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Abstract

The problem of determining the electro-elastic fields around ar-
bitrarily oriented planar cracks in an infinite piezoelectric space is
considered. The cracks which are acted upon by a transient load are
either electrically impermeable or permeable. A semi-analytic method
based on the theory of exponential Fourier transformation is proposed
for solving the problem in the Laplace transform domain. The Laplace
transforms of the jumps in the displacements and electric potential
across opposite crack faces are determined by solving a system of hy-
persingular integral equations. Once these displacement and electric
potential jumps are obtained, the displacements and electric poten-
tial and other physical quantities of interest, such as the crack tip
stress and electric displacement intensity factors, can be computed
with the help of a suitable algorithm for inverting Laplace transforms.
The stress and electric displacement intensity factors are computed
for some specific cases of the problem.

Keywords: multiple cracks, transient loads, piezoelectric materials,
hypersingular integral equations

* This is the authors’ personal version of the article published in:
European Journal of Mechanics-A/Solids 30 (2011) 608-618.

1



1 Introduction

In recent years, the problem of determining the electro-elastic fields around

cracks in piezoelectric materials has been a subject of considerable interest

among many researchers. It appears that the majority of analyses on piezo-

electric crack problems (see, for example, Athanasius, Ang and Sridhar [4],

Li [20], Shindo, Watanabe and Narita [27] and Wang and Mai [32]) are con-

cerned with electro-elastostatic deformations. According to Kuna [18], there

are comparatively fewer works on piezoelectric cracks that are acted upon by

time dependent loads.

The governing partial differential equations for piezoelectric materials un-

dergoing dynamic antiplane deformations are relatively simpler in form, being

reducible to a pair of equations comprising the two-dimensional Helmholtz

and Laplace’s equations. Thus, most papers giving semi-analytic solutions

for dynamic piezoelectric crack problems assume that the cracks undergo

antiplane deformations. For example, the dynamic response of a single elec-

trically impermeable planar crack in an infinite transversely isotropic piezo-

electric material under pure electric load and undergoing an antiplane defor-

mation is investigated by Chen [7]. Chen and Karihaloo [8], Chen and Meguid

[9], Li and Fan [21] and Li and Tang [24] have solved problems involving a

single planar crack in an infinitely long piezoelectric strip under antiplane

deformations. Coplanar cracks undergoing antiplane deformations in piezo-

electric materials are examined in Chen and Worswick [10] and Meguid and

Chen [25]. Kwon and Lee [19] and Li and Lee [22]-[23] have investigated the

antiplane deformation of edge cracks in piezoelectric materials.

There are apparently few papers in which semi-analytic solutions for

cracks undergoing dynamic inplane deformations in piezoelectric materials

may be found. One of them is Shindo [26]. In [26], the problem of a single

planar crack in a piezoelectric ceramic under normal impact is formulated in
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terms of a pair of dual integral equations by representing the displacement

and electric potential in the Laplace transform domain by suitable Fourier

sine and cosine transform representations. The dual integral equations are

solved as explained in Sneddon and Lowengrub [30], by reducing them to

Fredholm integral equations of the second kind. The dynamic piezoelectric

problem can also be formulated in terms of hypersingular integral equations

using the approach in a recent paper by Garćia-Sánchez, Zhang, Sládek and

Sládek [13]. In [13], the kernels of the hypersingular integral formulation con-

tain second order spatial derivatives of a suitable dynamic Green’s function

for piezoelectric solids. The Green’s function is derived using Radon trans-

form. Its evaluation is a rather involved exercise, requiring the computation

of a line integral over a unit circle with integrand that is expressed in terms

of exponential integrals (Wang and Zhang [33]).

The present paper derives a semi-analytic solution for an electro-elastic

problem involving an arbitrary number of arbitrarily oriented planar cracks

in an infinite piezoelectric space. The cracks are acted upon by internal

stresses that are time dependent and are either electrically impermeable or

permeable. The displacement and electric potential in the Laplace trans-

form domain are expressed as a linear combination of suitably constructed

exponential Fourier transform representations. The integrands of the Fourier

integrals contain unknown functions that are directly related to the jumps

in the Laplace transforms of the displacement and electrical potential across

opposite crack faces. The unknown functions are to be determined by solv-

ing numerically a system of hypersingular integral equations. Once they

are determined, the displacements and electric potential and other physical

quantities of interest, such as the crack tip stress and electric displacement

intensity factors, can be computed with the help of a suitable algorithm for

inverting Laplace transforms. The analysis presented here is general in that
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it covers both inplane and antiplane deformations. The crack tip stress and

electric displacement intensity factors are computed for some specific cases

of the problem. For the case involving a single planar crack, the values of

the stress and electric displacement intensity factors computed are compared

with those published in the literature.

The solution presented here is applicable to cracks that are either elec-

trically impermeable or permeable. The electrically semi-permeable cracks

proposed by Hao and Shen [14] may be of interest in engineering analysis too.

The solution here may be used together with an iterative procedure (such

as the one described in Ang and Athanasius [3]) to analyze the dynamic

interaction of electrically semi-permeable cracks.

Numerical methods may be applied to solve dynamic piezoelectric prob-

lems involving cracks in solids of finite extent. Examples of such numerical

works include: Enderlein, Ricoeur and Kuna [11] (finite element method);

Garćia-Sánchez, Zhang and Sáez [12], Kögl and Gaul [17] and Wünsche,

Garćia-Sánchez, Sáez and Zhang [34] (boundary element method); and Sladek,

Sladek, Zhang, Garćia-Sánchez and Wünsche [28] (meshless method) . The

semi-analytic solution given here may be used to check the validity of those

numerical techniques for solving dynamic piezoelectric crack problems.

