
e1 + e3τ

2
α

¶
, (48)

in order to construct the first, second and fourth columns of the matrix [AKα].

For the crack in the region −a < x1 < a, x2 = 0, we define the crack tip
stress intensity factors K±

I , K
±
II and K

±
III and electric displacement intensity

18



factors K±
IV by

K+
I = lim

x→a+
p
2(x− a)S22(x, 0), K−

I = lim
x→−a−

p
−2(x+ a)S22(x, 0)

K+
II = lim

x→a+
p
2(x− a)S12(x, 0), K−

II = lim
x→−a−

p
−2(x+ a)S12(x, 0),

K+
III = lim

x→a+
p
2(x− a)S32(x, 0), K−

III = lim
x→−a−

p
−2(x+ a)S32(x, 0),

K+
IV = lim

x→a+
p
2(x− a)S42(x, 0), K−

IV = lim
x→−1−

p
−2(x+ a)S42(x, 0). (49)

If ∆U
(1)
P (v) are approximately given by (39) (with n = 1) then we can

compute K±
I , K

±
II , K

±
III and K

±
IV numerically using

K±
I ' sgn(−m(1)

2 )
wP2√
a

JX
j=1

ψ
(1j)
P U (j−1)(±1),

K±
II ' sgn(−m(1)

2 )
wP1√
a

JX
j=1

ψ(1j)P U (j−1)(±1),

K±
III ' sgn(−m(1)

2 )
wP3√
a

JX
j=1

ψ
(1j)
P U (j−1)(±1),

K±
IV ' sgn(−m(1)

2 )
wP4√
a

JX
j=1

ψ
(1j)
P U (j−1)(±1), (50)

where wPK = −Re{(QPK221 + QPK222 + QPK223 + QPK224)/2} and sgn(x)
denotes the sign of x (that is, it is given by −1 and 1 for x < 0 and x > 0
respectively).

A particular solution UK satisfying (9) in the whole of the 0x1x2 plane

with a cut in the region −a < x1 < a, x2 = 0 and the corresponding SKj are
given by

UK = Re{
4X

α=1

AKα(Mα2 +Mα4)(z
2
α − a2)1/2},

SKj = Re{
4X

α=1

LKjα(Mα2 +Mα4)
zα

(z2α − a2)1/2
}, (51)
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where zα = x1 + ταx2 and [MαS] is the inverse matrix of [LK2α]. It may be

verified that with (51) the conditions that the crack −a < x1 < a, x2 = 0 is
traction-free and electrically impermeable are satisfied, that is, SK2 = 0 (for

K = 1, 2, 3 and 4) on the crack. Note that the branch for (z2α − a2)1/2 in
(51) is chosen such that

lim
|zα|→∞

(z2α − a2)1/2
zα

= 1. (52)

For a particular test problem involving the electrically impermeable crack,

(51) is used to generate boundary values of UK and PK on the horizontal

and vertical sides of the square domain R respectively. For mere illustrative

purposes, we use the material constants of a class of PZT4 piezoceramics in

our calculation, that is,

A = 13.9× 1010, N = 7.78× 1010, F = 7.43× 1010,
C = 11.3× 1010, L = 2.56× 1010,
e1 = 13.44, e2 = −6.98, e3 = 13.84,
²1 = 60× 10−10, ²2 = 54.7× 10−10. (53)

The values of A, N, F , C and L above are in N/m2, e1, e2 and e3 are in

C/m2, and ²1 and ²2 are in C/(Vm). These values are taken from Park and

Sun [19].

Each side of the square region −h < x1 < h, −h < x2 < h is discretized
into N0 equal length elements, so that the total number of elements is 4N0.

For a = 1 and h = 2, two sets of numerical calculations are carried out using

the boundary element method. Set A is obtained by using N0 = 10 (40

elements), while Set B by N0 = 40 (160 elements). The numerical Green’s

function for the impermeable crack is calculated using J = 10 in (32).

