Numerical Green's functions for some electroelastic crack problems

L. Athanasius, W. T. Ang* and I. Sridhar School of Mechanical and Aerospace Engineering
Nanyang Technological University
Republic of Singapore

Abstract

A plane electroelastic problem involving planar cracks in a piezoelectric body is considered. The deformation of the body is assumed to be independent of time and one of the Cartesian coordinates. The cracks are traction free and are electrically either permeable or impermeable. Numerical Green's functions which satisfy the boundary conditions on the cracks are derived using the hypersingular integral approach and applied to obtain a boundary integral solution for the electroelastic crack problem considered here. As the conditions on the cracks are built into the Green's functions, the boundary integral solution does not contain integrals over the cracks. It is used to derive a boundary element procedure for computing the crack tip stress and electrical displacement intensity factors.

Keywords: numerical Green's function, boundary element method, cracks, piezoelectric solid

This is a preprint. The article has been accepted for publication in Engineering Analysis with Boundary Elements. When published, it can be accessed at: http://dx.doi.org/10.1016/j.enganabound.2009.01.002

[^0]
1 Introduction

A well established boundary element approach for solving crack problems is to use special Green's functions (modified fundamental solutions) chosen to satisfy the boundary conditions on the cracks. With an appropriate Green's function, the boundary integral formulation of the crack problem under consideration does not require integration over the crack faces. Consequently, difficulties associated with modeling the crack faces, such as singular stress at the crack tips and degenerate systems of linear algebraic equations, may be neatly avoided.

Such an approach for solving crack problems numerically was pioneered by Snyder and Cruse [22] when they derived an analytical Green's function for a single planar crack in an orthotropic elastic space of infinite extent. Subsequently, Clements and Haselgrove [10] extended the work in [22] to a general anisotropic elastic space, and Ang and Clements [4] further modified the Green's function to include the case of a fully closed planar crack. Special Green's functions for a planar crack and an arc crack in an isotropic elastic space were derived by Ang in [2] and [3] respectively.

In general, it is difficult (if not impossible) to derive Green's functions analytically for cracks with arbitrary geometries, configurations and boundary conditions. To solve a wider range of crack problems, Telles, Castor and Guimarães [23] proposed to derive the required Green's function numerically based on the hypersingular integral formulation of a suitable crack problem (see also Guimarães and Telles [15]). (For some details on the hypersingular approach, one may refer to, for example, Chen and Hong [8].) More recently, Ang and Telles [6] extended the numerical Green's function approach in [23] to solve an elastostatic problem involving multiple interacting planar cracks in an anisotropic body.

During the last ten years or so, there has been considerable interest in the development of the boundary element method for fracture analysis of piezoelectric materials. Using the Lekhnitskii's formalism and dislocation
modeling, Rajapakse and Xu [20] obtained an analytical Green's function for a single traction free and electrically impermeable crack in a piezoelectric space. More recently, Garcia-Sanchez, Saez and Dominguez [13] and Groh and Kuna [14] presented boundary element procedures based on boundary integral equations derived by using fundamental solution which does not satisfy the boundary conditions on the crack faces. In [14], opposite crack faces were modeled by using the so called subdomain technique and quarterpoint elements were employed to deal with the singular behaviors of the stress and electric displacement at the crack tips, while a dual (mixed) boundary integral formulation was used in [13] with the conditions on the cracks treated by a differentiated form of the usual boundary integral equations. Earlier works on boundary element methods for electroelastic crack problems include Xu and Rajapakse [25], Ding, Wang and Chen [11] and Gao and Fan [12].

In the present paper, using the hypersingular integral approach, we derive numerical Green's functions for an arbitrary number of arbitrarily located planar cracks in an infinite piezoelectric space. The Green's functions are chosen to satisfy particular electroelastic boundary conditions on the cracks. Specifically, the boundary conditions are such that the cracks are traction free and electrically either permeable or impermeable. The analysis in Ang and Telles [6], based on the Stroh's formalism for anisotropic elasticity, serves as a useful guide here for the derivation of the numerical Green's functions, as piezoelectric materials exhibit anisotropic behaviors when they deform. With the use of the special Green's functions, a boundary integral solution which does not require integration over the crack faces is obtained for a plane electroelastic problem involving planar cracks in a piezoelectric body. A simple boundary element procedure is outlined for the numerical solution of the crack problem. The displacement and electric potential jumps across opposite crack faces as well as the crack tip stress and electric displacement intensity factors may be readily and accurately computed once the elastic displacements, tractions, electric potential and electric displacement are all
known on the boundary. To check the validity of the numerical Green's functions, the boundary element procedure is applied to solve some specific problems.

Figure 1. A geometrical sketch of the problem.

2 An electroelastic crack problem

With reference to a Cartesian co-ordinate frame denoted by $0 x_{1} x_{2} x_{3}$, consider a homogeneous piezoelectric solid which contains M arbitrarily orientated planar cracks. The geometries of the solid and the cracks do not change along the x_{3} direction. The interior of the solid is denoted by R, the exterior boundary by B and the k-th crack by $\gamma^{(k)}$. It is assumed that the cracks do not intersect with one another or the exterior boundary B. On the plane $x_{3}=0$, the boundary B appears as a simple closed curve and the crack $\gamma^{(k)}$ as a straight cut with tips $\left(a^{(k)}, b^{(k)}\right)$ and $\left(c^{(k)}, d^{(k)}\right)$. Refer to Figure 1. For the purpose of the present paper, $\gamma^{(k)}$ is taken to be the directed straight line
segment from $\left(a^{(k)}, b^{(k)}\right)$ to $\left(c^{(k)}, d^{(k)}\right)$.
At each and every point on the boundary B, either the displacements or the tractions and either the electric potential or the electric flux are prescribed. The prescribed conditions on B are independent of the spatial coordinate x_{3} and time t and are such that the cracks become traction free. For the electrical conditions on the cracks, we consider separately two extreme cases: (a) electrically impermeable cracks and (b) electrically permeable cracks. Some discussions on electrically impermeable cracks versus permeable ones may be found in, for example, Shindo, Tanaka and Narita [21] and Wang and Mai [24].

Mathematically, the boundary conditions on the cracks are given by

$$
\begin{equation*}
\sigma_{i j}\left(x_{1}, x_{2}\right) m_{j}^{(k)} \rightarrow 0 \text { as }\left(x_{1}, x_{2}\right) \rightarrow\left(y_{1}, y_{2}\right) \in \gamma^{(k)} \text { for } k=1,2, \cdots, M \tag{1}
\end{equation*}
$$

and either

$$
\begin{align*}
D_{j}\left(x_{1}, x_{2}\right) m_{j}^{(k)} \rightarrow & 0 \text { as }\left(x_{1}, x_{2}\right) \rightarrow\left(y_{1}, y_{2}\right) \in \gamma^{(k)} \text { for } k=1,2, \cdots, M \\
& \text { if the cracks are electrically impermeable, } \tag{2}
\end{align*}
$$

or

$$
\begin{align*}
& \Delta \phi\left(x_{1}, x_{2}\right) \rightarrow 0 \text { and } \Delta D\left(x_{1}, x_{2}\right) \rightarrow 0 \text { as }\left(x_{1}, x_{2}\right) \rightarrow\left(y_{1}, y_{2}\right) \in \gamma^{(k)} \\
& \quad \text { for } k=1,2, \cdots, M \text { if the cracks are electrically permeable, } \tag{3}
\end{align*}
$$

where $\sigma_{i j}$ and D_{i} are respectively the stresses and the electric displacements, $\left[m_{1}^{(k)}, m_{2}^{(k)}, m_{3}^{(k)}\right]=\left[\left(d^{(k)}-b^{(k)}\right) / \ell^{(k)},\left(a^{(k)}-c^{(k)}\right) / \ell^{(k)}, 0\right]$ is a unit normal vector to the crack $\gamma^{(k)}, \ell^{(k)}$ is the length of $\gamma^{(k)}$ (that is, $\ell^{(k)}=$ $\left.\sqrt{\left(d^{(k)}-b^{(k)}\right)^{2}+\left(a^{(k)}-c^{(k)}\right)^{2}}\right)$ and $\Delta \phi$ is the jump in the electric potential ϕ across opposite crack faces as defined by

$$
\begin{gather*}
\Delta \phi\left(x_{1}, x_{2}\right)=\lim _{\varepsilon \rightarrow 0}\left[\phi\left(x_{1}-|\varepsilon| m_{1}^{(k)}, x_{2}-|\varepsilon| m_{2}^{(k)}\right)\right. \\
\left.-\phi\left(x_{1}+|\varepsilon| m_{1}^{(k)}, x_{2}+|\varepsilon| m_{2}^{(k)}\right)\right] \\
\text { for }\left(x_{1}, x_{2}\right) \in \gamma^{(k)}, \tag{4}
\end{gather*}
$$

and ΔD is defined by

$$
\begin{gather*}
\Delta D\left(x_{1}, x_{2}\right)=\lim _{\varepsilon \rightarrow 0}\left[D_{j}\left(x_{1}-|\varepsilon| m_{1}^{(k)}, x_{2}-|\varepsilon| m_{2}^{(k)}\right)\right. \\
\left.-D_{j}\left(x_{1}+|\varepsilon| m_{1}^{(k)}, x_{2}+|\varepsilon| m_{2}^{(k)}\right)\right] m_{j}^{(k)} \\
\text { for }\left(x_{1}, x_{2}\right) \in \gamma^{(k)} . \tag{5}
\end{gather*}
$$

To allow for antiplane deformations (that is, the case in which $u_{3} \neq 0$), lowercase latin subscripts take the values of 1,2 and 3 . The usual Einsteinian convention of summing a repeated index is assumed for lowercase latin subscripts. In general, the summation over a repeated lowercase latin subscript (such as the subscript k in (6) and (7)) runs from 1 to 3 . Nevertheless, for some cases, the summation may run from 1 to 2 only. For example, the summation over j in (1) and (2) is from 1 to 2 only as $m_{3}^{(k)}=0$, and so is the summation over j and p in (6) and (7) since the displacements u_{k} are independent of x_{3}.

The problem is to determine the displacements u_{k} and the electric potential ϕ throughout the cracked piezoelectric solid.

3 Equations of electroelasticity

The governing equations for the displacements u_{k} and the electric potential ϕ in the piezoelectric solid are given by

$$
\begin{gather*}
c_{i j k p} \frac{\partial^{2} u_{k}}{\partial x_{j} \partial x_{p}}+e_{p i j} \frac{\partial^{2} \phi}{\partial x_{j} \partial x_{p}}=0 \\
e_{j k p} \frac{\partial^{2} u_{k}}{\partial x_{j} \partial x_{p}}-\kappa_{j p} \frac{\partial^{2} \phi}{\partial x_{j} \partial x_{p}}=0 \tag{6}
\end{gather*}
$$

where $c_{i j k p}, e_{p i j}$ and $\kappa_{j p}$ are the constant elastic moduli, piezoelectric coefficients and dielectric coefficients respectively.