2 The problem

Referring to an Ox1x2x3 Cartesian coordinate system, consider an infinite

piezoelectric space that contains N arbitrarily oriented non-intersecting pla-

nar cracks whose geometries do not change along the x3 axis. The cracks are

denoted by Γ(1), Γ(2), · · · , Γ(N−1) and Γ(N). The n-th planar crack Γ(n) lies

in the region

−`(n) < a(n)j1 (xj − c(n)j ) < `(n), a(n)j2 (xj − c(n)j ) = 0, −∞ < x3 <∞, (1)
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where

[a
(n)
ij ] =

 sin(θ(n)) cos(θ(n)) 0
− cos(θ(n)) sin(θ(n)) 0

0 0 1

 . (2)

On the Ox1x2 plane, the crack Γ(n) is a straight line cut, 2`(n) is the length

of the crack, (c
(n)
1 , c

(n)
2 ) is the midpoint of the crack and θ(n) is the angle

between the crack and the vertical line passing through (c
(n)
1 , c

(n)
2 ) (such that

0 ≤ θ(n) ≤ π), as shown in Figure 1. Note that the usual convention of

summing over a repeated subscript is adopted in (1) for lower case Latin

subscripts that run from 1 to 3.

It will be assumed that here the electroelastic deformation of the cracked

piezoelectric space does not vary along the x3 direction. The problem is to

determine the displacements uk(x1, x2, t) and electric potential φ(x1, x2, t) in

the piezoelectric space for time t > 0 such that suitably prescribed boundary

conditions on the cracks are satisfied.

Figure 1. A geometrical sketch of the problem.
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More specifically, the conditions the cracks are given by

σkj(x1, x2, t)m
(n)
j → −P (n)k (ξ1, ξ2, t) (k = 1, 2, 3)

as (x1, x2)→ (ξ1, ξ2) ∈ Γ(n)(n = 1, 2, · · · , N), (3)

and either

dj(x1, x2, t)m
(n)
j → −P (n)4 (ξ1, ξ2, t)

as (x1, x2)→ (ξ1, ξ2) ∈ Γ(n)(n = 1, 2, · · · , N)
if the cracks are electrically impermeable, (4)

or

∆φ(x1, x2, t)→ 0 as (x1, x2)→ (ξ1, ξ2) ∈ Γ(n) (n = 1, 2, · · · ,N)
if the cracks are electrically permeable, (5)

where σij and di are respectively the stresses and electric displacements,

P
(n)
1 (ξ1, ξ2, t), P

(n)
2 (ξ1, ξ2, t), P

(n)
3 (ξ1, ξ2, t) and P

(n)
4 (ξ1, ξ2, t) are suitably pre-

scribed functions for (ξ1, ξ2) ∈ Γ(n), m
(n)
i = −a(n)i2 are the components of a

unit magnitude normal vector to the crack Γ(n) and ∆φ(x1, x2) denotes the

jump in the electrical potential φ across the crack Γ(n) as defined by

∆φ(x1, x2, t) = lim
ε→0
[φ(x1 − |ε|m(n)

1 , x2 − |ε|m(n)
2 , t)

− φ(x1 + |ε|m(n)
1 , x2 + |ε|m(n)

2 , t)]

for (x1, x2) ∈ Γ(n). (6)

Furthermore, it is assumed here that the displacements uk and its partial

derivative with respect to time (that is, ∂uk/∂t) are both zero at time t = 0

and the stresses σkj(x1, x2, t) and electric displacement dk(x1, x2, t) generated

by the cracks vanish as x21 + x
2
2 →∞.
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3 Basic equations of electroelasticity

The governing equations for the displacements uk and electric potential φ in

a homogeneous piezoelectric material are given by

cijk`
∂2uk

∂xj∂x`
+ e`ij

∂2φ

∂xj∂x`
= ρ

∂2ui
∂t2

,

ejk`
∂2uk

∂xj∂x`
− κj`

∂2φ

∂xj∂x`
= 0, (7)

where cijk`, e`ij and κi` are the constant elastic moduli, piezoelectric coeffi-

cients and dielectric coefficients respectively and ρ is the density.

The constitutive equations relating (σij , dj) and (uk,φ) are

σij = cijk`
∂uk
∂x`

+ e`ij
∂φ

∂x`
,

dj = ejk`
∂uk
∂x`
− κjp

∂φ

∂xp
. (8)

Following closely the approach of Barnett and Lothe [5], we define

UJ =

½
uj for J = j = 1, 2, 3,
φ for J = 4,

SIj =

½
σij for I = i = 1, 2, 3,
dj for I = 4,

CIjK` =


cijk` for I = i = 1, 2, 3 and K = k = 1, 2, 3,
e`ij for I = i = 1, 2, 3 and K = 4,
ejk` for I = 4 and K = k = 1, 2, 3,
−κj` for I = 4 and K = 4,

(9)

so that (7) and (8) may be respectively written more compactly as

CIjK`
∂2UK
∂xj∂x`

= BIK
∂2UK
∂t2

(I = 1, 2, 3, 4) (10)
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and

SIj = CIjK`
∂UK
∂x`

(I = 1, 2, 3, 4; j = 1, 2, 3) (11)

where

BIK =

½
ρ if I = K and I 6= 4,
0 otherwise.

(12)

Note that uppercase Latin subscripts have values 1, 2, 3 and 4. Summation

is also implied for repeated uppercase Latin subscripts.