Numerical values of the elastic displacement (U1 × 1012, U2 × 1012) and
the electric potential U4 ×103 at selected points in the interior of the square
domain are compared with the exact values computed using (51) in Tables 1

and 2 respectively. (Note that U3 = 0 for the particular problem here.) Both
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sets of numerical values for U1, U2 and U4 are reasonably close to the exact

ones. On the whole, the numerical values in Set B are more accurate than

those in Set A and show significant convergence towards the exact values.

Table 1. Numerical and exact values of (U1×1012, U2×1012) at selected interior
points.

Point
(x1, x2)

Set A
(U1, U2)× 1012

Set B
(U1, U2)× 1012

Exact
(U1, U2)× 1012

(1.10, 0.00) (2.5808, 0.0000) (2.6165, 0.0000) (2.6297, 0.0000)
(0.50, 0.80) (4.9294, 15.936) (4.9304, 15.840) (4.9312, 15.807)
(0.10, 0.70) (1.0309, 17.915) (1.0311, 17.815) (1.0312, 17.780)
(1.90, 0.10) (9.2099, 0.82173) (9.3035, 0.74540) (9.3331, 0.74065)
(0.90, 0.20) (5.8260, 8.8090) (5.8412, 8.7584) (5.8655, 8.7773)
(1.05, 1.05) (8.4852, 12.839) (8.4864, 12.746) (8.4887, 12.716)

Table 2. Numerical and exact values of U4 × 103 at selected interior points.

Point
(x1, x2)

Set A
U4 × 103

Set B
U4 × 103

Exact
U4 × 103

(1.10, 0.00) 0.0000 0.0000 0.0000
(0.50, 0.80) 2.6621 2.7870 2.8228
(0.10, 0.70) 6.3796 6.4938 6.5263
(1.90, 0.10) −1.5416 −1.1523 −1.1403
(0.90, 0.20) 3.2009 3.2672 3.3500
(1.05, 1.05) −5.2272 −5.0658 −5.0197

A graphical comparison between the numerical and the exact crack-opening

displacement ∆U
(1)
2 (v) for the only crack here is given in Figure 2 for 0 ≤

v ≤ 1. Similarly, plots of the numerical and the exact electric potential

jump ∆U
(1)
4 (v) across opposite faces of the crack are given in Figure 3.

The graphs of the numerical ∆U
(1)
2 (v) and ∆U

(1)
4 (v) are close to the ex-

act ones. For the particular problem here, note that ∆U
(1)
2 (v) = ∆U

(1)
2 (−v)
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and ∆U
(1)
4 (v) = ∆U

(1)
4 (−v) as well as ∆U (1)1 (v) = 0 and ∆U

(1)
3 (v) = 0 for

−1 ≤ v ≤ 1.

Figure 2. Plots of ∆U
(1)
2 (v) ×1010 over 0 ≤ v ≤ 1.

Figure 3. Plots of ∆U
(1)
4 (v) over 0 ≤ v ≤ 1.

Note that K+
II = K

−
II = 0 and K

+
III = K

−
III = 0 for the particular problem

here. The numerically obtained values of K±
II and K

±
III are not exactly zero
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but extremely small in magnitude of the order 10−15. A comparison of the

numerical and exact values of only K±
I and K

±
IV are given in Table 3. The

numerical values are in good agreement with the exact ones, even for Set A

in which the discretization of the exterior boundary of the solution domain

is relatively crude.

Table 3. Numerical and exact values of the stress and electric displacement in-

tensity factors.

Intensity factor Set A Set B Exact
K+
I 1.00400 1.00102 1.00000

K−
I 1.00400 1.00102 1.00000

K+
IV × 1010 1.02638 1.00627 1.00000

K−
IV × 1010 1.02638 1.00627 1.00000

Problem 2. The geometry of the solution domain and the direction of

the electrical poling are as in Problem 1 above. Here the crack is, however,

electrically permeable.