The constitutive equations relating $\left(\sigma_{i j}, D_{j}\right)$ and $\left(u_{k}, \phi\right)$ are given by

$$
\begin{align*}
\sigma_{i j} & =c_{i j k p} \frac{\partial u_{k}}{\partial x_{p}}+e_{p i j} \frac{\partial \phi}{\partial x_{p}}, \\
D_{j} & =e_{j k p} \frac{\partial u_{k}}{\partial x_{p}}-\kappa_{j p} \frac{\partial \phi}{\partial x_{p}} . \tag{7}
\end{align*}
$$

Following closely the approach of Barnett and Lothe [7], we let

$$
\begin{gather*}
U_{J}= \begin{cases}u_{j} & \text { for } J=j=1,2,3, \\
\phi & \text { for } J=4,\end{cases} \\
S_{I j}= \begin{cases}\sigma_{i j} & \text { for } I=i=1,2,3, \\
D_{j} & \text { for } I=4,\end{cases} \\
C_{I j K p}=\left\{\begin{aligned}
c_{i j k p} & \text { for } I=i=1,2,3 \text { and } K=k=1,2,3, \\
e_{p i j} & \text { for } I=i=1,2,3 \text { and } K=4, \\
e_{j k p} & \text { for } I=4 \text { and } K=k=1,2,3, \\
-\kappa_{j p} & \text { for } I=4 \text { and } K=4,
\end{aligned}\right. \tag{8}
\end{gather*}
$$

so that (6) and (7) may be written more compactly as

$$
\begin{equation*}
C_{I j K p} \frac{\partial^{2} U_{K}}{\partial x_{j} \partial x_{p}}=0 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{I j}=C_{I j K p} \frac{\partial U_{K}}{\partial x_{p}} \tag{10}
\end{equation*}
$$

respectively. Note that uppercase latin subscripts have values 1, 2, 3 and 4. Summation is also implied for repeated uppercase latin subscripts running from 1 to 4 .

The general solution of (9) can be written as

$$
\begin{equation*}
U_{K}\left(x_{1}, x_{2}\right)=\operatorname{Re}\left\{\sum_{\alpha=1}^{4} A_{K \alpha} f_{\alpha}\left(z_{\alpha}\right)\right\}, \tag{11}
\end{equation*}
$$

where Re denotes the real part of a complex number, f_{α} are analytic functions of $z_{\alpha}=x_{1}+\tau_{\alpha} x_{2}$ in the domain of interest, τ_{α} are the solutions, with positive imaginary parts, of the 8 -th order polynomial (characteristic) equation

$$
\begin{equation*}
\operatorname{det}\left[C_{I 1 K 1}+\left(C_{I 1 K 2}+C_{I 2 K 1}\right) \tau+C_{I 2 K 2} \tau^{2}\right]=0 \tag{12}
\end{equation*}
$$

and $A_{K \alpha}$ are solutions of the homogeneous system

$$
\begin{equation*}
\left[C_{I 1 K 1}+\left(C_{I 1 K 2}+C_{I 2 K 1}\right) \tau_{\alpha}+C_{I 2 K 2} \tau_{\alpha}^{2}\right] A_{K \alpha}=0 \tag{13}
\end{equation*}
$$

The characteristic equation (12) admits solutions which occur in complex conjugate pairs (Barnett and Lothe [7]). It is assumed that we can find τ_{1}, τ_{2}, τ_{3} and τ_{4} such that an invertible 4×4 matrix $\left[A_{K \alpha}\right]$ can be constructed from (13).

The generalized stress functions $S_{I j}$ corresponding to (11) are given by

$$
\begin{equation*}
S_{I j}=\operatorname{Re}\left\{\sum_{\alpha=1}^{4} L_{I j \alpha} f_{\alpha}^{\prime}\left(z_{\alpha}\right)\right\}, \tag{14}
\end{equation*}
$$

where the prime denotes differentiation with respect to the relevant argument and

$$
\begin{equation*}
L_{I j \alpha}=\left(C_{I j K 1}+\tau_{\alpha} C_{I j K 2}\right) A_{K \alpha} . \tag{15}
\end{equation*}
$$

4 Numerical Green's functions

For the crack problem stated in Section 2, we seek to derive a function $\Phi_{K S}\left(x_{1}, x_{2} ; \xi_{1}, \xi_{2}\right)$ satisfying the system of partial differential equations

$$
\begin{equation*}
C_{I j K p} \frac{\partial^{2} \Phi_{K S}}{\partial x_{j} \partial x_{p}}=\delta_{I S} \delta\left(x_{1}-\xi_{1}, x_{2}-\xi_{2}\right) \tag{16}
\end{equation*}
$$

and the conditions on the cracks given by either

$$
\begin{align*}
& \Psi_{I j S}\left(x_{1}, x_{2} ; \xi_{1}, \xi_{2}\right) m_{j}^{(k)} \rightarrow 0 \\
& \text { as }\left(x_{1}, x_{2}\right) \rightarrow\left(y_{1}, y_{2}\right) \in \gamma^{(k)} \text { for } I=1,2,3,4 \text { and } k=1,2, \cdots, M \tag{17}
\end{align*}
$$

if the cracks are electrically impermeable,
or

$$
\begin{align*}
& \Psi_{I j S}\left(x_{1}, x_{2} ; \xi_{1}, \xi_{2}\right) m_{j}^{(k)} \rightarrow 0, \Delta \Phi_{4 S}\left(x_{1}, x_{2} ; \xi_{1}, \xi_{2}\right) \rightarrow 0 \\
& \text { and } \Delta \Psi_{S}\left(x_{1}, x_{2} ; \xi_{1}, \xi_{2}\right) \rightarrow 0 \text { as }\left(x_{1}, x_{2}\right) \rightarrow\left(y_{1}, y_{2}\right) \in \gamma^{(k)} \\
& \text { for } I=i=1,2,3 \text { and } k=1,2, \cdots, M \tag{18}
\end{align*}
$$

if the cracks are electrically permeable,
where $\delta_{I S}$ is the Kronecker-delta, δ is the Dirac-delta function, $\Psi_{I j S}$ and $\Delta \Psi_{S}$ are defined by

$$
\begin{align*}
\Psi_{I j S}\left(x_{1}, x_{2} ; \xi_{1}, \xi_{2}\right)= & C_{I j R p} \frac{\partial \Phi_{R S}}{\partial x_{p}} \\
\Delta \Psi_{S}\left(x_{1}, x_{2} ; \xi_{1}, \xi_{2}\right)= & \lim _{\varepsilon \rightarrow 0}\left[\Psi_{4 j S}\left(x_{1}-|\varepsilon| m_{1}^{(k)}, x_{2}-|\varepsilon| m_{2}^{(k)} ; \xi_{1}, \xi_{2}\right)\right. \\
- & \left.\Psi_{4 j S}\left(x_{1}+|\varepsilon| m_{1}^{(k)}, x_{2}+|\varepsilon| m_{2}^{(k)} ; \xi_{1}, \xi_{2}\right)\right] m_{j}^{(k)} \\
& \quad \text { for }\left(x_{1}, x_{2}\right) \in \gamma^{(k)}, \tag{19}
\end{align*}
$$

and $\Delta \Phi_{4 S}$ denotes the jump of $\Phi_{4 S}$ across opposite crack faces as defined in (26) below.

Let $\Phi_{R S}\left(x_{1}, x_{2} ; \xi_{1}, \xi_{2}\right)$ be given by

$$
\begin{align*}
\Phi_{R S}\left(x_{1}, x_{2} ; \xi_{1}, \xi_{2}\right) & =\Phi_{R S}^{[1]}\left(x_{1}, x_{2} ; \xi_{1}, \xi_{2}\right)+\Phi_{R S}^{[2]}\left(x_{1}, x_{2} ; \xi_{1}, \xi_{2}\right), \tag{20}\\
\Phi_{R S}^{[1]}\left(x_{1}, x ; \xi_{1}, \xi_{2}\right) & =\frac{1}{2 \pi} \operatorname{Re} \sum_{\alpha=1}^{4}\left\{A_{R \alpha} N_{\alpha J} \ln \left(\left[x_{1}-\xi_{1}\right]+\tau_{\alpha}\left[x_{2}-\xi_{2}\right]\right)\right\} d_{J S} \tag{21}
\end{align*}
$$

where $\left[N_{\alpha J}\right]$ is the inverse of $\left[A_{K \alpha}\right], d_{J S}$ are real constants defined by

$$
\begin{equation*}
\operatorname{Im}\left\{\sum_{\alpha=1}^{4} L_{I 2 \alpha} N_{\alpha R}\right\} d_{R J}=\delta_{I J}, \tag{22}
\end{equation*}
$$

Note that Im denotes the imaginary part of a complex number.
The function $\Phi_{R S}^{[1]}\left(x_{1}, x_{2} ; \xi_{1}, \xi_{2}\right)$ in (21) is a solution of (16) (see, for example, Clements [9]). It follows that $\Phi_{R S}^{[2]}\left(x_{1}, x_{2} ; \xi_{1}, \xi_{2}\right)$ is required to satisfy

$$
\begin{equation*}
c_{I j K p} \frac{\partial^{2} \Phi_{K S}^{[2]}}{\partial x_{j} \partial x_{p}}=0 \tag{23}
\end{equation*}
$$

everywhere in the infinite piezoelectric space with the cracks $\gamma^{(1)}, \gamma^{(2)}, \cdots$, $\gamma^{(M-1)}$ and $\gamma^{(M)}$.

Guided by the analysis in Ang and Park [5] and Ang and Telles [6], we take
$\Phi_{R S}^{[2]}\left(x_{1}, x_{2} ; \xi_{1}, \xi_{2}\right)=\sum_{k=1}^{M} \int_{\gamma^{(k)}} \Delta \Phi_{P S}\left(y_{1}, y_{2} ; \xi_{1}, \xi_{2}\right) \Lambda_{P R}^{(k)}\left(x_{1}, x_{2} ; y_{1}, y_{2}\right) d s\left(y_{1}, y_{2}\right)$,
where

$$
\begin{align*}
\Lambda_{I S}^{(k)}\left(x_{1}, x_{2} ; y_{1}, y_{2}\right) & =-\frac{1}{2 \pi} \operatorname{Re} \sum_{\alpha=1}^{4}\left\{\frac{T_{I j \alpha S} m_{j}^{(k)}}{\left[x_{1}-y_{1}\right]+\tau_{\alpha}\left[x_{2}-y_{2}\right]}\right\}, \\
T_{I j \alpha S} & =L_{I j \alpha} N_{\alpha R} d_{R S}, \tag{25}
\end{align*}
$$

and

$$
\begin{gather*}
\Delta \Phi_{P S}\left(x_{1}, x_{2} ; \xi_{1}, \xi_{2}\right)=\lim _{\varepsilon \rightarrow 0}\left[\Phi_{P S}\left(x_{1}-|\varepsilon| m_{1}^{(k)}, x_{2}-|\varepsilon| m_{2}^{(k)} ; \xi_{1}, \xi_{2}\right)\right. \\
\left.-\Phi_{P S}\left(x_{1}+|\varepsilon| m_{1}^{(k)}, x_{2}+|\varepsilon| m_{2}^{(k)} ; \xi_{1}, \xi_{2}\right)\right] \\
\text { for }\left(x_{1}, x_{2}\right) \in \gamma^{(k)} . \tag{26}
\end{gather*}
$$

Note that the integration over $\gamma^{(k)}$ in (24) is one over a directed straight line segment from $\left(a^{(k)}, b^{(k)}\right)$ to $\left(c^{(k)}, d^{(k)}\right)$. It is assumed that $\left(\xi_{1}, \xi_{2}\right)$ does not lie on any of the cracks. The system (23) is satisfied by (24).

