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Abstract

The problem of calculating the stress distribution around a peri-
odic array of planar cracks in an anisotropic elastic half-space which

adhere perfectly to another anisotropic half-space is considered. It
is formulated in terms of a system of hypersingular integral equa-
tions with the crack-opening displacements as unknown functions. For
a specific case involving transversely-isotropic materials, the integral
equations are solved numerically through the use of a collocation tech-
nique and numerical values of useful quantities, such as the crack tip
stress intensity factors, are computed.

Note. This has been a draft of the article which was published in In-
ternational Journal of Engineering Science 34 (1996) 1457-1466. The
draft is almost identical to the published paper, except for some minor
corrections of typographical errors and differences in the typesetting

format.

1 INTRODUCTION

There is definitely a need to assess the reliability and integrity of anisotropic
and composite structures that are presently playing an ever increasing role in
modern technology, such as in engineering construction and manufacturing
and in orthopaedic surgery (e.g. artificial implants in bones). It is not sur-
prising then that the task of analysing the stress distribution around cracks
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in anisotropic layered materials has been given considerable attention in the
literature (see e.g. Willis [1], Clements [2], and Ang [3],[4]).
In the present paper, we consider the problem of a periodic array of

planar cracks in an anisotropic elastic half-space which adheres perfectly to
another anisotropic half-space. The cracks are assumed to open up under the
action of suitably prescribed internal tractions. Problems involving periodic
arrays of cracks in elastic media may be of useful relevance to some practical
situations in which multiple cracking occurs, and have been examined by
various researchers (e.g. Benthem and Koiter [5], Nied [6], Ang [7] and,
Tweed and Melrose [8]).
With the displacements and stresses written in terms of suitable integral

expressions, the problem under consideration is reduced to solving a system
of hypersingular (Hadamard finite-part) integral equations. The unknown
functions are the crack-opening displacements. The integral equations apply
for the most general anisotropic materials, i.e. the materials are not required
to possess any symmetries in their anisotropy. However, the equations are
solved numerically, using a collocation technique, for a specific case involving
particular transversely isotropic materials, in order to compute the crack tip
stress intensity factors.

2 THE PROBLEM

By referring to an 0x1x2x3 Cartesian coordinate system, consider an infinite
elastic medium which consists of two regions: x2 > h (region 1) and x2 < h
(region 2) (h is a positive constant). The regions are occupied by dissimilar
anisotropic materials which adhere perfectly to each other along the interface
x2 = h.
Region 2 contains an infinite number of periodically-located planar cracks

with geometries that do not vary with x3. Region 1 is flawless, devoid of any
cracks. Specifically, the cracks (in region 2) are given by C0, C±1,C±2, ....,
where C2n = {(x1, x2, x3) : x1 = nd + sa cos θ, x2 = sa sin θ, −∞ < x3 <∞,
−1 < s < 1} and C2n+1 = {(x1, x2, x3) : x1 = c+ nd+ sb cos φ, x2 = sb sinφ,
−∞ < x3 < ∞, −1 < s < 1} for n = 0,±1,±2, ... . The constants c and d
obey the inequality 0 < c < d; and a > 0, b > 0, θ and φ are such that the
cracks do not intersect with one another and the interface x2 = h.
The cracks open up and become traction-free under the action of suitably

prescribed internal stresses which are periodic along the 0x1 direction, with
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period d, and are independent of time and the x3 coordinate. The displace-
ments and stresses (generated by the presence of the cracks) are required to
vanish, as |x2| → ∞. The problem is to determine the displacement and
stress fields throughout the elastic medium.

3 SOME BASIC EQUATIONS

For a two-dimensional anisotropic elastic material occupying a region R
bounded by a closed curve D, on the 0x1x2 plane, it can be shown that
(see Clements [9])

uk(x
˜
) =

Z
D

[ur(ξ
˜
)Γrk(x

˜
, ξ
˜
)− pr(ξ

˜
)Φrk(x

˜
, ξ
˜
)]dS(ξ

˜
) for x

˜
∈ R, (1)

where uk are the Cartesian displacements, x
˜
= (x1, x2), ξ

˜
= (ξ1, ξ2), pr are

the tractions acting across D and

Φrk(x
˜
, ξ
˜
) =

1

2π
Re{

X
α

ArαNαj ln(cα − zα)}djk ,

Γrk(x
˜
, ξ
˜
) =

1

2π
Re{

X
α

LrjαNαp(cα − zα)−1}nj(ξ
˜
)dpk, (2)

where
P

α denotes the summation over the greek subscript α from 1 to 3,
zα = x1 + ταx2, cα = ξ1 + ταξ2, nj(ξ