Take

UK = Re{
4X

α=1

AKαMα1(1 + (z
2
α − a2)1/2)},

SKj = Re{
4X

α=1

LKjαMα1
zα

(z2α − a2)1/2
}, (54)

as a particular electroelastic solution of (9) in the whole of the 0x1x2 plane

with a cut in the region −a < x1 < a, x2 = 0.
For the particular values of the constants A, N, F, C, L, e1, e2, e3, ²1

and ²2 used in Problem 1, as given in (53), the matrices [AKα] and [MαS] are

such that

Im{
4X

α=1

A4αMα1} = 0. (55)
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Because of (55), the electric potential U4 given by (54) satisfies

lim
ε→0+

[U4(x1, ε)− U4(x1,−ε)] = 0 for − a < x1 < a, (56)

With the material constants in (53), the functions UK and SKj in (54)

satisfy the traction-free and electrically permeable conditions (S12 = S22 =

S32 = 0 and ∆U
(1)
4 = 0) on the crack −a < x1 < a, x2 = 0. For a particular

test problem to check the boundary element procedure and the numerical

Green’s function for electrically permeable cracks, we use (54) together with

(53) to generate boundary values of UK and PK on the horizontal and vertical

sides of the square domain R respectively.

Table 4. Numerical and exact values of (U1×1012, U2×1012) at selected interior
points.

Point
(x1, x2)

Set A
(U1, U2)× 1012

Set B
(U1, U2)× 1012

Exact
(U1, U2)× 1012

(1.10, 0.00) (0.00000,−10.926) (0.0000,−11.068) (0.0000,−11.111)
(0.50, 0.80) (32.931,−8.0315) (32.883,−8.0920) (32.893,−8.1062)
(0.10, 0.70) (29.721,−7.5773) (29.680,−7.5899) (29.691,−7.5928)
(1.90, 0.10) (5.7181,−19.721) (4.3235,−19.796) (4.3217,−19.899)
(0.90, 0.20) (13.742,−7.1452) (13.712,−7.2682) (13.688,−7.2885)
(1.05, 1.05) (41.822,−11.510) (41.739,−11.623) (41.746,−11.653)

To obtain some numerical results, we take a = 1 and h = 2, divide each

side of the square domain into N0 of equal length and carry out two sets of

numerical calculations (Sets A and B as in Problem 1) using the boundary

element method. The numerical Green’s function for the permeable crack

is computed using J = 10 in (32). In Tables 4 and 5, numerical values of

U1 × 1012, U2 × 1012 and U4 at selected points in the interior of the solution
domain are compared with the exact values computed using (54). For the

particular problem here, K+
II and K

−
II are the only intensity factors which
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have non-zero values. Table 6 compares the numerical and the exact values

of K+
II and K

−
II . The numerical values of K

+
II and K

−
II are in good agreement

with the exact ones for both Sets A and B.

Table 5. Numerical and exact values of U4 at selected interior points.

Point
(x1, x2)

Set A
U4 × 102

Set B
U4 × 102

Exact
U4 × 102

(1.10, 0.00) 2.7061 2.7330 2.7425
(0.50, 0.80) 2.8303 2.8399 2.8435
(0.10, 0.70) 2.0639 2.0659 2.0666
(1.90, 0.10) 4.8273 4.9076 4.9262
(0.90, 0.20) 2.8701 2.8906 2.9028
(1.05, 1.05) 3.8568 3.8776 3.8845

Table 6. Numerical and exact values of the stress intensity factors.

Intensity factor Set A Set B Exact
K+
II 1.00155 0.99962 1.00000

K−
II 1.00155 0.99962 1.00000

Problem 3. Let us take the solution domain R to be −h < x1 < h,

−h < x2 < h, with three parallel electrically impermeable cracks γ(1), γ(2)

and γ(3), where h are given positive constants. The crack γ(1) lies in the

region −a < x1 < a, x2 = 0, γ(2) in −a < x1 < a, x2 = d, and γ(3) in

−a < x1 < a, x2 = −d, where a and d are given positive constants (with
a < h).