4.1 Electrically impermeable cracks

The conditions (17) on the electrically impermeable cracks require that

$$
\begin{align*}
C_{I j R p} \frac{\partial \Phi_{R S}^{[2]}}{\partial x_{p}} m_{j}^{(k)} & \rightarrow \Lambda_{I S}^{(k)}\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right) \\
& \text { as }\left(x_{1}, x_{2}\right) \rightarrow\left(y_{1}, y_{2}\right) \in \gamma^{(k)} \text { for } k=1,2, \cdots, M . \tag{27}
\end{align*}
$$

From (24), the conditions (27) for electrically impermeable cracks give rise to the system of hypersingular integral equations

$$
\begin{align*}
& \mathcal{H} \int_{-1}^{1} \frac{\chi_{P K}^{(q)} \Delta \Phi_{P S}^{(q)}\left(v, \xi_{1}, \xi_{2}\right) d v}{(t-v)^{2}}+\sum_{\substack{n=1 \\
n \neq q}}^{M} \int_{-1}^{1} \Delta \Phi_{P S}^{(n)}\left(v, \xi_{1}, \xi_{2}\right) Y_{P K}^{(n q)}(v, t) d v \\
& =\Lambda_{K S}^{(q)}\left(X_{1}^{(q)}(t), X_{2}^{(q)}(t), \xi_{1}, \xi_{2}\right) \\
& \text { for }-1<t<1, K=1,2,3,4, S=1,2,3,4 \text { and } q=1,2, \cdots, M \tag{28}
\end{align*}
$$

where \mathcal{H} indicates that the integral is to be interpreted in the Hadamard finite-part sense and

$$
\begin{align*}
\Delta \Phi_{P S}^{(n)}\left(v, \xi_{1}, \xi_{2}\right) & =\Delta \Phi_{P S}\left(X_{1}^{(n)}(v), X_{2}^{(n)}(v) ; \xi_{1}, \xi_{2}\right), \\
\chi_{P K}^{(q)} & =\frac{1}{\pi} \operatorname{Re} \sum_{\alpha=1}^{4}\left\{\frac{\ell^{(q)} Q_{P K r j \alpha} m_{r}^{(q)} m_{j}^{(q)}}{\left[\left(c^{(q)}-a^{(q)}\right)+\tau_{\alpha}\left(d^{(q)}-b^{(q)}\right)\right]^{2}}\right\}, \\
Y_{P K}^{(n q)}(v, t) & =\frac{1}{4 \pi} \operatorname{Re} \sum_{\alpha=1}^{4}\left\{\frac{\ell^{(n)} Q_{P K r j \alpha} m_{r}^{(q)} m_{j}^{(n)}}{\left[\Xi^{(n q)}(v, t)+\tau_{\alpha} \Theta^{(n q)}(v, t)\right]^{2}}\right\}, \tag{29}
\end{align*}
$$

where $Q_{P K r j \alpha}=\left(c_{K r I 1}+\tau_{\alpha} c_{K r I 2}\right) T_{P j \alpha I}, \Xi^{(n q)}(v, t)=X_{1}^{(n)}(v)-X_{1}^{(q)}(t)$, $\Theta^{(n q)}(v, t)=X_{2}^{(n)}(v)-X_{2}^{(q)}(t), 2 X_{1}^{(n)}(t)=\left[c^{(n)}+a^{(n)}\right]+\left[c^{(n)}-a^{(n)}\right] t$ and $2 X_{2}^{(n)}(t)=\left[d^{(n)}+b^{(n)}\right]+\left[d^{(n)}-b^{(n)}\right] t$.

The method in Kaya and Erdogan [17] is chosen to solve (28) numerically for $\Delta \Phi_{P S}^{(n)}\left(v, \xi_{1}, \xi_{2}\right)$. Let $\Delta \Phi_{P S}^{(n)}\left(v, \xi_{1}, \xi_{2}\right)$ be given approximately by

$$
\begin{equation*}
\Delta \Phi_{P S}^{(n)}\left(v, \xi_{1}, \xi_{2}\right) \simeq \sqrt{1-v^{2}} \sum_{j=1}^{J} \phi_{P S}^{(n j)}\left(\xi_{1}, \xi_{2}\right) U^{(j-1)}(v) \tag{30}
\end{equation*}
$$

where $U^{(j)}(x)=\sin ([j+1] \arccos (x)) / \sin (\arccos (x))(-1<x<1)$ is the j-th order Chebyshev polynomial of the second kind and $\phi_{P S}^{(n j)}\left(\xi_{1}, \xi_{2}\right)$ are parameters to be determined.

Through substituting (30) into (28) and collocating (28) by letting $t=$ $t^{(i)} \equiv \cos ([2 i-1] \pi /[2 J])$ for $i=1,2, \cdots, J$, a system of linear algebraic
equations containing the unknowns $\phi_{P S}^{(n i)}\left(\xi_{1}, \xi_{2}\right)$ can be obtained as follows:

$$
\begin{align*}
& -\sum_{j=1}^{J} j \pi \phi_{P S}^{(q j)}\left(\xi_{1}, \xi_{2}\right) \chi_{P K}^{(q)} U^{(j-1)}\left(t^{(i)}\right) \\
& +\sum_{\substack{j=1}}^{J} \sum_{\substack{n=1 \\
n \neq q}}^{M} \phi_{P S}^{(n j)}\left(\xi_{1}, \xi_{2}\right) \int_{-1}^{1} \sqrt{1-v^{2}} U^{(j-1)}(v) Y_{P K}^{(n q)}\left(v, t^{(i)}\right) d v \\
& =\Lambda_{K S}^{(q)}\left(X_{1}^{(q)}\left(t^{(i)}\right), X_{2}^{(q)}\left(t^{(i)}\right), \xi_{1}, \xi_{2}\right) \tag{31}
\end{align*}
$$

for $i=1,2, \cdots, J, K=1,2,3,4, S=1,2,3,4$ and $q=1,2, \cdots, M$.
Once $\phi_{P S}^{(n i)}\left(\xi_{1}, \xi_{2}\right)$ are determined from (31), $\Phi_{R S}^{[2]}\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right)$ can be calculated approximately using

$$
\begin{align*}
\Phi_{R S}^{[2]}\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right) & \simeq \frac{1}{2} \sum_{n=1}^{M} \ell^{(n)} \sum_{j=1}^{J} \phi_{P S}^{(n j)}\left(\xi_{1}, \xi_{2}\right) \int_{-1}^{1} \sqrt{1-t^{2}} \\
& \times U^{(j-1)}(t) \Lambda_{P R}^{(n)}\left(x_{1}, x_{2}, X_{1}^{(n)}(t), X_{2}^{(n)}(t)\right) d t \tag{32}
\end{align*}
$$

If the points $\left(x_{1}, x_{2}\right)$ and $\left(\xi_{1}, \xi_{2}\right)$ do not lie on any of the cracks, the numerical evaluation of $\Phi_{R S}^{[2]}\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right)$ as given by (32) does not pose any mathematical difficulties. The definite integrals over the interval $[-1,1]$ in (31) and (32) can be easily and accurately computed by using the numerical quadrature formula (25.4.40) listed in Abramowitz and Stegun [1].

Note that in (31) the coefficient of the unknown $\phi_{P S}^{(q j)}\left(\xi_{1}, \xi_{2}\right)$ is independent of the uppercase latin subscript S and the point $\left(\xi_{1}, \xi_{2}\right)$. Thus, in solving (31) to determine $\phi_{P S}^{(q j)}\left(\xi_{1}, \xi_{2}\right)$ for different values of the subscript S and for different points $\left(\xi_{1}, \xi_{2}\right)$, the square matrix containing the coefficients of the unknowns has to be computed and processed only once. For example, if the $L U$ decomposition technique together with backward substitutions is used to solve (31), we have to decompose the square matrix only once.

4.2 Electrically permeable cracks

Conditions (18) for electrically permeable cracks require the hypersingular integral equations (28) to be modified by taking $\Delta \Phi_{4 S}^{(n)}\left(v, \xi_{1}, \xi_{2}\right)=0$ and
replacing $K=1,2,3,4$ with $K=k=1,2,3$. Consequently, if the cracks are electrically permeable, $\Phi_{R S}^{[2]}\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right)$ can still be computed by using (32) but with $\phi_{4 S}^{(n j)}\left(\xi_{1}, \xi_{2}\right)=0$. The remaining functions $\phi_{1 S}^{(n j)}\left(\xi_{1}, \xi_{2}\right), \phi_{2 S}^{(n j)}\left(\xi_{1}, \xi_{2}\right)$ and $\phi_{3 S}^{(n j)}\left(\xi_{1}, \xi_{2}\right)$ required by (32) for computing $\Phi_{R S}^{[2]}\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right)$ are to be determined by solving the system (31) (with $\phi_{4 S}^{(n j)}\left(\xi_{1}, \xi_{2}\right)=0$) for $K=k=$ $1,2,3$ (instead of $K=1,2,3,4$).

5 A boundary element procedure

If the Green's function $\Phi_{I K}\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right)$ satisfying either (17) or (18) (depending on the electrical boundary conditions on the cracks), as given in Section 4 is used, a direct boundary integral formulation for the crack problem in Section 2 is given by:

$$
\begin{align*}
\lambda\left(\xi_{1}, \xi_{2}\right) U_{K}\left(\xi_{1}, \xi_{2}\right) & =\int_{B}\left[U_{I}\left(x_{1}, x_{2}\right) \Gamma_{I K}\left(x_{1}, x_{2} ; \xi_{1}, \xi_{2}\right)\right. \\
& \left.-P_{I}\left(x_{1}, x_{2}\right) \Phi_{I K}\left(x_{1}, x_{2}, \xi_{1} ; \xi_{2}\right)\right] d s\left(x_{1}, x_{2}\right) \tag{33}
\end{align*}
$$

where $\lambda\left(\xi_{1}, \xi_{2}\right)=1$ if $\left(\xi_{1}, \xi_{2}\right)$ lies in the interior of R and $\lambda\left(\xi_{1}, \xi_{2}\right)=1 / 2$ if $\left(\xi_{1}, \xi_{2}\right)$ lies on a smooth part of $B, P_{I}\left(x_{1}, x_{2}\right)=S_{I j}\left(x_{1}, x_{2}\right) n_{j}\left(x_{1}, x_{2}\right), n_{j}$ are the components of the unit normal vector to the boundary B (as shown in Figure 1) and

$$
\Gamma_{I K}\left(x_{1}, x_{2} ; \xi_{1}, \xi_{2}\right)=C_{I j R s} n_{j}\left(x_{1}, x_{2}\right) \frac{\partial}{\partial x_{s}}\left[\Phi_{R K}\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right)\right] .
$$

Note that the path of integration in (33) is over only the exterior boundary B of the piezoelectric solid. To see how the boundary integral equations for the system (9) may be derived, one may refer to Clements [9].