It follows that the problem stated in Section 2 requires solving (10) within

the piezoelectric space for time t > 0 subject to the initial-boundary condi-

tions

UK = 0 and
∂UK
∂t

= 0 at t = 0 (K = 1, 2, 3), (13)

SIj(x1, x2, t)m
(n)
j → −P (n)I (ξ1, ξ2, t) (I = 1, 2, 3)

as (x1, x2)→ (ξ1, ξ2) ∈ Γ(n) (n = 1, 2, · · · ,N), (14)

and either

S4j(x1, x2, t)m
(n)
j → −P (n)4 (ξ1, ξ2, t)

as (x1, x2)→ (ξ1, ξ2) ∈ Γ(n) (n = 1, 2, · · · , N)
if the cracks are electrically impermeable, (15)

or

∆U4(x1, x2, t)→ 0 as (x1, x2)→ (ξ1, ξ2) ∈ Γ(n) (n = 1, 2, · · · ,N)
if the cracks are electrically permeable, (16)

where

∆UI(x1, x2, t) = lim
ε→0
[UI(x1 − |ε|m(n)

1 , x2 − |ε|m(n)
2 )

− UI(x1 + |ε|m(n)
1 , x2 + |ε|m(n)

2 )]

for (x1, x2) ∈ Γ(n). (17)
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In addition, it is required that SIj(x1, x2, t)→ 0 as x21 + x
2
2 →∞.

4 Formulation in Laplace transform domain

We denote the Laplace transformation of F (x1, x2, t) over time t ≥ 0 bybF (x1, x2, s), that is, we define
bF (x1, x2, s) = ∞Z

0

F (x1, x2, t) exp(−st)dt, (18)

where s is the Laplace transformation parameter.

Application of the Laplace transformation on both sides of (10) together

with the initial conditions (13) yields

CIjK`
∂2 bUK
∂xj∂x`

− s2BIK bUK = 0 (I = 1, 2, 3, 4). (19)

In the Laplace transform domain, the problem is to solve (19) subject to

bSIj(x1, x2, s)m(n)
j → − bP (n)I (ξ1, ξ2, s) (I = 1, 2, 3)

as (x1, x2)→ (ξ1, ξ2) ∈ Γ(n) (n = 1, 2, · · · , N), (20)

and either

bS4j(x1, x2, s)m(n)
j → − bP (n)4 (ξ1, ξ2, s)

as (x1, x2)→ (ξ1, ξ2) ∈ Γ(n) (n = 1, 2, · · · , N)
if the cracks are electrically impermeable, (21)

or

∆bU4(x1, x2, s)→ 0 as (x1, x2)→ (ξ1, ξ2) ∈ Γ(n) (n = 1, 2, · · · , N)
if the cracks are electrically permeable. (22)

It is also required that bSIj(x1, x2, s)→ 0 as x21 + x
2
2 →∞.
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5 Method of solution

In this section, a method based on the theory of exponential Fourier trans-

formation is proposed for solving (19) subject to (20)-(22).

5.1 Solution in Fourier integral form

For the solution of the piezoelectric crack problem, let

bUK(x1, x2, s) = NX
n=1

Re{
4X

α=1

∞Z
0

A
(n)
Kα(ξ, s)[H(a

(n)
r2 (xr − c(n)r ))F (n)1α (ξ, s)

× exp(iξ(a(n)j1 + τ (n)α (ξ, s)a
(n)
j2 )(xj − c(n)j ))

+H(−a(n)r2 (xr − c(n)r ))F (n)2α (ξ, s)

× exp(−iξ(a(n)j1 + τ (n)α (ξ, s)a
(n)
j2 )(xj − c(n)j ))]dξ}, (23)

where H(x) is the unit-step Heaviside function, F
(n)
1α (ξ, s) and F

(n)
2α (ξ, s) are

functions yet to be determined, τ (n)α (ξ, s) (n = 1, 2, · · · , N) are roots, with
positive imaginary parts, of the 8-th order polynomial equation (in τ ) given

by

det[
s2

ξ2
BIK + (a

(n)
11 + τa

(n)
12 )

2CI1K1

+ (a
(n)
21 + τa

(n)
22 )(a

(n)
11 + τa

(n)
12 )(CI1K2 + CI2K1)

+ (a
(n)
21 + τa

(n)
22 )

2CI2K2] = 0, (24)

A
(n)
Kα(ξ, s) (n = 1, 2, · · · , N) are non-trivial solutions of the system

[
s2

ξ2
BIK + (a

(n)
11 + τ (n)α (ξ, s)a

(n)
12 )

2CI1K1

+ (a
(n)
21 + τ (n)α (ξ, s)a

(n)
22 )(a

(n)
11 + τ (n)α (ξ, s)a

(n)
12 )(CI1K2 + CI2K1)

+ (a
(n)
21 + τ (n)α (ξ, s)a

(n)
22 )

2CI2K2]A
(n)
Kα = 0. (25)
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From (11) and (23), we obtain

bSIj(x1, x2, s) = NX
n=1

Re{
4X

α=1

∞Z
0

iξL(n)Ijα(ξ, s)[H(a
(n)
r2 (xr − c(n)r ))F (n)1α (ξ, s)

× exp(iξ(a(n)j1 + τ (n)α (ξ, s)a
(n)
j2 )(xj − c(n)j ))

−H(−a(n)r2 (xr − c(n)r ))F (n)2α (ξ, s)

× exp(−iξ(a(n)j1 + τ (n)α (ξ, s)a
(n)
j2 )(xj − c(n)j ))]dξ}, (26)

L
(n)
Ijα(ξ, s) (n = 1, 2, · · · , N) are given by

L
(n)
Ijα(ξ, s) = [(a

(n)
11 + τ (n)α (ξ, s)a

(n)
12 )CIjK1

+ (a
(n)
21 + τ (n)α (ξ, s)a

(n)
22 )CIjK2]A

(n)
Kα. (27)

The integral representation for bUK(x1, x2, s) in (23) is obtained by general-
izing the analyses in Ang [1]-[2] and Clements [6].