The boundary conditions on the exterior boundary of R are given by

P1 = ±S0
P2 = ±T0
P3 = 0
P4 = ±D0

 for − h < x1 < h on x2 = ±h,
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P1 = 0
P2 = ±S0
P3 = 0
P4 = 0

 for − h < x2 < h on x1 = ±h, (57)

where S0, T0 and D0 are given positive constants.

The non-dimensionalized mode I and mode II stress intensity factors and

the non-dimensionalized electric displacement intensity factor at the tip (a, 0)

of the crack γ(1) are given by K+
I /(T0

√
a), K+

II/(S0
√
a) and K+

IV /(D0
√
a)

respectively. Note that the mode III stress intensity factor is zero here.

Plots of K+
I /(T0

√
a), K+

II/(S0
√
a) andK+

IV /(D0
√
a) against d/a are given

in Han and Wang [16] for h/a→∞ using the material constants

A = 12.6× 1010, N = 5.5× 1010, F = 5.3× 1010,
C = 11.7× 1010, L = 3.53× 1010,
e1 = 17.0, e2 = −6.5, e3 = 23.3,
²1 = 151× 10−10, ²2 = 130× 10−10, (58)

where the values of A, N, F , C and L are in N/m2, e1, e2 and e3 are in

C/m2, and ²1 and ²2 are in C/(Vm). In Han and Wang [16], planar cracks

are modeled as continuous distributions of dislocations with density functions

to be determined using a numerical procedure.

We employ the boundary element method here to compute K+
I /(T0

√
a),

K+
II/(S0

√
a) and K+

IV /(D0
√
a). The exterior boundary of the region R is

discretized into 80 boundary elements. To compute the numerical Green’s

function for the impermeable crack, we use at least J = 10 in (32). A larger

value of J is needed if the non-dimensionalized distance d/a separating the

cracks is smaller. For the purpose of comparing the normalized intensity

factors here with those in Han and Wang [16], we use the material constants

in (58) and take h/a = 30, S0/T0 = 1 and D0/T0 = 10−10 C/N. In Figure

4, we compare plots of the non-dimensionalized intensity factors against d/a

with those extracted from Han and Wang [16] for the corresponding case in
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which h/a→∞. The two sets of values appear to agree reasonably well with
each other.

Figure 4. Plots of K+
I /(T0

√
a), K+

II/(S0
√
a) and K+

IV /(D0
√
a) against d/a.

Problem 4. If the electrical poling is taken to be along the x3 direction,

the constitutive equations are given by
σ11
σ22
σ33
σ32
σ31
σ12

 =


A N F 0 0 0
N A F 0 0 0
F F C 0 0 0
0 0 0 L 0 0
0 0 0 0 L 0
0 0 0 0 0 1

2
(A−N)




γ11
γ22
γ33
2γ32
2γ31
2γ12



−


0 0 e2
0 0 e2
0 0 e3
0 e1 0
e1 0 0
0 0 0


 E1
E2
E3

 , (59)
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and

 D1
D2
D3

 =

 0 0 0 0 e1 0
0 0 0 e1 0 0
e2 e2 e3 0 0 0




γ11
γ22
γ33
2γ32
2γ31
2γ12

+
 ²1 0 0
0 ²1 0
0 0 ²2

 E1
E2
E3

 .
(60)

It follows that the non-zero coefficients CIjKp are

C1111 = C2222 = A, C1122 = C2211 = N, C3333 = C,

C1133 = C3311 = C2233 = C3322 = F ,

C1313 = C3113 = C3131 = C1331 = C2323 = C3223 = C3232 = C2332 = L,

C1212 = C2112 = C2121 = C1221 =
1

2
(A−N),

C3141 = C1341 = C2342 = C3242 = C4131 = C4113 = C4223 = C4232 = e1,

C1143 = C2243 = C4311 = C4322 = e2,

C3343 = C4333 = e3, C4141 = C4242 = −²1, C4343 = −²2. (61)

The homogeneous system of linear algebraic equations for working out

AKα is given by
A+ 1

2
(A−N)τ2α (N + 1

2
(A−N))τα 0 0

(N + 1
2
(A−N))τα 1

2
(A−N) +Aτ2α 0 0

0 0 L+ Lτ 2α e1 + e1τ
2
α

0 0 e1 + e1τ
2
α −²1 − ²1τ 2α



A1α
A2α
A3α
A4α



=


0
0
0
0

 . (62)

If we use (62), we find that we cannot construct [AKα] that is invertible.