From the boundary conditions on the exterior boundary B, either $U_{I}=u_{i}$ or $P_{I}=p_{i}$ for $I=i=1,2,3$, and either $U_{4}=\phi$ or P_{4} are known at each and every point on B. The boundary B and the integral equations (33) can be discretized to determine approximately the unknown generalized displacements U_{I} and/or tractions P_{I} on B. To do this, the boundary B is approximated
using N straight line segments denoted by $B^{(1)}, B^{(2)}, \cdots, B^{(N-1)}$ and $B^{(N)}$. Across the segment $B^{(m)}$, the displacements U_{I} and the tractions P_{I} are approximated by constants $U_{I}^{(m)}$ and $P_{I}^{(m)}$ respectively. Through approximating (33), the unknown constants on the boundary elements $U_{I}^{(m)}$ and/or tractions $P_{I}^{(m)}$ can be determined from the system of linear algebraic equations:

$$
\begin{align*}
& \frac{1}{2} U_{K}^{(m)}=\sum_{n=1}^{N} U_{I}^{(n)} \int_{B^{(n)}} \Gamma_{I K}\left(x_{1}, x_{2} ; \xi_{1}^{(m)}, \xi_{2}^{(m)}\right) d s\left(x_{1}, x_{2}\right) \\
&-\sum_{n=1}^{N} P_{I}^{(n)} \int_{B^{(n)}} \Phi_{I K}\left(x_{1}, x_{2} ; \xi_{1}^{(m)}, \xi_{2}^{(m)}\right) d s\left(x_{1}, x_{2}\right) \\
& \text { for } m=1,2, \cdots, N \tag{34}
\end{align*}
$$

where $\left(\xi_{1}^{(m)}, \xi_{2}^{(m)}\right)$ is the midpoint of $B^{(m)}$.
Once $U_{I}^{(m)}$ and $P_{I}^{(m)}$ are all determined, the generalized displacements U_{K} (and hence the stresses $S_{I j}$) at any interior point $\left(\xi_{1}, \xi_{2}\right)$ in R can be computed approximately using

$$
\begin{align*}
U_{K}\left(\xi_{1}, \xi_{2}\right) & =\sum_{n=1}^{N} U_{I}^{(n)} \int_{B^{(n)}} \Gamma_{I K}\left(x_{1}, x_{2} ; \xi_{1}, \xi_{2}\right) d s\left(x_{1}, x_{2}\right) \\
& -\sum_{n=1}^{N} P_{I}^{(n)} \int_{B^{(n)}} \Phi_{I K}\left(x_{1}, x_{2} ; \xi_{1}, \xi_{2}\right) d s\left(x_{1}, x_{2}\right) . \tag{35}
\end{align*}
$$

The crack displacement jumps $\Delta U_{K}\left(x_{1}, x_{2}\right)$ defined by

$$
\begin{align*}
& \Delta U_{K}\left(x_{1}, x_{2}\right)=\lim _{\varepsilon \rightarrow 0}\left[U_{K}\left(x_{1}-|\varepsilon| m_{1}^{(k)}, x_{2}-|\varepsilon| m_{2}^{(k)}\right)\right. \\
&\left.-U_{K}\left(x_{1}+|\varepsilon| m_{1}^{(k)}, x_{2}+|\varepsilon| m_{2}^{(k)}\right)\right] \\
& \text { for }\left(x_{1}, x_{2}\right) \in \gamma^{(k)} \tag{36}
\end{align*}
$$

can be also computed as explained below when $U_{I}^{(m)}$ and $P_{I}^{(m)}$ are all known.

5.1 Electrically impermeable cracks

If the cracks are electrically impermeable then $\Delta U_{K}\left(x_{1}, x_{2}\right)$ can be determined by solving the hypersingular integral equations (see Ang and Telles
[6]):

$$
\begin{align*}
& \mathcal{H} \int_{-1}^{1} \frac{\chi_{P K}^{(q)} \Delta U_{P}^{(q)}(v) d v}{(t-v)^{2}}+\sum_{\substack{n=1 \\
n \neq q}}^{M} \int_{-1}^{1} \Delta U_{P}^{(n)}(v) Y_{P K}^{(n q)}(v, t) d v=S_{K}^{(q)}(t) \\
& \text { for }-1<t<1, K=1,2,3,4 \text { and } q=1,2, \cdots, M \text {, } \tag{37}
\end{align*}
$$

where $\Delta U_{P}^{(q)}(v)(-1<v<1)$ is a function that gives $\Delta U_{P}\left(x_{1}, x_{2}\right)$ at the point $\left(X_{1}^{(q)}(v), X_{2}^{(q)}(v)\right)$ of the crack $\gamma^{(q)}$, and

$$
\begin{align*}
S_{K}^{(q)}(t) & =\sum_{n=1}^{N} C_{K j R s} m_{j}^{(q)} \int_{B^{(n)}}\left\{-\left.U_{I}^{(n)} \frac{\partial}{\partial \xi_{s}}\left[\Gamma_{I R}^{[1]}\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right)\right]\right|_{\left(\xi_{1}, \xi_{2}\right)=\left(X_{1}^{(q)}(t), X_{2}^{(q)}(t)\right)}\right. \\
& \left.+\left.P_{I}^{(n)} \frac{\partial}{\partial \xi_{s}}\left[\Phi_{I R}^{[1]}\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right)\right]\right|_{\left(\xi_{1}, \xi_{2}\right)=\left(X_{1}^{(q)}(t), X_{2}^{(q)}(t)\right)}\right\} d s\left(x_{1}, x_{2}\right) \tag{38}
\end{align*}
$$

Note that the system (37) is derived using the boundary conditions in (1) and (2) and $S_{K}^{(q)}(t)$ is regarded as known after (34) is solved.

The system (37) can be solved numerically using the same method for (28). The unknown functions $\Delta U_{P}^{(n)}(v)$ are approximated using

$$
\begin{equation*}
\Delta U_{P}^{(n)}(v) \simeq \sqrt{1-v^{2}} \sum_{j=1}^{J} \psi_{P}^{(n j)} U^{(j-1)}(v) \tag{39}
\end{equation*}
$$

where $\psi_{P}^{(n j)}$ are constants determined by the system of linear algebraic equations

$$
\begin{align*}
& -\sum_{j=1}^{J} j \pi \psi_{P}^{(q j)} \chi_{P K}^{(q)} U^{(j-1)}\left(t^{(i)}\right) \\
& +\sum_{\substack{j=1}}^{J} \sum_{\substack{n=1 \\
n \neq q}}^{M} \psi_{P}^{(n j)} \int_{-1}^{1} \sqrt{1-v^{2}} U^{(j-1)}(v) Y_{P K}^{(n q)}\left(v, t^{(i)}\right) d v \\
& =S_{K}^{(q)}\left(t^{(i)}\right) \text { for } i=1,2, \cdots, J, K=1,2,3,4 \text { and } q=1,2, \cdots, M \tag{40}
\end{align*}
$$

where $t^{(i)}=\cos ([2 i-1] \pi /[2 J])$ as in (31).

Note that the unknown $\psi_{p}^{(q j)}$ in (40) has the same coefficient as $\phi_{P S}^{(q j)}\left(\xi_{1}, \xi_{2}\right)$ in (31). Thus, in solving (40) for the unknowns $\psi_{P}^{(q j)}$, it is not necessary to set up and process again the matrix containing the coefficients of the unknowns.

Once the unknowns $\psi_{P}^{(q j)}$ are determined, $\Delta U_{K}\left(x_{1}, x_{2}\right)$ can be approximately computed using (39) and crack parameters of practical interest, such as the stress and electric displacement intensity factors, can also be extracted.

5.2 Electrically permeable cracks

If the cracks are electrically permeable then (37) has to be modified by setting $\Delta U_{4}^{(n)}(v)=0$ and replacing $K=1,2,3,4$ by $K=k=1,2,3$. It follows that we can solve (40), with $\psi_{4}^{(q j)}=0$ and $K=k=1,2,3$, for $\psi_{1}^{(q j)}, \psi_{2}^{(q j)}$ and $\psi_{3}^{(q j)}$ in order to determine $\Delta U_{1}^{(n)}(v), \Delta U_{2}^{(n)}(v)$ and $\Delta U_{3}^{(n)}(v)$.

6 Specific problems

In this section, the boundary element procedure together with the numerical Green's functions above is applied to solve some specific problems involving a particular piezoelectric material. The piezoelectric material is such that it becomes elastically transversely isotropic under the action of the electric field, with the transverse plane being perpendicular to the electrical poling direction. The electroelastic properties of such a material are characterized by 10 independent constants denoted here by $A, N, F, C, L, e_{1}, e_{2}, e_{3}, \epsilon_{1}$ and ϵ_{2}.

Problem 1. The exterior boundary of the solution domain R (on the plane $\left.x_{3}=0\right)$ is taken to be the sides of a square with vertices $(h, h),(-h, h)$, $(-h,-h)$ and $(h,-h)$. The interior of R contains a single electrically impermeable crack which occupies the region $-a<x_{1}<a, x_{2}=0$, where h and a are positive constants such that $a<h$. Here we take the crack tips to be $\left(a^{(1)}, b^{(1)}\right)=(-a, 0)$ and $\left(c^{(1)}, d^{(1)}\right)=(a, 0)$.

The electrical poling direction is taken to be along the x_{2} direction with the constitutive equations given by

$$
\begin{align*}
\left(\begin{array}{c}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{33} \\
\sigma_{32} \\
\sigma_{31} \\
\sigma_{12}
\end{array}\right) & =\left(\begin{array}{cccccc}
A & F & N & 0 & 0 & 0 \\
F & C & F & 0 & 0 & 0 \\
N & F & A & 0 & 0 & 0 \\
0 & 0 & 0 & L & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2}(A-N) & 0 \\
0 & 0 & 0 & 0 & 0 & L
\end{array}\right)\left(\begin{array}{c}
\gamma_{11} \\
\gamma_{22} \\
\gamma_{33} \\
2 \gamma_{32} \\
2 \gamma_{31} \\
2 \gamma_{12}
\end{array}\right) \\
& -\left(\begin{array}{ccc}
0 & e_{2} & 0 \\
0 & e_{3} & 0 \\
0 & e_{2} & 0 \\
0 & 0 & e_{1} \\
0 & 0 & 0 \\
e_{1} & 0 & 0
\end{array}\right)\left(\begin{array}{l}
E_{1} \\
E_{2} \\
E_{3}
\end{array}\right) \tag{41}
\end{align*}
$$

and

$$
\left(\begin{array}{c}
D_{1} \tag{42}\\
D_{2} \\
D_{3}
\end{array}\right)=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & e_{1} \\
e_{2} & e_{3} & e_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & e_{1} & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\gamma_{11} \\
\gamma_{22} \\
\gamma_{33} \\
2 \gamma_{32} \\
2 \gamma_{31} \\
2 \gamma_{12}
\end{array}\right)+\left(\begin{array}{ccc}
\epsilon_{1} & 0 & 0 \\
0 & \epsilon_{2} & 0 \\
0 & 0 & \epsilon_{1}
\end{array}\right)\left(\begin{array}{c}
E_{1} \\
E_{2} \\
E_{3}
\end{array}\right)
$$

where $2 \gamma_{k j}=\partial u_{k} / \partial x_{j}+\partial u_{j} / \partial x_{k}$ and $E_{k}=-\partial \phi / \partial x_{k}$. Note that $\gamma_{33}=0$ and $E_{3}=0$ here since u_{k} and ϕ are independent of x_{3}.