˜
) are the components of the unit normal

outward vector to D at ξ
˜
, and [djk] is defined by the relation

− i
2

X
α

{Lj2αNαp − Lj2αNαp}dpk = δjk,

where i =
√−1, z denotes the complex conjugate of z and δjk is the kronecker-

delta. The constants Arα, Lrjα and Nαp are related to the elastic moduli cijkl
of the anisotropic material, as explained in Clements [9]. Throughout the
present paper, unless otherwise mentioned, the Einstein convention of sum-
ming over a repeated index is adopted for only latin subscripts which run
from 1 to 3.
Now, if R covers the entire 0x1x2 plane and contains several straight cuts

or cracks (of finite lengths), denoted by L1,L2, ...,LN−1 and LN , in its interior,
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and if the displacements uk(x
˜
) behave as O(|x

˜
|−s) (s > 0), as |x

˜
|→∞, then,

from (1), the displacements uk(x
˜
) can be written as:

uk(x
˜
) =

NX
m=1

Z
L+m

∆ur(ξ
˜
)Γrk(x

˜
, ξ
˜
)dS(ξ

˜
), (3)

where L−m and L
+
m denote respectively the “lower” and “upper” faces of the

cut Lm and ∆ur(ξ
˜
) = [ur(ξ

˜
)]+− [ur(ξ

˜
)]−, with [ur(ξ

˜
)]± denoting the value of

ur(ξ
˜
) for ξ

˜
∈ L±m. In the derivation of (3), we assume that the stresses are

continuous across the cuts and note that Φrk(x
˜
, ξ
˜
) are single-valued functions

for all x
˜
and ξ

˜
on the 0x1x2 plane (provided that ξ

˜
6= x

˜
).

4 SOLUTION OF THE PROBLEM

For the solution of the problem under consideration, guided by (3), we choose
the displacements in region n to be given by

u
(n)
k (x˜

) =
∞X

m=−∞

Z
C+m

∆up(ξ
˜
)U

(n)
pk (x˜

, ξ
˜
)dS(ξ

˜
), (4)

where C+m denotes the “upper” face of the crack Cm, ∆up give the crack-
opening displacements and

U
(n)
pk (x˜

, ξ
˜
) =

1

2π
Re{δn2

X
α

L
(n)
pjα N

(n)
αr (c

(n)
α − z(n)α )−1}nj(ξ

˜
)d
(n)
rk +G

(n)
pk (x˜

, ξ
˜
),

(5)

where c
(n)
α = ξ1+ τ (n)α ξ2 and z

(n)
α = x1 + τ (n)α x2. The superscript (n) indicates

that constants such as Lpjα, Nαr, drk and τα are to be computed using the

elastic moduli c(n)ijkl of the material in region n.
For (4) to satisfy the governing equations of anisotropic elasticity, the

functions G(n)pk (x˜
, ξ
˜
) in (5) must satisfy

c(n)rskq
∂2G(n)pk
∂xs∂xq

= 0 for all x
˜
in region n. (6)
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The different materials making up the composite adhere perfectly to each
other along the x2 = h interface. Thus, the functions G(n)pk (x˜

, ξ
˜
) must be

chosen in such a way that, for −∞ < x1 <∞,
lim
ε→0+

[U (1)pk (x1, h+ ε, ξ
˜
)− U (2)pk (x1, h− ε, ξ

˜
)] = 0,

lim
ε→0+

[S(1)pk2(x1, h + ε, ξ
˜
) − S(2)pk2(x1, h− ε, ξ

˜
)] = 0, (7)

where S(n)pkj = c(n)kjrs∂U
(n)
pr /∂xs. In addition, G

(n)
pk (x˜

, ξ
˜
) are required to vanish

as |x2|→∞ (in region n).
For the solution of (6) subject to (7), we choose

G(1)pk (x˜
, ξ
˜
) =

1

2π
Re{

X
α

A(1)kα

Z ∞

0

Epα(u, ξ
˜
) exp(iu[z(1)α − τ (1)α h])du},

G(2)pk (x˜
, ξ
˜
) =

1

2π
Re{

X
α

A(2)kα

Z ∞

0

Fpα(u, ξ
˜
) exp(−iu[z(2)α − τ (2)α h])du}, (8)

where Epα(u, ξ
˜
) and Fpα(u, ξ

˜
) are functions yet to be determined. The system

(6) is satisfied by (8).
From a Fourier inversion theorem, we know that conditions (7) can be

rewritten as:Z ∞

−∞
lim
ε→0+

[U (1)pk (x1, h + ε, ξ
˜
)− U (2)pk (x1, h− ε, ξ

˜
)]