Note that bUK(x1, x2, s) and bSIj(x1, x2, s) in (23) and (26) respectively are
represented by different integral expressions in different parts of the piezoelec-

tric space. To ensure that bSIj(x1, x2, s)m(n)
j are continuous on a

(n)
r2 (xr−c(n)r ) =

0, the functions F
(n)
1α (ξ, s) and F

(n)
2α (ξ, s) are chosen to be given by

F
(n)
1α (ξ, s) =M

(n)
αP (ξ, s)ψ

(n)
P (ξ, s) and F

(n)
2α (ξ, s) =M

(n)
αP (ξ, s)ψ

(n)

P (ξ, s) , (28)

where ψ
(n)
P (ξ, s) are functions to be determined and the overhead bar denotes

the complex conjugate of a complex number and M
(n)
αP (ξ, s) are defined by

4X
α=1

m
(n)
j L

(n)
Ijα(ξ, s)M

(n)
αP (ξ, s) = δIP (n = 1, 2, · · · ,N). (29)

The functions bUK(x1, x2, s) are continuous on the plane a(n)r2 (xr−c(n)r ) = 0
at points not on any of the cracks if ψ

(n)
P (ξ, s) are chosen to be

ψ
(n)
P (ξ, s) = iT

(n)
PJ (ξ, s)

`(n)Z
−`(n)

r
(n)
J (u, s) exp(−iξu)du, (30)
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where i =
√−1, r(n)J (u, s) are real functions yet to be determined and

T
(n)
PJ (ξ, s) are real functions defined by

i

4X
α=1

[A
(n)
Kα(ξ, s)M

(n)
αP (ξ, s)− A

(n)

Kα(ξ, s)M
(n)

αP (ξ, s)]T
(n)
PJ (ξ, s) = δKJ . (31)

Use of (31) in (23) together with

lim
²→0+

²

`Z
−`

ψ(u)

²2 + (v − u)2du = πψ(v) for − ` < v < `, (32)

gives

r
(n)
K (a

(n)
j1 (xj − c(n)j ), s) =

1

π
∆bUK(x1, x2, s)

for − `(n) < a(n)j1 (xj − c(n)j ) < `(n), a(n)j2 (xj − c(n)j ) = 0, (33)

where∆bUK(x1, x2, s) are the Laplace transform of the generalized crack open-
ing displacements as defined in (17).

The functions bSIj(x1, x2, s) in (26) can now be written as
bSIj(x1, x2, s) = − NX

n=1

`(n)Z
−`(n)

r
(n)
K (u, s)Re{

4X
α=1

∞Z
0

ξ[H(a
(n)
r2 (xr − c(n)r ))

× L(n)Ijα(ξ, s)M (n)
αP (ξ, s) exp(iξτ

(n)
α (ξ, s)a

(n)
k2 (xk − c(n)k ))

+H(−a(n)r2 (xr − c(n)r ))L(n)Ijα(ξ, s)M (n)

αP (ξ, s)

× exp(iξτ (n)α (ξ, s)a
(n)
k2 (xk − c(n)k ))]

× T (n)PK(ξ, s) exp(iξ[a
(n)
k1 (xk − c(n)k )− u])dξ}du. (34)
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5.2 Electrically impermeable cracks

From (34), conditions (20) and (21) for electrically impermeable cracks give

the hypersingular integral equations

1

`(q)
H

1Z
−1

D
(q)
IK∆

bU (q)K (u, s)
(v − u)2 du+ `(q)

1Z
−1

∆bU (q)K (u, s)Ω(q)IK(u, v, s)du
+ `(q)C

1Z
−1

s2G
(q)
IK∆

bU (q)K (u, s) cosh(`(q)η|v − u|) ln(`(q)η|v − u|)du
+

NX
n=1
n6=q

`(n)
1Z

−1

∆bU (n)K (u, s)Θ
(nq)
IK (u, v, s)du

= −π bP (q)I (X(q)
1 (v), X

(q)
2 (v), s) (I = 1, 2, 3, 4)

for − 1 < v < 1 (q = 1, 2, · · · , N), (35)

where ∆bU (q)K (u, s) = πr
(q)
K (`

(q)u, s), X
(q)
1 (v) = c

(q)
1 + `(q)v sin(θ(q)), X

(q)
2 (v)

= c
(q)
2 − `(q)v cos(θ(q)), C denotes that the integral is to be interpreted in the

Cauchy principal sense and H denotes that the integral is to be interpreted

in the Hadamard finite-part sense, D
(q)
IK, G

(q)
IK and W

(q)
IK(ξ, s) are given by

D
(q)
IK = lim

(ξ/s)→∞
T
(q)
IK(ξ, s),

G
(q)
IK = lim

(ξ/s)→∞
(
ξ

s
)2[T

(q)
IK(ξ, s)−D(q)

IK ] ,

W
(q)
IK(ξ, s) = T

(q)
IK(ξ, s)−D(q)

IK −
s2G

(q)
IK

ξ2 + η2
(η > 0), (36)
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and Ω
(q)
IK(u, v, s) and Θ

(nq)
IK (u, v, s) are respectively defined by

Ω
(q)
IK(u, v, s) = −

∞Z
0

ξW
(q)
IK(ξ, s) cos(`

(q)ξ[v − u])dξ

− s2G(q)IK[Shi(`(q)η|v − u|) sinh(`(q)η|v − u|)
− 1
2
cosh(`(q)η|v − u|)(Ei(`(q)η|v − u|)− E1(`(q)η|v − u|))

+ cosh(`(q)η|v − u|) ln(`(q)η|v − u|)], (37)

and

Θ
(nq)
IK (u, v, s) = −Re{

4X
α=1

∞Z
0

ξm
(q)
j [H(Y

(nq)
2 (u, v))

× L(n)Ijα(ξ, s)M (n)
αP (ξ, s) exp(iξτ

(n)
α (ξ, s)Y

(nq)
2 (u, v))

+H(−Y (nq)2 (u, v))L
(n)

Ijα(ξ, s)M
(n)

αP (ξ, s)

× exp(iξτ (n)α (ξ, s)Y
(nq)
2 (u, v))]

× T (n)PK(ξ, s) exp(iξY
(nq)
1 (u, v))dξ}

if it is assumed that Y
(nq)
2 (u, v) 6= 0, (38)

with Y
(nq)
p (u, v) = a

(n)
kp (X

(q)
k (v)− c(n)k )− `(n)δp1u and

Shi(u) =

uZ
0

sinh(x)

x
dx,

Ei(u) = −C
∞Z

−u

exp(−x)
x

dx,

E1(u) =

∞Z
u

exp(−x)
x

dx. (39)

The functions W
(q)
IK(ξ, s) behave as O(s

4/ξ4) for very large ξ. Thus, the im-

proper integral over [0,∞) that appears in the definition of Ω(q)IK(u, v, s) in
(37) is well defined.
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Note that the expressions for Θ
(nq)
IK (u, v, s)as given in (38) are valid for

Y
(nq)
2 (u, v) 6= 0. If Y (nq)2 (u, v) = 0 then (38) has to be modified accordingly.