From (6), (7), (8), (41) and (42), the non-zero coefficients $C_{I j K p}$ are

$$
\begin{align*}
& C_{1111}=C_{3333}=A, C_{1133}=C_{3311}=N, C_{2222}=C, \\
& C_{1122}=C_{2211}=C_{2233}=C_{3322}=F, \\
& C_{1212}=C_{2112}=C_{2121}=C_{1221}=C_{2323}=C_{3223}=C_{3232}=C_{2332}=L, \\
& C_{1313}=C_{3113}=C_{3131}=C_{1331}=\frac{1}{2}(A-N), \\
& C_{2141}=C_{1241}=C_{3243}=C_{2343}=C_{4121}=C_{4112}=C_{4332}=C_{4323}=e_{1}, \\
& C_{1142}=C_{3342}=C_{4211}=C_{4233}=e_{2}, \\
& C_{2242}=C_{4222}=e_{3}, C_{4141}=C_{4343}=-\epsilon_{1}, C_{4242}=-\epsilon_{2} . \tag{43}
\end{align*}
$$

According to (13), the matrix $\left[A_{K \alpha}\right]$ can then be obtained by finding non-trivial solutions of the homogeneous systems

$$
\left(\begin{array}{cccc}
A+L \tau_{\alpha}^{2} & (F+L) \tau_{\alpha} & 0 & \left(e_{1}+e_{2}\right) \tau_{\alpha} \tag{44}\\
(F+L) \tau_{\alpha} & L+C \tau_{\alpha}^{2} & 0 & e_{1}+e_{3} \tau_{\alpha}^{2} \\
0 & 0 & \frac{1}{2}(A-N)+L \tau_{\alpha}^{2} & 0 \\
\left(e_{1}+e_{2}\right) \tau_{\alpha} & e_{1}+e_{3} \tau_{\alpha}^{2} & 0 & -\epsilon_{1}-\epsilon_{2} \tau_{\alpha}^{2}
\end{array}\right)\left(\begin{array}{c}
A_{1 a} \\
A_{2 \alpha} \\
A_{3 \alpha} \\
A_{4 \alpha}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

where

$$
\begin{equation*}
\tau_{3}=i \sqrt{\frac{A-N}{2 L}}(A>N) \tag{45}
\end{equation*}
$$

and τ_{1}, τ_{2} and τ_{4} are solutions (with positive imaginary parts) of the sextic equation in τ given by

$$
\operatorname{det}\left(\begin{array}{ccc}
A+L \tau^{2} & (F+L) \tau & \left(e_{1}+e_{2}\right) \tau \tag{46}\\
(F+L) \tau & L+C \tau^{2} & e_{1}+e_{3} \tau^{2} \\
\left(e_{1}+e_{2}\right) \tau & e_{1}+e_{3} \tau^{2} & -\epsilon_{1}-\epsilon_{2} \tau^{2}
\end{array}\right)=0
$$

For $\alpha=3$, a non-trivial solution of (44) which forms the third column of the matrix $\left[A_{K \alpha}\right]$ is given by

$$
\left(\begin{array}{l}
A_{13} \tag{47}\\
A_{23} \\
A_{33} \\
A_{43}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
1 \\
0
\end{array}\right) .
$$

For $\alpha=1,2$ and 4, if $\left(A+L \tau_{\alpha}^{2}\right)\left(L+C \tau_{\alpha}^{2}\right)-(F+L)^{2} \tau_{\alpha}^{2} \neq 0$, we may take $A_{3 \alpha}=0$ and $A_{4 \alpha}=1$ and find $A_{1 \alpha}$ and $A_{2 \alpha}$ by solving

$$
\left(\begin{array}{cc}
A+L \tau_{\alpha}^{2} & (F+L) \tau_{\alpha} \tag{48}\\
(F+L) \tau_{\alpha} & L+C \tau_{\alpha}^{2}
\end{array}\right)\binom{A_{1 a}}{A_{2 \alpha}}=-\binom{\left(e_{1}+e_{2}\right) \tau_{\alpha}}{e_{1}+e_{3} \tau_{\alpha}^{2}},
$$

in order to construct the first, second and fourth columns of the matrix $\left[A_{K \alpha}\right]$.
For the crack in the region $-a<x_{1}<a, x_{2}=0$, we define the crack tip stress intensity factors $K_{I}^{ \pm}, K_{I I}^{ \pm}$and $K_{I I I}^{ \pm}$and electric displacement intensity
factors $K_{I V}^{ \pm}$by

$$
\begin{align*}
K_{I}^{+} & =\lim _{x \rightarrow a^{+}} \sqrt{2(x-a)} S_{22}(x, 0), K_{I}^{-}=\lim _{x \rightarrow-a^{-}} \sqrt{-2(x+a)} S_{22}(x, 0) \\
K_{I I}^{+} & =\lim _{x \rightarrow a^{+}} \sqrt{2(x-a)} S_{12}(x, 0), K_{I I}^{-}=\lim _{x \rightarrow-a^{-}} \sqrt{-2(x+a)} S_{12}(x, 0), \\
K_{I I I}^{+} & =\lim _{x \rightarrow a^{+}} \sqrt{2(x-a)} S_{32}(x, 0), K_{I I I}^{-}=\lim _{x \rightarrow-a^{-}} \sqrt{-2(x+a)} S_{32}(x, 0), \\
K_{I V}^{+} & =\lim _{x \rightarrow a^{+}} \sqrt{2(x-a)} S_{42}(x, 0), K_{I V}^{-}=\lim _{x \rightarrow-1^{-}} \sqrt{-2(x+a)} S_{42}(x, 0) . \tag{49}
\end{align*}
$$

If $\Delta U_{P}^{(1)}(v)$ are approximately given by (39) (with $n=1$) then we can compute $K_{I}^{ \pm}, K_{I I}^{ \pm}, K_{I I I}^{ \pm}$and $K_{I V}^{ \pm}$numerically using

$$
\begin{align*}
K_{I}^{ \pm} & \simeq \operatorname{sgn}\left(-m_{2}^{(1)}\right) \frac{w_{P 2}}{\sqrt{a}} \sum_{j=1}^{J} \psi_{P}^{(1 j)} U^{(j-1)}(\pm 1), \\
K_{I I}^{ \pm} & \simeq \operatorname{sgn}\left(-m_{2}^{(1)}\right) \frac{w_{P 1}}{\sqrt{a}} \sum_{j=1}^{J} \psi_{P}^{(1 j)} U^{(j-1)}(\pm 1), \\
K_{I I I}^{ \pm} & \simeq \operatorname{sgn}\left(-m_{2}^{(1)}\right) \frac{w_{P 3}}{\sqrt{a}} \sum_{j=1}^{J} \psi_{P}^{(1 j)} U^{(j-1)}(\pm 1), \\
K_{I V}^{ \pm} & \simeq \operatorname{sgn}\left(-m_{2}^{(1)}\right) \frac{w_{P 4}}{\sqrt{a}} \sum_{j=1}^{J} \psi_{P}^{(1 j)} U^{(j-1)}(\pm 1), \tag{50}
\end{align*}
$$

where $w_{P K}=-\operatorname{Re}\left\{\left(Q_{P K 221}+Q_{P K 222}+Q_{P K 223}+Q_{P K 224}\right) / 2\right\}$ and $\operatorname{sgn}(x)$ denotes the sign of x (that is, it is given by -1 and 1 for $x<0$ and $x>0$ respectively).

A particular solution U_{K} satisfying (9) in the whole of the $0 x_{1} x_{2}$ plane with a cut in the region $-a<x_{1}<a, x_{2}=0$ and the corresponding $S_{K j}$ are given by

$$
\begin{align*}
U_{K} & =\operatorname{Re}\left\{\sum_{\alpha=1}^{4} A_{K \alpha}\left(M_{\alpha 2}+M_{\alpha 4}\right)\left(z_{\alpha}^{2}-a^{2}\right)^{1 / 2}\right\}, \\
S_{K j} & =\operatorname{Re}\left\{\sum_{\alpha=1}^{4} L_{K j \alpha}\left(M_{\alpha 2}+M_{\alpha 4}\right) \frac{z_{\alpha}}{\left(z_{\alpha}^{2}-a^{2}\right)^{1 / 2}}\right\}, \tag{51}
\end{align*}
$$

where $z_{\alpha}=x_{1}+\tau_{\alpha} x_{2}$ and $\left[M_{\alpha S}\right]$ is the inverse matrix of [$L_{K 2 \alpha}$]. It may be verified that with (51) the conditions that the crack $-a<x_{1}<a, x_{2}=0$ is traction-free and electrically impermeable are satisfied, that is, $S_{K 2}=0$ (for $K=1,2,3$ and 4) on the crack. Note that the branch for $\left(z_{\alpha}^{2}-a^{2}\right)^{1 / 2}$ in (51) is chosen such that

$$
\begin{equation*}
\lim _{\left|z_{\alpha}\right| \rightarrow \infty} \frac{\left(z_{\alpha}^{2}-a^{2}\right)^{1 / 2}}{z_{\alpha}}=1 \tag{52}
\end{equation*}
$$

For a particular test problem involving the electrically impermeable crack, (51) is used to generate boundary values of U_{K} and P_{K} on the horizontal and vertical sides of the square domain R respectively. For mere illustrative purposes, we use the material constants of a class of PZT4 piezoceramics in our calculation, that is,

$$
\begin{align*}
& A=13.9 \times 10^{10}, N=7.78 \times 10^{10}, F=7.43 \times 10^{10} \\
& C=11.3 \times 10^{10}, L=2.56 \times 10^{10} \\
& e_{1}=13.44, e_{2}=-6.98, e_{3}=13.84 \\
& \epsilon_{1}=60 \times 10^{-10}, \epsilon_{2}=54.7 \times 10^{-10} \tag{53}
\end{align*}
$$

The values of A, N, F, C and L above are in $\mathrm{N} / \mathrm{m}^{2}, e_{1}, e_{2}$ and e_{3} are in $\mathrm{C} / \mathrm{m}^{2}$, and ϵ_{1} and ϵ_{2} are in $\mathrm{C} /(\mathrm{Vm})$. These values are taken from Park and Sun [19].

Each side of the square region $-h<x_{1}<h,-h<x_{2}<h$ is discretized into N_{0} equal length elements, so that the total number of elements is $4 N_{0}$. For $a=1$ and $h=2$, two sets of numerical calculations are carried out using the boundary element method. Set A is obtained by using $N_{0}=10$ (40 elements), while Set B by $N_{0}=40$ (160 elements). The numerical Green's function for the impermeable crack is calculated using $J=10$ in (32).