To overcome this minor difficulty, a relatively small amount of anisotropy is

introduced into the equations governing u1 and u2. Specifically, we replace
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C1111 = A in (61) by C1111 = A+ ε, where ε is a selected real number whose

magnitude is very small compared to A. It follows that we supercede (62) by
A+ ε+ 1

2
(A−N)τ2α (N + 1

2
(A−N))τα 0 0

(N + 1
2
(A−N))τα 1

2
(A−N) +Aτ 2α 0 0

0 0 L+ Lτ2α e1 + e1τ
2
α

0 0 e1 + e1τ
2
α −²1 − ²1τ2α



A1α
A2α
A3α
A4α



=


0
0
0
0

 . (63)

We can take τ3 = τ4 = i and τ1 and τ2 are two distinct solutions with

positive imaginary parts of the quartic equation

det

µ
A+ ε+ 1

2
(A−N)τ2 (N + 1

2
(A−N))τ

(N + 1
2
(A−N))τ 1

2
(A−N) +Aτ 2

¶
= 0. (64)

Note that (64) cannot yield two distinct solutions with positive imaginary

parts if ε is zero.

From (62), we find that AKa may be chosen to be

A1α = −
(N + 1

2
(A−N))τα

A+ ε+ 1
2
(A−N)τ2α

(δα1 + δα2)

A2α = δα1 + δα2, A3α = δα3, A4α = δα4. (65)

The matrix [AKα] as constructed in (65) is invertible if τ1 6= τ2.

For a particular problem in which the electrical poling is along the x3

direction, let us take the solution domain R to be −h < x1 < h,−h < x2 < h,
with two collinear permeable crack lying in the regions −b < x1 < −a, x2 = 0,
and a < x1 < b, x2 = 0,where a, b and h are positive constants such that

a < b < h. The boundary conditions on the exterior boundary of R are given

by

P1 = 0
P2 = 0
P3 = ±S0
P4 = ±D0

 for − h < x1 < h on x2 = ±h,
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P1 = 0
P2 = 0
P3 = 0
P4 = 0

 for − h < x2 < h on x1 = ±h, (66)

where S0 and D0 are non-negative constants.

Let K inner
III and Kouter

III respectively denote the mode III stress intensity

factor at the inner and outer tips of the collinear cracks. The crack energy

release rates at the inner and outer tips are then respectively given by

Ginner =
π

2L
(K inner

III )
2 and Gouter =

π

2L
(Kouter

III )
2. (67)

In Li [18], it is analytically given that

(
4LGinner

π(b− a)S20
,
4LGouter

π(b− a)S20
)→ (

2[b2λ− a2]2
a(b− a)(b2 − a2) ,

2b3[1− λ]2

(b− a)(b2 − a2))
as 2h/(b− a)→∞, (68)

where

λ =

Z π/2

0

[1− (1− (a/b)2) sin2 t]1/2dtZ π/2

0

[1− (1− (a/b)2) sin2 t]−1/2dt
. (69)

Using the material constants in (58) and taking 2h/(b− a) = 20, we use
the boundary element method with the Green’s function for the permeable

cracks to compute the crack energy release rates Ginner and Gouter according

to (67) (after calculating numerically the mode III stress intensity factors). In

perturbing the elastic modulus C1111 to construct an invertible matrix [AKα],

we choose ε = 102, that is, we take C1111 to be given by (12.6 + 10
−8)× 1010

N/m2 instead of 12.6×108 N/m2. The outer boundary of the solution domain
is discretized into 160 elements. The numerical Green’s function is calculated

using at least J = 10 in (32). If the inner tips of the cracks are close to each

other then J = 30 is used. If the outer tips are near the vertical sides, we

use J = 20 and add another 40 elements on each of the vertical sides.
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Figure 5. Plots of 4LGinnerI /(π(b− a)S20), against 2a/(b− a).