The modification gives

Θ
(nq)
IK (u, v, s) = Re{

eD(nq)
IK

[Y (nq)1 (u, v)]2
−

∞Z
0

ξfW (nq)
IK (ξ, s) exp(iξY

(nq)
1 (u, v))dξ

− s2 eG(nq)IK [Shi(η|Y (nq)1 (u, v)|) sinh(η|Y (nq)1 (u, v)|)
− 1
2
cosh(η|Y (nq)1 (u, v)|)

× (Ei(η|Y (nq)1 (u, v)|)−E1(η|Y (nq)1 (u, v)|))
+ i

π

2
sgn(Y

(nq)
1 (u, v))

× (cosh(η|Y (nq)1 (u, v)|)− sinh(η|Y (nq)1 (u, v)|))] }
if Y

(nq)
2 (u, v) = 0, (40)

where sgn(x) denotes the sign of x and

eD(nq)
IK = lim

(ξ/s)→∞
eT (nq)IK (ξ, s),

eT (nq)IK (ξ, s) =
4X

α=1

m
(q)
j L

(n)
Ijα(ξ, s)M

(n)
αP (ξ, s)T

(n)
IK (ξ, s),

eG(nq)IK = lim
(ξ/s)→∞

(
ξ

s
)2[eT (nq)IK (ξ, s)− eD(nq)

IK ]

fW (nq)
IK (ξ, s) = eT (nq)IK (ξ, s)− eD(nq)

IK −
s2 eG(nq)IK

ξ2 + η2
(η > 0). (41)

If the cracks Γ(n) and Γ(q) are coplanar then m
(q)
j = m

(n)
j , hence eT (nq)IK (ξ, s) =

T
(n)
IK (ξ, s),

eD(nq)
IK = D

(n)
IK ,

eG(nq)IK = G
(n)
IK and

fW (nq)
IK (ξ, s) = W

(n)
IK (ξ, s). Note that

Y
(nq)
2 (u, v) = 0 for all u and v if Γ(n) and Γ(q) are coplanar.
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The derivations of (35), (37) and (40) make use of the following results:

lim
²→0+

1Z
−1

(²2 − (v − u)2)ψ(u)
(²2 + (v − u)2)2 du = −H

1Z
−1

ψ(u)

(v − u)2du for − 1 < v < 1,

∞Z
0

ξ

ξ2 + η2
cos(aξ)dξ = −1

2
cosh(aη)(Ei(aη)−E1(aη))

+ Shi(aη) sinh(aη) (aη > 0),
∞Z
0

ξ

ξ2 + η2
sin(aξ)dξ =

π

2
sgn(a)[cosh(|aη|)− sinh(|aη|)]. (42)

Note that Ei(x)−E1(x) tend to 2 ln(x) as x→ 0+. This explains the presence

of the Cauchy principal integral in (35).

If the cracks are electrically impermeable, the functions ∆bU (q)K (u, s) (q =
1, 2, · · · ,N) in (30) are to be determined by solving the hypersingular integral
equations in (35). If we make the approximation (as in Kaya and Erdogan

[16])

∆bU (q)K (u, s) ' √1− u2 JX
j=1

ω
(qj)
K (s)U (j−1)(u), (43)

where U (j)(x) = sin([j + 1] arccos(x))/ sin(arccos(x)) is the jth order Cheby-

shev polynomial of the second kind and ω
(nj)
P (s) are unknown coefficients,

then (35) can be used to set up a system of linear algebraic equations to

determine ω
(nj)
P (s) for any fixed value of s (Athanasius, Ang and Sridhar [4]).

5.3 Electrically permeable cracks

From (16) and (33), ∆bU (q)4 (u, s) = 0 for −1 < u < 1 and q = 1, 2, · · · ,
N, if the cracks are electrically permeable. According to (14), the unknown

functions ∆bU (q)1 (u, s), ∆bU (q)2 (u, s) and ∆bU (q)3 (u, s) that can be approximated
as above by (43) are governed by (35) (with ∆bU (q)4 (u, s) = 0) for I = 1, 2, 3
(instead of I = 1, 2, 3, 4).
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6 Stress and electric displacement intensity

factors

The dynamic stress and electric displacement intensity factors at the tips

(X
(n)
1 (−1),X(n)

2 (−1)) and (X(n)
1 (1), X

(n)
2 (1)) of the n-th crack Γ(n) are defined

as follows:

KI(X
(n)
1 (−1), X(n)

2 (−1), t)
= lim

u→−1−

q
−2`(n)(u+ 1)(S1j(X(n)

1 (u), X
(n)
2 (u), t)m

(n)
1

+ S2j(X
(n)
1 (u),X

(n)
2 (u), t)m

(n)
2 )m

(n)
j ,

KII(X
(n)
1 (−1), X(n)

2 (−1), t)
= lim

u→−1−

q
−2`(n)(u+ 1)(S1j(X(n)