Numerical values of the elastic displacement $\left(U_{1} \times 10^{12}, U_{2} \times 10^{12}\right)$ and the electric potential $U_{4} \times 10^{3}$ at selected points in the interior of the square domain are compared with the exact values computed using (51) in Tables 1 and 2 respectively. (Note that $U_{3}=0$ for the particular problem here.) Both
sets of numerical values for U_{1}, U_{2} and U_{4} are reasonably close to the exact ones. On the whole, the numerical values in Set B are more accurate than those in Set A and show significant convergence towards the exact values.

Table 1. Numerical and exact values of $\left(U_{1} \times 10^{12}, U_{2} \times 10^{12}\right)$ at selected interior points.

Point $\left(x_{1}, x_{2}\right)$	Set A $\left(U_{1}, U_{2}\right) \times 10^{12}$	Set B $\left(U_{1}, U_{2}\right) \times 10^{12}$	Exact $\left(U_{1}, U_{2}\right) \times 10^{12}$
$(1.10,0.00)$	$(2.5808,0.0000)$	$(2.6165,0.0000)$	$(2.6297,0.0000)$
$(0.50,0.80)$	$(4.9294,15.936)$	$(4.9304,15.840)$	$(4.9312,15.807)$
$(0.10,0.70)$	$(1.0309,17.915)$	$(1.0311,17.815)$	$(1.0312,17.780)$
$(1.90,0.10)$	$(9.2099,0.82173)$	$(9.3035,0.74540)$	$(9.3331,0.74065)$
$(0.90,0.20)$	$(5.8260,8.8090)$	$(5.8412,8.7584)$	$(5.8655,8.7773)$
$(1.05,1.05)$	$(8.4852,12.839)$	$(8.4864,12.746)$	$(8.4887,12.716)$

Table 2. Numerical and exact values of $U_{4} \times 10^{3}$ at selected interior points.

Point $\left(x_{1}, x_{2}\right)$	Set A $U_{4} \times 10^{3}$	Set B $U_{4} \times 10^{3}$	Exact $U_{4} \times 10^{3}$
$(1.10,0.00)$	0.0000	0.0000	0.0000
$(0.50,0.80)$	2.6621	2.7870	2.8228
$(0.10,0.70)$	6.3796	6.4938	6.5263
$(1.90,0.10)$	-1.5416	-1.1523	-1.1403
$(0.90,0.20)$	3.2009	3.2672	3.3500
$(1.05,1.05)$	-5.2272	-5.0658	-5.0197

A graphical comparison between the numerical and the exact crack-opening displacement $\Delta U_{2}^{(1)}(v)$ for the only crack here is given in Figure 2 for $0 \leq$ $v \leq 1$. Similarly, plots of the numerical and the exact electric potential jump $\Delta U_{4}^{(1)}(v)$ across opposite faces of the crack are given in Figure 3. The graphs of the numerical $\Delta U_{2}^{(1)}(v)$ and $\Delta U_{4}^{(1)}(v)$ are close to the exact ones. For the particular problem here, note that $\Delta U_{2}^{(1)}(v)=\Delta U_{2}^{(1)}(-v)$
and $\Delta U_{4}^{(1)}(v)=\Delta U_{4}^{(1)}(-v)$ as well as $\Delta U_{1}^{(1)}(v)=0$ and $\Delta U_{3}^{(1)}(v)=0$ for $-1 \leq v \leq 1$.

Figure 2. Plots of $\Delta U_{2}^{(1)}(v) \times 10^{10}$ over $0 \leq v \leq 1$.

Figure 3. Plots of $\Delta U_{4}^{(1)}(v)$ over $0 \leq v \leq 1$.
Note that $K_{I I}^{+}=K_{I I}^{-}=0$ and $K_{I I I}^{+}=K_{I I I}^{-}=0$ for the particular problem here. The numerically obtained values of $K_{I I}^{ \pm}$and $K_{I I I}^{ \pm}$are not exactly zero
but extremely small in magnitude of the order 10^{-15}. A comparison of the numerical and exact values of only $K_{I}^{ \pm}$and $K_{I V}^{ \pm}$are given in Table 3. The numerical values are in good agreement with the exact ones, even for Set A in which the discretization of the exterior boundary of the solution domain is relatively crude.

Table 3. Numerical and exact values of the stress and electric displacement intensity factors.

Intensity factor	Set A	Set B	Exact
K_{I}^{+}	1.00400	1.00102	1.00000
K_{I}^{-}	1.00400	1.00102	1.00000
$K_{I V}^{+} \times 10^{10}$	1.02638	1.00627	1.00000
$K_{I V}^{-} \times 10^{10}$	1.02638	1.00627	1.00000

Problem 2. The geometry of the solution domain and the direction of the electrical poling are as in Problem 1 above. Here the crack is, however, electrically permeable.

Take

$$
\begin{align*}
& U_{K}=\operatorname{Re}\left\{\sum_{\alpha=1}^{4} A_{K \alpha} M_{\alpha 1}\left(1+\left(z_{\alpha}^{2}-a^{2}\right)^{1 / 2}\right)\right\}, \\
& S_{K j}=\operatorname{Re}\left\{\sum_{\alpha=1}^{4} L_{K j \alpha} M_{\alpha 1} \frac{z_{\alpha}}{\left(z_{\alpha}^{2}-a^{2}\right)^{1 / 2}}\right\}, \tag{54}
\end{align*}
$$

as a particular electroelastic solution of (9) in the whole of the $0 x_{1} x_{2}$ plane with a cut in the region $-a<x_{1}<a, x_{2}=0$.

For the particular values of the constants $A, N, F, C, L, e_{1}, e_{2}, e_{3}, \epsilon_{1}$ and ϵ_{2} used in Problem 1, as given in (53), the matrices $\left[A_{K \alpha}\right]$ and $\left[M_{\alpha S}\right]$ are such that

$$
\begin{equation*}
\operatorname{Im}\left\{\sum_{\alpha=1}^{4} A_{4 \alpha} M_{\alpha 1}\right\}=0 . \tag{55}
\end{equation*}
$$

Because of (55), the electric potential U_{4} given by (54) satisfies

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}}\left[U_{4}\left(x_{1}, \varepsilon\right)-U_{4}\left(x_{1},-\varepsilon\right)\right]=0 \text { for }-a<x_{1}<a, \tag{56}
\end{equation*}
$$

With the material constants in (53), the functions U_{K} and $S_{K j}$ in (54) satisfy the traction-free and electrically permeable conditions $\left(S_{12}=S_{22}=\right.$ $S_{32}=0$ and $\left.\Delta U_{4}^{(1)}=0\right)$ on the crack $-a<x_{1}<a, x_{2}=0$. For a particular test problem to check the boundary element procedure and the numerical Green's function for electrically permeable cracks, we use (54) together with (53) to generate boundary values of U_{K} and P_{K} on the horizontal and vertical sides of the square domain R respectively.

Table 4. Numerical and exact values of $\left(U_{1} \times 10^{12}, U_{2} \times 10^{12}\right)$ at selected interior points.

Point $\left(x_{1}, x_{2}\right)$	Set A $\left(U_{1}, U_{2}\right) \times 10^{12}$	Set B $\left(U_{1}, U_{2}\right) \times 10^{12}$	Exact $\left(U_{1}, U_{2}\right) \times 10^{12}$
$(1.10,0.00)$	$(0.00000,-10.926)$	$(0.0000,-11.068)$	$(0.0000,-11.111)$
$(0.50,0.80)$	$(32.931,-8.0315)$	$(32.883,-8.0920)$	$(32.893,-8.1062)$
$(0.10,0.70)$	$(29.721,-7.5773)$	$(29.680,-7.5899)$	$(29.691,-7.5928)$
$(1.90,0.10)$	$(5.7181,-19.721)$	$(4.3235,-19.796)$	$(4.3217,-19.899)$
$(0.90,0.20)$	$(13.742,-7.1452)$	$(13.712,-7.2682)$	$(13.688,-7.2885)$
$(1.05,1.05)$	$(41.822,-11.510)$	$(41.739,-11.623)$	$(41.746,-11.653)$

To obtain some numerical results, we take $a=1$ and $h=2$, divide each side of the square domain into N_{0} of equal length and carry out two sets of numerical calculations (Sets A and B as in Problem 1) using the boundary element method. The numerical Green's function for the permeable crack is computed using $J=10$ in (32). In Tables 4 and 5 , numerical values of $U_{1} \times 10^{12}, U_{2} \times 10^{12}$ and U_{4} at selected points in the interior of the solution domain are compared with the exact values computed using (54). For the particular problem here, $K_{I I}^{+}$and $K_{I I}^{-}$are the only intensity factors which
have non-zero values. Table 6 compares the numerical and the exact values of $K_{I I}^{+}$and $K_{I I}^{-}$. The numerical values of $K_{I I}^{+}$and $K_{I I}^{-}$are in good agreement with the exact ones for both Sets A and B.

Table 5. Numerical and exact values of U_{4} at selected interior points.

Point $\left(x_{1}, x_{2}\right)$	Set A $U_{4} \times 10^{2}$	Set B $U_{4} \times 10^{2}$	Exact $U_{4} \times 10^{2}$
$(1.10,0.00)$	2.7061	2.7330	2.7425
$(0.50,0.80)$	2.8303	2.8399	2.8435
$(0.10,0.70)$	2.0639	2.0659	2.0666
$(1.90,0.10)$	4.8273	4.9076	4.9262
$(0.90,0.20)$	2.8701	2.8906	2.9028
$(1.05,1.05)$	3.8568	3.8776	3.8845

Table 6. Numerical and exact values of the stress intensity factors.

Intensity factor	Set A	Set B	Exact
$K_{I I}^{+}$	1.00155	0.99962	1.00000
$K_{I I}^{-}$	1.00155	0.99962	1.00000

Problem 3. Let us take the solution domain R to be $-h<x_{1}<h$, $-h<x_{2}<h$, with three parallel electrically impermeable cracks $\gamma^{(1)}$, $\gamma^{(2)}$ and $\gamma^{(3)}$, where h are given positive constants. The crack $\gamma^{(1)}$ lies in the region $-a<x_{1}<a, x_{2}=0, \gamma^{(2)}$ in $-a<x_{1}<a, x_{2}=d$, and $\gamma^{(3)}$ in $-a<x_{1}<a, x_{2}=-d$, where a and d are given positive constants (with $a<h$).

The boundary conditions on the exterior boundary of R are given by

$$
\left.\begin{array}{l}
P_{1}= \pm S_{0} \\
P_{2}= \pm T_{0} \\
P_{3}=0 \\
P_{4}= \pm D_{0}
\end{array}\right\} \text { for }-h<x_{1}<h \text { on } x_{2}= \pm h
$$

$$
\left.\begin{array}{l}
P_{1}=0 \tag{57}\\
P_{2}= \pm S_{0} \\
P_{3}=0 \\
P_{4}=0
\end{array}\right\} \text { for }-h<x_{2}<h \text { on } x_{1}= \pm h,
$$

where S_{0}, T_{0} and D_{0} are given positive constants.
The non-dimensionalized mode I and mode II stress intensity factors and the non-dimensionalized electric displacement intensity factor at the tip $(a, 0)$ of the crack $\gamma^{(1)}$ are given by $K_{I}^{+} /\left(T_{0} \sqrt{a}\right), K_{I I}^{+} /\left(S_{0} \sqrt{a}\right)$ and $K_{I V}^{+} /\left(D_{0} \sqrt{a}\right)$ respectively. Note that the mode III stress intensity factor is zero here.