Figure 6. Plots of 4LGouterI /(π(b− a)S20), against 2a/(b− a).
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Plots of the non-dimensionalized crack energy release rates 4LGinner/(π(b−
a)S20) and 4LG

outer/(π(b− a)S20) against 2a/(b− a) (for 0.50 ≤ 2a/(b− a) ≤
17.50) are given in Figures 5 and 6 respectively. In the figures, we also

compare the numerical crack energy release rates with the values calculated

from (68) (given by Li [18] for 2h/(b − a) → ∞). The numerical crack en-
ergy release rates are found to agree very well with (68) for small values of

2a/(b − a). This is expected as (68) is valid only for 2h/(b − a) → ∞ (that

is, for an infinite piezoelectric material).

Note that the crack tip energy release rate G for the corresponding prob-

lem involving only a single crack of length b − a in an infinite piezoelectric
material is given by 4LG/(π(b − a)S20) = 1. Thus, it is not surprising that
4LGinner/(π(b−a)S20) and 4LGouter/(π(b−a)S20) computed using the bound-
ary element method are quite close to 1 when the inner crack tips are several

crack lengths apart and the outer tips are not yet so close to the vertical

sides of the solution domain. As 2a/(b − a) approaches 18 (that is, as the
outer crack tips approach the vertical sides of the solution domain), the crack

energy release rates calculated using the boundary element method begin to

deviate more significantly from (68). As expected, as is obvious in Figure

6, 4LGouter/(π(b− a)S20) shows a significant increase in magnitude when the
outer crack tips interact strongly with the vertical sides of the solution do-

main.

For the particular problem under consideration here, it is known theoret-

ically that 4LGinner/(π(b − a)S20) for 2a/(b − a) = ξ (where ξ is a positive

real number such that 0 < ξ < 18) is equal to 4LGouter/(π(b − a)S20) for
2a/(b−a) = 18−ξ. Also, 4LGouter/(π(b−a)S20) for 2a/(b−a) = ξ is equal to

4LGinner/(π(b− a)S20) for 2b/(b− a) = 18− ξ. In Figures 5 and 6, the graphs

for the numerical values of 4LGinner/(π(b− a)S20) and 4LGouter/(π(b− a)S20)
as obtained from the boundary element method reflect this theoretical ob-

servation. For example, we find that the values of 4LGinner/(π(b − a)S20)
for 2a/(b − a) = 0.50 and 4LGouter/(π(b − a)S20) for 2a/(b − a) = 17.50
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are respectively given by 1.2425 and 1.2407 (which differ from each other

by less than 0.2%), and 4LGouter/(π(b − a)S20) for 2a/(b − a) = 0.50 and

4LGinner/(π(b−a)S20) for 2a/(b−a) = 17.50 are respectively given by 1.1024
and 1.1021 (less than 0.03% difference).

7 Summary

Green’s functions are constructed numerically for multiple arbitrarily located

planar cracks in an infinite electroelastic space. The cracks are traction free

and electrically either permeable or impermeable. We apply the Green’s

functions to derive a simple boundary element method for the numerical

solution of some plane electroelastic crack problems involving finite solution

domains. As the Green’s functions satisfy the boundary conditions on the

cracks, the boundary element procedure requires only the exterior boundary

of the solution domain to be discretized into boundary elements, that is, no

discretization of the crack faces is needed.

To check the validity of the numerical Green’s functions and the bound-

ary element method, some specific electroelastic crack problems are solved.

Numerical values obtained for the relevant intensity factors and the crack

energy release rate at the crack tips are in good agreement with the values

computed from known solutions in the literature.
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