1 (u), X
(n)
2 (u), t)m

(n)
2

− S2j(X(n)
1 (u), X

(n)
2 (u), t)m

(n)
1 )m

(n)
j ,

KIII(X
(n)
1 (−1), X(n)

2 (−1), t)
= lim

u→−1−

q
−2`(n)(u+ 1)S3j(X(n)

1 (u), X
(n)
2 (u), t)m

(n)
j ,

KIV (X
(n)
1 (−1), X(n)

2 (−1), t)
= lim

u→−1−

q
−2`(n)(u+ 1)S4j(X(n)

1 (i), X
(n)
2 (u), t)m

(n)
j ,

KI(X
(n)
1 (1), X

(n)
2 (1), t)

= lim
u→1+

q
2`(n)(u− 1)(S1j(X(n)

1 (u), X(n)
2 (u), t)m(n)

1

+ S2j(X
(n)
1 (u),X

(n)
2 (u), t)m

(n)
2 )m

(n)
j ,

KII(X
(n)
1 (1),X

(n)
2 (1), t)

= lim
u→1+

q
2`(n)(u− 1)(S1j(X(n)

1 (u), X
(n)
2 (u), t)m

(n)
2

− S2j(X(n)
1 (u), X

(n)
2 (u), t)m

(n)
1 )m

(n)
j ,
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KIII(X
(n)
1 (1),X

(n)
2 (1), t)

= lim
u→1+

q
2`(n)(u− 1)S3j(X(n)

1 (u), X
(n)
2 (u), t)m

(n)
j ,

KIV (X
(n)
1 (1), X(n)

2 (1), t)

= lim
u→1+

q
2`(n)(u− 1)S4j(X(n)

1 (u), X
(n)
2 (u), t)m

(n)
j . (44)

Once the coefficients ω
(nj)
P (s) in (43) are determined, the above intensity

factors can be approximately calculated in the Laplace transform domain

using bKI(X
(n)
1 (−1),X(n)

2 (−1), s) ' 1√
`(n)

(D
(n)
P1m

(n)
1 +D

(n)
P2m

(n)
2 )

×
JX
j=1

ω
(nj)
P (s)U (j−1)(−1),

bKII(X
(n)
1 (−1),X(n)

2 (−1), s) ' 1√
`(n)

(D
(n)
P1m

(n)
2 −D(n)

P2m
(n)
1 )

×
JX
j=1

ω(nj)P (s)U (j−1)(−1),

bKIII(X
(n)
1 (−1), X(n)

2 (−1), s) ' − 1√
`(n)

D
(n)
P3

JX
j=1

ω
(nj)
P (s)U (j−1)(−1),

bKIV (X
(n)
1 (−1), X(n)

2 (−1), s) ' − 1√
`(n)

D
(n)
P4

JX
j=1

ω
(nj)
P (s)U (j−1)(−1),

bKI(X
(n)
1 (1),X

(n)
2 (1), s) ' 1√

`(n)
(D

(n)
P1m

(n)
1 +D

(n)
P2m

(n)
2 )

×
JX
j=1

ω
(nj)
P (s)U (j−1)(+1),

bKII(X
(n)
1 (1),X

(n)
2 (1), s) ' 1√

`(n)
(D

(n)
P1m

(n)
2 −D(n)

P2m
(n)
1 )

×
JX
j=1

ω
(nj)
P (s)U (j−1)(+1),
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bKIII(X
(n)
1 (1),X

(n)
2 (1), s) ' − 1√

`(n)
D
(n)
P3

JX
j=1

ω
(nj)
P (s)U (j−1)(+1),

bKIV (X
(n)
1 (1),X(n)

2 (1), s) ' − 1√
`(n)

D(n)
P4

JX
j=1

ω(nj)P (s)U (j−1)(+1). (45)

The dynamics stress and electric displacement intensity factors at any

time t may be recovered by using the numerical Laplace transform algorithm

in Stehfest [31], that is, by using the formula

f(t) ' ln(2)

t

2MX
n=1

Vn bf(n ln(2)
t

), (46)

where bf(s) denotes the Laplace transform of f(t), M is a positive integer

and

Vn = (−1)n+M
min(n,M)X

m=[(n+1)/2]

mM(2m)!

(M −m)!m!(m− 1)!(n−m)!(2m− n)! , (47)

with [r] denoting the integer part of the real number r.

Note that the Stehfest’s algorithm requires the problem under consider-

ation to be solved for only real Laplace transform parameter s. It has been

widely used by researchers for the numerical inversion of Laplace transforms

in solving many problems in engineering (see, for example, Ang [1], Hemker

[15] and Smith, Edwards and Beselli [29]).

7 Specific cases

In this section, the dynamics crack tip stress and electric displacement in-

tensity factors are computed for some specific cases of the problem.

Problem 1. Consider the case of a single electrically impermeable crack

in an infinite piezoelectric space. The crack lies in the region −a < x1 < a,
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x2 = 0, and the only non-zero uniform load acting on it is given by S22 =

−H(t)σ0, where H(t) is the unit-step Heaviside function. (Note that S12, S32
and S42 are taken to be zero on the crack.)

The electrical poling direction is taken to be along the x2 direction so

that

C1111 = C3333 = A, C1133 = C3311 = N, C2222 = C,

C1122 = C2211 = C2233 = C3322 = F ,

C1212 = C2112 = C2121 = C1221 = C2323 = C3223 = C3232 = C2332 = L,

C1313 = C3113 = C3131 = C1331 =
1

2
(A−N),

C2141 = C1241 = C3243 = C2343 = C4121 = C4112 = C4332 = C4323 = e1,

C1142 = C3342 = C4211 = C4233 = e2,

C2242 = C4222 = e3, C4141 = C4343 = −²1, C4242 = −²2, (48)

where A, N, F, C, L, e1, e2, e3, ²1 and ²2 are independent constants.