Plots of $K_{I}^{+} /\left(T_{0} \sqrt{a}\right), K_{I I}^{+} /\left(S_{0} \sqrt{a}\right)$ and $K_{I V}^{+} /\left(D_{0} \sqrt{a}\right)$ against d / a are given in Han and Wang [16] for $h / a \rightarrow \infty$ using the material constants

$$
\begin{align*}
& A=12.6 \times 10^{10}, N=5.5 \times 10^{10}, F=5.3 \times 10^{10}, \\
& C=11.7 \times 10^{10}, L=3.53 \times 10^{10}, \\
& e_{1}=17.0, e_{2}=-6.5, e_{3}=23.3, \\
& \epsilon_{1}=151 \times 10^{-10}, \epsilon_{2}=130 \times 10^{-10}, \tag{58}
\end{align*}
$$

where the values of A, N, F, C and L are in $\mathrm{N} / \mathrm{m}^{2}, e_{1}, e_{2}$ and e_{3} are in $\mathrm{C} / \mathrm{m}^{2}$, and ϵ_{1} and ϵ_{2} are in $\mathrm{C} /(\mathrm{Vm})$. In Han and Wang [16], planar cracks are modeled as continuous distributions of dislocations with density functions to be determined using a numerical procedure.

We employ the boundary element method here to compute $K_{I}^{+} /\left(T_{0} \sqrt{a}\right)$, $K_{I I}^{+} /\left(S_{0} \sqrt{a}\right)$ and $K_{I V}^{+} /\left(D_{0} \sqrt{a}\right)$. The exterior boundary of the region R is discretized into 80 boundary elements. To compute the numerical Green's function for the impermeable crack, we use at least $J=10$ in (32). A larger value of J is needed if the non-dimensionalized distance d / a separating the cracks is smaller. For the purpose of comparing the normalized intensity factors here with those in Han and Wang [16], we use the material constants in (58) and take $h / a=30, S_{0} / T_{0}=1$ and $D_{0} / T_{0}=10^{-10} \mathrm{C} / \mathrm{N}$. In Figure 4 , we compare plots of the non-dimensionalized intensity factors against d / a with those extracted from Han and Wang [16] for the corresponding case in
which $h / a \rightarrow \infty$. The two sets of values appear to agree reasonably well with each other.

Figure 4. Plots of $K_{I}^{+} /\left(T_{0} \sqrt{a}\right), K_{I I}^{+} /\left(S_{0} \sqrt{a}\right)$ and $K_{I V}^{+} /\left(D_{0} \sqrt{a}\right)$ against d / a.

Problem 4. If the electrical poling is taken to be along the x_{3} direction, the constitutive equations are given by

$$
\begin{align*}
\left(\begin{array}{l}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{33} \\
\sigma_{32} \\
\sigma_{31} \\
\sigma_{12}
\end{array}\right) & =\left(\begin{array}{cccccc}
A & N & F & 0 & 0 & 0 \\
N & A & F & 0 & 0 & 0 \\
F & F & C & 0 & 0 & 0 \\
0 & 0 & 0 & L & 0 & 0 \\
0 & 0 & 0 & 0 & L & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{2}(A-N)
\end{array}\right)\left(\begin{array}{c}
\gamma_{11} \\
\gamma_{22} \\
\gamma_{33} \\
2 \gamma_{32} \\
2 \gamma_{31} \\
2 \gamma_{12}
\end{array}\right) \\
& -\left(\begin{array}{ccc}
0 & 0 & e_{2} \\
0 & 0 & e_{2} \\
0 & 0 & e_{3} \\
0 & e_{1} & 0 \\
e_{1} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
E_{1} \\
E_{2} \\
E_{3}
\end{array}\right) \tag{59}
\end{align*}
$$

and

$$
\left(\begin{array}{c}
D_{1} \tag{60}\\
D_{2} \\
D_{3}
\end{array}\right)=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & e_{1} & 0 \\
0 & 0 & 0 & e_{1} & 0 & 0 \\
e_{2} & e_{2} & e_{3} & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\gamma_{11} \\
\gamma_{22} \\
\gamma_{33} \\
2 \gamma_{32} \\
2 \gamma_{31} \\
2 \gamma_{12}
\end{array}\right)+\left(\begin{array}{ccc}
\epsilon_{1} & 0 & 0 \\
0 & \epsilon_{1} & 0 \\
0 & 0 & \epsilon_{2}
\end{array}\right)\left(\begin{array}{c}
E_{1} \\
E_{2} \\
E_{3}
\end{array}\right)
$$

It follows that the non-zero coefficients $C_{I j K p}$ are

$$
\begin{align*}
& C_{1111}=C_{2222}=A, C_{1122}=C_{2211}=N, C_{3333}=C, \\
& C_{1133}=C_{3311}=C_{2233}=C_{3322}=F, \\
& C_{1313}=C_{3113}=C_{3131}=C_{1331}=C_{2323}=C_{3223}=C_{3232}=C_{2332}=L, \\
& C_{1212}=C_{2112}=C_{2121}=C_{1221}=\frac{1}{2}(A-N), \\
& C_{3141}=C_{1341}=C_{2342}=C_{3242}=C_{4131}=C_{4113}=C_{4223}=C_{4232}=e_{1}, \\
& C_{1143}=C_{2243}=C_{4311}=C_{4322}=e_{2}, \\
& C_{3343}=C_{4333}=e_{3}, C_{4141}=C_{4242}=-\epsilon_{1}, C_{4343}=-\epsilon_{2} . \tag{61}
\end{align*}
$$

The homogeneous system of linear algebraic equations for working out $A_{K \alpha}$ is given by

$$
\begin{align*}
& \left(\begin{array}{cccc}
A+\frac{1}{2}(A-N) \tau_{\alpha}^{2} & \left(N+\frac{1}{2}(A-N)\right) \tau_{\alpha} & 0 & 0 \\
\left(N+\frac{1}{2}(A-N)\right) \tau_{\alpha} & \frac{1}{2}(A-N)+A \tau_{\alpha}^{2} & 0 & 0 \\
0 & 0 & L+L \tau_{\alpha}^{2} & e_{1}+e_{1} \tau_{\alpha}^{2} \\
0 & 0 & e_{1}+e_{1} \tau_{\alpha}^{2} & -\epsilon_{1}-\epsilon_{1} \tau_{\alpha}^{2}
\end{array}\right)\left(\begin{array}{c}
A_{1 \alpha} \\
A_{2 \alpha} \\
A_{3 \alpha} \\
A_{4 \alpha}
\end{array}\right) \\
& =\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) . \tag{62}
\end{align*}
$$

If we use (62), we find that we cannot construct $\left[A_{K \alpha}\right]$ that is invertible. To overcome this minor difficulty, a relatively small amount of anisotropy is introduced into the equations governing u_{1} and u_{2}. Specifically, we replace
$C_{1111}=A$ in (61) by $C_{1111}=A+\varepsilon$, where ε is a selected real number whose magnitude is very small compared to A. It follows that we supercede (62) by

$$
\begin{align*}
& \left(\begin{array}{cccc}
A+\varepsilon+\frac{1}{2}(A-N) \tau_{\alpha}^{2} & \left(N+\frac{1}{2}(A-N)\right) \tau_{\alpha} & 0 & 0 \\
\left(N+\frac{1}{2}(A-N)\right) \tau_{\alpha} & \frac{1}{2}(A-N)+A \tau_{\alpha}^{2} & 0 & 0 \\
0 & 0 & L+L \tau_{\alpha}^{2} & e_{1}+e_{1} \tau_{\alpha}^{2} \\
0 & 0 & e_{1}+e_{1} \tau_{\alpha}^{2} & -\epsilon_{1}-\epsilon_{1} \tau_{\alpha}^{2}
\end{array}\right)\left(\begin{array}{c}
A_{1 \alpha} \\
A_{2 \alpha} \\
A_{3 \alpha} \\
A_{4 \alpha}
\end{array}\right) \\
& =\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) . \tag{63}
\end{align*}
$$

We can take $\tau_{3}=\tau_{4}=i$ and τ_{1} and τ_{2} are two distinct solutions with positive imaginary parts of the quartic equation

$$
\operatorname{det}\left(\begin{array}{cc}
A+\varepsilon+\frac{1}{2}(A-N) \tau^{2} & \left(N+\frac{1}{2}(A-N)\right) \tau \tag{64}\\
\left(N+\frac{1}{2}(A-N)\right) \tau & \frac{1}{2}(A-N)+A \tau^{2}
\end{array}\right)=0 .
$$

Note that (64) cannot yield two distinct solutions with positive imaginary parts if ε is zero.

From (62), we find that $A_{K a}$ may be chosen to be

$$
\begin{align*}
& A_{1 \alpha}=-\frac{\left(N+\frac{1}{2}(A-N)\right) \tau_{\alpha}}{A+\varepsilon+\frac{1}{2}(A-N) \tau_{\alpha}^{2}}\left(\delta_{\alpha 1}+\delta_{\alpha 2}\right) \\
& A_{2 \alpha}=\delta_{\alpha 1}+\delta_{\alpha 2}, \quad A_{3 \alpha}=\delta_{\alpha 3}, \quad A_{4 \alpha}=\delta_{\alpha 4} . \tag{65}
\end{align*}
$$

The matrix $\left[A_{K \alpha}\right]$ as constructed in (65) is invertible if $\tau_{1} \neq \tau_{2}$.
For a particular problem in which the electrical poling is along the x_{3} direction, let us take the solution domain R to be $-h<x_{1}<h,-h<x_{2}<h$, with two collinear permeable crack lying in the regions $-b<x_{1}<-a, x_{2}=0$, and $a<x_{1}<b, x_{2}=0$, where a, b and h are positive constants such that $a<b<h$. The boundary conditions on the exterior boundary of R are given by

$$
\left.\begin{array}{l}
P_{1}=0 \\
P_{2}=0 \\
P_{3}= \pm S_{0} \\
P_{4}= \pm D_{0}
\end{array}\right\} \text { for }-h<x_{1}<h \text { on } x_{2}= \pm h
$$

$$
\left.\begin{array}{l}
P_{1}=0 \tag{66}\\
P_{2}=0 \\
P_{3}=0 \\
P_{4}=0
\end{array}\right\} \text { for }-h<x_{2}<h \text { on } x_{1}= \pm h
$$

where S_{0} and D_{0} are non-negative constants.
Let $K_{I I I}^{\text {inner }}$ and $K_{I I I}^{\text {outer }}$ respectively denote the mode III stress intensity factor at the inner and outer tips of the collinear cracks. The crack energy release rates at the inner and outer tips are then respectively given by

$$
\begin{equation*}
G^{\mathrm{inner}}=\frac{\pi}{2 L}\left(K_{I I I}^{\mathrm{inner}}\right)^{2} \text { and } G^{\text {outer }}=\frac{\pi}{2 L}\left(K_{I I I}^{\text {outer }}\right)^{2} . \tag{67}
\end{equation*}
$$