The piezoelectric material is PZT-BaTio3 with material constants A, N,

F, C, L, e1, e2, e3, ²1 and ²2 and density ρ given by

A = 15.0× 1010, N = 7.78× 1010, F = 6.6× 1010,
C = 14.6× 1010, L = 4.4× 1010, e1 = 11.4,
e2 = −4.35, e3 = 17.5, ²1 = 98.7× 10−10,
²2 = 112× 10−10, ρ = 5800. (49)

The values of A, N, F , C and L above are in N/m2, e1, e2 and e3 are in

C/m2, ²1 and ²2 are in C/(Vm) and ρ in kg/m3.
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Figure 2. Plots of KI/(σ0
√
a) against the non-dimensionalized time

t
p
L/(ρa2).

The numerical stress intensity factor KI/(σ0
√
a) and electric displace-

ment intensity factor CKIV /(e3σ0
√
a) at the crack tip (a, 0) are plotted

against the non-dimensionalized time t
p
L/(ρa2) in Figures 2 and 3 respec-

tively. The results are obtained by using J = 10 in the numerical solution of

the hypersingular integral equations and M = 4 (8 terms) in the Stehfest’s

formula for inverting Laplace transform. In Figures 2 and 3, the numerical

values of KI/(σ0
√
a) and CKIV /(e3σ0

√
a) are also compared with those ex-

tracted from Shindo [26] and Garćia-Sánchez, Zhang, Sládek and Sládek [13].

(Numerical values of CKIV /(e3σ0
√
a) are not given in Shindo [26].) All the

plots of KI/(σ0
√
a) in Figure 2 are quite close to one another, exhibiting the
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same general trends and reaching peak values at about the same time. So

are the plots of CKIV /(e3σ0
√
a) in Figure 3. As pointed out earlier on, 8

terms (M = 4) are used in the Stehfest’s formula for obtaining the plots in

Figure 2. Convergence is observed in the numerical values of the intensity

factors when the number of terms in the formula is increased to 10. The nu-

merical inversion of Laplace transform becomes unstable when the number

of terms is increased beyond 10. To use more terms, it is necessary to refine

the calculation to obtain more a more accurate solution of the hypersingular

integral equations. A higher arithmetic precision in the computing machine

is needed too.

Figure 3. Plots of CKIV /(e3σ0
√
a) against the non-dimensionalized time

t
p
L/(ρa2).

Problem 2. Consider a pair of coplanar cracks, each of length 2a,as shown

in Figure 4. The distance between the inner tips of the cracks is 2d. The

uniform tractions acting on the crack faces are given by S22 = −H(t)σ0. Here
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electrically impermeable and permeable cracks will be examined separately.

For the case in which the coplanar cracks are electrically impermeable, the

condition S42 = −H(t)D0,where D0 is a constant, applies.

Figure 4. A pair of coplanar cracks.

The electrical poling is along the x2 direction. For the purpose of obtain-

ing some numerical results for the dynamic stress and electric displacement

intensity factors at the inner and outer tips of the coplanar cracks, the mate-

rial constants of PZT- BaTio3 (as in Problem 1) are used and the load ratio

σ0/D0 for electrically impermeable cracks is taken to be 10
10 NC−1.
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Figure 5. Plots of KI/(σ0
√
a) against the non-dimensionalized time

t
p
L/(ρa2) at inner and outer crack tips of electrically impermeable cracks

for selected values of d/a.

In Figure 5, the non-dimensionalized stress intensity factor KI/(σ0
√
a) at

the inner and outer crack tips are plotted against the non-dimensionalized

time t
p
L/(ρa2)for d/a = 0.125, 0.50 and 0.25. The plots of KI/(σ0

√
a) for

electrically permeable and impermeable cracks are almost indistinguishable.

Thus, plots of KI/(σ0
√
a) are given in Figure 5 for only electrically imper-

meable cracks. In each of the plots, KI/(σ0
√
a) increases rapidly to a peak

value before settling down to the corresponding value of the static stress in-

tensity factor. For each of the values of d/a in Figure 5, the peak values of

KI/(σ0
√
a) at the inner and the outer crack tips are significantly different
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and the peak value at the inner tips is larger than that at the outer tips. As

may be expected, the peak value of KI/(σ0
√
a) at each crack tip is larger if

the cracks are closer to each other. Further calculations show that the plot

of KI/(σ0
√
a) at the inner tips is almost identical as that at the outer tips

for d/a > 3.

Figure 6. Plots of CKIV /(e3σ0
√
a) against the non-dimensionalized time

t
p
L/(ρa2)at inner and outer crack tips of electrically impermeable cracks

for selected values of d/a.

Plots of the non-dimensionalized electric displacement intensity factors

CKIV /(e3σ0
√
a) at the inner and the outer crack tips against t

p
L/(ρa2)for
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d/a = 0.125, 0.50 and 0.25 are given in Figures 6 and 7 for electrically imper-

meable and permeable cracks respectively. The plots of CKIV /(e3σ0
√
a)for

electrically impermeable cracks are distinct from those for electrically per-

meable cracks. For a fixed d/a, the peak value of CKIV /(e3σ0
√
a) at each

crack tip is apparently higher for the electrically permeable cracks than that

for the impermeable cracks.

Figure 7. Plots of CKIV /(e3σ0
√
a) against the non-dimensionalized time

t
p
L/(ρa2)at inner and outer crack tips of electrically permeable cracks for

selected values of d/a.

Problem 3. Consider two equal length parallel electrically impermeable

cracks as sketched in Figure 8. The half length of each crack is given by
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a. The centers of the cracks lie on a vertical line and are separated by a

distance denoted by d. The non-zero constant loads acting on the crack faces

are given by S22 = −H(t)σ0 and S42 = −H(t)D0, with σ0/D0 = 10
10 NC−1.

Figure 8. Two parallel cracks.

The electrical poling is along the x2 direction. Using the material con-

stants of PZT- BaTio3 (as in Problem 1), for selected values of d/a, we

plot the non-dimensionalized crack tip stress intensity factors KI/(σ0
√
a)

and CKII/(Fσ0
√
a) and the non-dimensionalized crack tip electric displace-

ment intensity factor CKIV /(e3σ0
√
a) against the non-dimensionalized time

t
p
L/(ρa2) in Figures 9, 10 and 11 respectively.
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Figure 9. Plots of KI/(σ0
√
a) against the non- dimensionalized time for

selected values of d/a.

In Figure 9, for a given d/a, the non-dimensionalized stress intensity

factor KI/(σ0
√
a) rises to a peak (maximum) value and then drops to a

trough (mininum) value before gradually settling down to approach its static

value. Both the trough and the peak values decrease in magnitude as d/a

decreases. A similar observation may be made of the non-dimensionalized

electric displacement intensity factor CKIV /(e3σ0
√
a) in Figure 11.

As d/a tends to infinity, the non-dimensionalized stress intensity factor

CKII/(Fσ0
√
a) vanishes. Nevertheless, when the cracks come close to each

other, there is an increase in the magnitude CKII/(Fσ0
√
a) due to larger

differences in the stress distribution on opposite crack faces. This is shown

in Figure 10. For d/a = 10, the magnitude of CKII/(Fσ0
√
a) is very small

at all time. Note that the fact that KII is not zero for the parallel cracks in

Figure 10 may be explained by the well known phenomenon called Poisson

effect. Due to Poisson effect, compressive stresses are generated on opposite

crack faces. For the parallel cracks, they are unequal, thereby giving rise to
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shear stresses on each of the cracks.

Figure 10. Plots of CKII/(Fσ0
√
a) against the non-dimensionalized time

for selected values of d/a.

Figure 11. Plots of CKIV /(e3σ0
√
a) against the non- dimensionalized time

for selected values of d/a.
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Problem 4. Consider now the two pairs of electrically impermeable cracks,

which are of equal length 2a, in the piezoelectric space, as sketched in Figure

12. The faces of the horizontal cracks are subject to internal uniform loads

given by S12 = S22 = 0, S32 = −H(t)τ0 and S42 = −H(t)D0, such that
τ0/D0 = 10

10 NC−1. The internal loads on the faces of the vertical cracks are

given by SK1 = 0 (for K = 1, 2, 3, 4).

Figure 12. Two pairs of cracks.
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The electrical poling is in the x3 direction, so that CIjKl are given in

terms of the independent constants A, N, F, C, L, e1, e2, e3, ²1 and ²2 by

C1111 = C2222 = A, C1122 = C2211 = N, C3333 = C,

C1133 = C3311 = C2233 = C3322 = F ,

C1313 = C3113 = C3131 = C1331 = C2323 = C3223 = C3232 = C2332 = L,

C1212 = C2112 = C2121 = C1221 =
1

2
(A−N),

C3141 = C1341 = C2342 = C3242 = C4131 = C4113 = C4223 = C4232 = e1,

C1143 = C2243 = C4311 = C4322 = e2,

C3343 = C4333 = e3, C4141 = C4242 = −²1, C4343 = −²2. (50)

As in the problems above, the material occupying the piezoelectric space is

taken to be PZT-BaTio3 with material constants as given in (49).

Figure 13. Plots of KIII/(τ0
√
a) at the upper tip of the left vertical crack

against the non-dimensionalized time for b/a = 1.25 and selected values of

d/a.
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The deformation of the cracks is antiplane. The non-dimensionalized

crack tip stress and electrical displacement intensity factors KIII/(τ0
√
a)

and KIV /(D0
√
a) are of interest here. For b/a = 1.25 and a few selected

values of d/a, these intensity factors at the lower tip of the left vertical crack

are plotted against the non-dimensionalized time t
p
L/(ρa2) in Figures 13

and 14. For the same values of b/a and d/a, plots of the intensity factors at

the left tip of the upper horizontal crack are given in Figures 15 and 16. As

shown in Figures 14 and 16, KIV /(D0
√
a) at both crack tips does not vary

with time. In Figures 13 and 15, for a fixed b/a and d/a, KIII/(τ0
√
a) rises

quickly to a peak value, drops to a trough value and gradually approaches the

corresponding static value. As expected, as d/a increases, both KIII/(τ0
√
a)

and KIV /(D0
√
a) for the vertical cracks decrease in magnitude, becoming

closer to zero.

Figure 14. Plots of KIV /(D0
√
a) at the upper tip of the left vertical crack

against the non-dimensionalized time for b/a = 1.25 and selected values of

d/a.

32



Figure 15. Plots of KIII/(τ0
√
a) at the left tip of the upper horizontal

crack against the non-dimensionalized time for b/a = 1.25 and selected

values of d/a.

Figure 16. Plots of KIV /(D0
√
a) at the left tip of the upper horizontal

crack against the non-dimensionalized time for b/a = 1.25 and selected

values of d/a.
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8 Summary

Through the use of Laplace and exponential Fourier transforms, a semi-

analytic solution is derived for an electroelastodynamic problem involving

an arbitrary number of arbitrarily located planar cracks in a piezoelectric

space. The problem is eventually reduced to a solving a system of hypersin-

gular integral equations. The unknown functions in the hypersingular inte-

gral equations are the Laplace transforms of the jumps in the displacements

and electric potential across opposite crack faces. Once they are determined,

the crack tip stress and electric displacement intensity factors can be easily

computed in the Laplace transform domain. A numerical technique for in-

verting Laplace transforms is employed to recover the intensity factors in the

physical domain.

The solution is applied to study some specific cases of the problem. For

the case of a single crack under impact loadings, the computed crack tip stress

and electric displacement intensity factors are found to be in reasonably good

agreement with those published in the literature. Numerical results are also

obtained for other cases which include one which involves four interacting

planar cracks under antiplane deformations.
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