In Li [18], it is analytically given that

$$
\left(\frac{4 L G^{\text {inner }}}{\pi(b-a) S_{0}^{2}}, \frac{4 L G^{\text {outer }}}{\pi(b-a) S_{0}^{2}}\right) \rightarrow\left(\frac{2\left[b^{2} \lambda-a^{2}\right]^{2}}{a(b-a)\left(b^{2}-a^{2}\right)}, \frac{2 b^{3}[1-\lambda]^{2}}{(b-a)\left(b^{2}-a^{2}\right)}\right)
$$

where

$$
\begin{equation*}
\lambda=\frac{\int_{0}^{\pi / 2}\left[1-\left(1-(a / b)^{2}\right) \sin ^{2} t\right]^{1 / 2} d t}{\int_{0}^{\pi / 2}\left[1-\left(1-(a / b)^{2}\right) \sin ^{2} t\right]^{-1 / 2} d t} \tag{69}
\end{equation*}
$$

Using the material constants in (58) and taking $2 h /(b-a)=20$, we use the boundary element method with the Green's function for the permeable cracks to compute the crack energy release rates $G^{\text {inner }}$ and $G^{\text {outer }}$ according to (67) (after calculating numerically the mode III stress intensity factors). In perturbing the elastic modulus C_{1111} to construct an invertible matrix $\left[A_{K \alpha}\right]$, we choose $\varepsilon=10^{2}$, that is, we take C_{1111} to be given by $\left(12.6+10^{-8}\right) \times 10^{10}$ $\mathrm{N} / \mathrm{m}^{2}$ instead of $12.6 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$. The outer boundary of the solution domain is discretized into 160 elements. The numerical Green's function is calculated using at least $J=10$ in (32). If the inner tips of the cracks are close to each other then $J=30$ is used. If the outer tips are near the vertical sides, we use $J=20$ and add another 40 elements on each of the vertical sides.

Figure 5. Plots of $4 L G_{I}^{\text {inner }} /\left(\pi(b-a) S_{0}^{2}\right)$, against $2 a /(b-a)$.

Figure 6. Plots of $4 L G_{I}^{\text {outer }} /\left(\pi(b-a) S_{0}^{2}\right)$, against $2 a /(b-a)$.

Plots of the non-dimensionalized crack energy release rates $4 L G^{\text {inner }} /(\pi(b-$ a) S_{0}^{2}) and $4 L G^{\text {outer }} /\left(\pi(b-a) S_{0}^{2}\right)$ against $2 a /(b-a)$ (for $0.50 \leq 2 a /(b-a) \leq$ 17.50) are given in Figures 5 and 6 respectively. In the figures, we also compare the numerical crack energy release rates with the values calculated from (68) (given by Li [18] for $2 h /(b-a) \rightarrow \infty$). The numerical crack energy release rates are found to agree very well with (68) for small values of $2 a /(b-a)$. This is expected as (68) is valid only for $2 h /(b-a) \rightarrow \infty$ (that is, for an infinite piezoelectric material).

Note that the crack tip energy release rate G for the corresponding problem involving only a single crack of length $b-a$ in an infinite piezoelectric material is given by $4 L G /\left(\pi(b-a) S_{0}^{2}\right)=1$. Thus, it is not surprising that $4 L G^{\text {inner }} /\left(\pi(b-a) S_{0}^{2}\right)$ and $4 L G^{\text {outer }} /\left(\pi(b-a) S_{0}^{2}\right)$ computed using the boundary element method are quite close to 1 when the inner crack tips are several crack lengths apart and the outer tips are not yet so close to the vertical sides of the solution domain. As $2 a /(b-a)$ approaches 18 (that is, as the outer crack tips approach the vertical sides of the solution domain), the crack energy release rates calculated using the boundary element method begin to deviate more significantly from (68). As expected, as is obvious in Figure $6,4 L G^{\text {outer }} /\left(\pi(b-a) S_{0}^{2}\right)$ shows a significant increase in magnitude when the outer crack tips interact strongly with the vertical sides of the solution domain.

For the particular problem under consideration here, it is known theoretically that $4 L G^{\text {inner }} /\left(\pi(b-a) S_{0}^{2}\right)$ for $2 a /(b-a)=\xi$ (where ξ is a positive real number such that $0<\xi<18)$ is equal to $4 L G^{\text {outer }} /\left(\pi(b-a) S_{0}^{2}\right)$ for $2 a /(b-a)=18-\xi$. Also, $4 L G^{\text {outer }} /\left(\pi(b-a) S_{0}^{2}\right)$ for $2 a /(b-a)=\xi$ is equal to $4 L G^{\text {inner }} /\left(\pi(b-a) S_{0}^{2}\right)$ for $2 b /(b-a)=18-\xi$. In Figures 5 and 6 , the graphs for the numerical values of $4 L G^{\text {inner }} /\left(\pi(b-a) S_{0}^{2}\right)$ and $4 L G^{\text {outer }} /\left(\pi(b-a) S_{0}^{2}\right)$ as obtained from the boundary element method reflect this theoretical observation. For example, we find that the values of $4 L G^{\text {inner }} /\left(\pi(b-a) S_{0}^{2}\right)$ for $2 a /(b-a)=0.50$ and $4 L G^{\text {outer }} /\left(\pi(b-a) S_{0}^{2}\right)$ for $2 a /(b-a)=17.50$
are respectively given by 1.2425 and 1.2407 (which differ from each other by less than $0.2 \%)$, and $4 L G^{\text {outer }} /\left(\pi(b-a) S_{0}^{2}\right)$ for $2 a /(b-a)=0.50$ and $4 L G^{\text {inner }} /\left(\pi(b-a) S_{0}^{2}\right)$ for $2 a /(b-a)=17.50$ are respectively given by 1.1024 and 1.1021 (less than 0.03% difference).

$7 \quad$ Summary

Green's functions are constructed numerically for multiple arbitrarily located planar cracks in an infinite electroelastic space. The cracks are traction free and electrically either permeable or impermeable. We apply the Green's functions to derive a simple boundary element method for the numerical solution of some plane electroelastic crack problems involving finite solution domains. As the Green's functions satisfy the boundary conditions on the cracks, the boundary element procedure requires only the exterior boundary of the solution domain to be discretized into boundary elements, that is, no discretization of the crack faces is needed.

To check the validity of the numerical Green's functions and the boundary element method, some specific electroelastic crack problems are solved. Numerical values obtained for the relevant intensity factors and the crack energy release rate at the crack tips are in good agreement with the values computed from known solutions in the literature.

References

[1] M Abramowitz and IA Stegun, Handbook of Mathematical Functions, Dover, New York, 1971.
[2] WT Ang, A boundary integral solution for the problem of multiple interacting cracks in an elastic material, International Journal of Fracture 31 (1986) 259-270.
[3] WT Ang, A boundary integral equation for deformations of an elastic body with an arc crack, Quarterly of Applied Mathematics 45 (1987) 131-139.
[4] WT Ang and DL Clements, A boundary integral equation method for the solution of a class of crack problems, Journal of Elasticity 17 (1987) 9-21.
[5] WT Ang and YS Park, Hypersingular integral equations for arbitrarilylocated planar cracks in an anisotropic bimaterial, Engineering Analysis with Boundary Elements 20 (1997) 135-143.
[6] WT Ang and JCF Telles, A numerical Green's function for multiple cracks in anisotropic bodies, Journal of Engineering Mathematics 49 (2004) 197-207.
[7] DM Barnett and J Lothe, Dislocations and line charges in anisotropic piezoelectric insulators, Physica Status Solidi (b) 67 (1975) 105-111.
[8] JT Chen and HK Hong, Review of dual boundary element methods with emphasis on hypersingular integrals and divergent series, Applied Mechanics Review 52 (1999) 17-33.
[9] DL Clements, Boundary Value Problems Governed by Second Order Elliptic Systems, Pitman, London, 1981.
[10] DL Clements and MD Haselgrove, A boundary integral equation method for a class of crack problems in anisotropic elasticity, International Journal of Computer Mathematics 12 (1983) 267-278.
[11] HJ Ding, GQ Wang and WQ Chen, A boundary integral formulation and 2D fundamental solutions for piezoelectric media, Computer Methods in Applied Mechanics and Engineering 158 (1998) 65-80.
[12] GF Gao and WX Fan, The fundamental solutions for the plane problem in piezoelectric media with an elliptic hole or a crack, Applied Mathematics and Mechanics 19 (1998) 1043-1052.
[13] F Garcia-Sanchez, SB Saez and J Dominguez, Anisotropic and piezoelectric materials fracture analysis by BEM, Computers 8 Structures 83 (2005) 804-820.
[14] U Groh and M Kuna, Efficient boundary element analysis of cracks in 2D piezoelectric structures, International Journal of Solids and Structures 42 (2005) 2399-2416.
[15] S Guimarães and JCF Telles, General application of numerical Green's functions for SIF computations with boundary elements. Computer Modeling in Engineering and Sciences 1 (2000) 131-139.
[16] X Han and T Wang, Interacting multiple cracks in piezoelectric materials, International Journal of Solids and Structures 36 (1999) 4183-4202.
[17] AC Kaya and F Erdogan, On the solution of integral equations with strongly singular kernels, Quarterly of Applied Mathematics 45 (1987) 105-122.
[18] XF Li, Closed-form solution for a piezoelectric strip with two collinear cracks normal to the strip boundaries, European Journal of MechanicsA/Solids 21 (2002) 981-989.
[19] SB Park and CT Sun, Fracture criteria for piezoelectric ceramics, Journal of the American Ceramic Society 78 (1995) 1475-1480.
[20] RKND Rajapakse and XL Xu, Boundary element modeling of cracks in piezoelectric solids, Engineering Analysis with Boundary Elements 25 (2001) 771-781.
[21] Y Shindo, K Tanaka and F Narita, Singular stress and electric fields of a piezoelectric ceramic strip with a finite crack under longitudinal stress, Acta Mechanica 120 (1997) 31-45.
[22] MD Snyder and TA Cruse, Boundary integral analysis of cracked anisotropic plates, International Journal of Fracture 11 (1975) 315-328.
[23] JCF Telles, GS Castor and S Guimarães, A numerical Green's function approach for boundary elements applied to fracture mechanics, International Journal for Numerical Methods in Engineering 38 (1995) 3259-3274.
[24] BL Wang and YW Mai, Impermeable crack and permeable crack assumptions, which one is more realistic? Journal of Applied MechanicsTransactions of ASME 71 (2004) 575-578.
[25] XL Xu and RKND Rajapakse, Boundary element analysis of piezoelectric solids with defects, Composites Part B: Engineering 29 (1998) 655669.

[^0]: * Author for correspondence (W. T. Ang)

 E-mail: mwtang@ntu.edu.sg
 http://www.ntu.edu.sg/home/mwtang/