× exp(−iγx1)dx1 = 0, (9)Z ∞

−∞
lim
ε→0+

[S(1)pk2(x1, h + ε, ξ
˜
) − S(2)pk2(x1, h− ε, ξ

˜
)]

× exp(−iγx1)dx1 = 0, (10)

where γ > 0 is a real parameter.
Using the results (Erdélyi et al. [10])Z ∞

−∞
(a − ix)−1 exp(−ixy)dx = H(y)2π exp(−ay),Z ∞

−∞
(a+ ix)−1 exp(−ixy)dx = −H(−y)2π exp(ay), (11)
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where a is a constant such that Re{a} > 0 and H(x) is the Heaviside unit-
step function, from (9), we find that (10) becomesX

α

{A(1)kαEpα(u, ξ
˜
) − A(2)kαF pα(u, ξ

˜
)}

=
X
α

inj(ξ
˜
)T (2)pjαk exp(−iu[ξ1 + τ (2)α {ξ2 − h}]) for ξ2 < h, (12)

where T (2)pjαk = L
(2)
pjαN

(2)
αr d

(2)
rk .

In similar manner, (10) gives rise toX
α

{L(1)k2αEpα(u, ξ
˜
) − L(2)k2αF pα(u, ξ

˜
)}

=
X
α

inl(ξ
˜
)Q(2)pk2lα exp(−iu[ξ1 + τ (2)α {ξ2− h}]) for ξ2 < h, (13)

where Q(2)pkjlα = (c
(2)
kjr1 + τ(2)α c(2)kjr2)T

(2)
plαr.

Solving (12) and (13) for Epα(u, ξ
˜
) and Fpα(u, ξ

˜
), we obtain

Epα(u, ξ
˜
) =

X
β,γ

Zαβ(N
(2)

βkT
(2)
plγk −M

(2)

βkQ
(2)
pk2lγ)

× exp(−iu[ξ1 + τ (2)γ {ξ2− h}])inl(ξ
˜
) for ξ2 < h, (14)

and

F pα(u, ξ
˜
) =

X
β,γ

Wαβ(N
(1)

βk T
(2)
plγk −M

(1)

βkQ
(2)
pk2lγ)

× exp(−iu[ξ1 + τ(2)γ {ξ2 − h}])inl(ξ
˜
) for ξ2 < h, (15)

where [Zαβ] and [Wαβ ] are obtained from the relationsX
β

Zαβ [N
(2)

βkA
(1)
kγ −M

(2)

βkL
(1)
k2γ] = δαγ,

X
β

Wαβ [M
(1)

βkL
(2)

k2γ −N (1)
βk A

(2)

kγ ] = δαγ. (16)
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Substituting (14) and (15) into (8), we obtain

G
(1)
pk (x˜

, ξ
˜
) = − 1

2π
Re{

X
α,β ,γ

A
(1)
kαZαβ(N

(2)

βq T
(2)
plγq −M

(2)

βqQ
(2)
pq2lγ)

×(z(1)α − [ξ1 + τ (2)γ {ξ2 − h}])−1} for ξ2 < h, (17)

and

G(2)pk (x˜
, ξ
˜
) = − 1

2π
Re{

X
α,β,γ

A(2)kαWαβ(N
(1)

βq T
(2)

plγq −M
(1)

βqQ
(2)

pq2lγ)

×(z(2)α − [ξ1 + τ (2)γ {ξ2− h}])−1} for ξ2 < h. (18)

The displacements as given by (4) together with (5), (17) and (18), satisfy
the governing equations of elasticity, as well as the continuity conditions on
the interface x2 = h. The remaining conditions to be satisfied are those on
the crack faces, specifically given by

σ(2)kj (x˜
)nj(x

˜
)→ −σ(0)kj (y

˜
)nj(y

˜
) as x

˜
→ y

˜
∈ C+m (m = 0,±1,±2, ....), (19)

where σ
(2)
kj are the Cartesian stresses in region 2, and σ

(0)
kj are the internal

stresses acting on the cracks. The stresses σ
(0)
kj are assumed to be periodic

along the 0x1 direction, with period d.
Now, from (4), (5), (17) and (18) together with

∞X
n=−∞

1

p− ns =
iπ

s
coth

µ
iπp

s

¶
,

we obtain

σ
(2)
kj (x˜

) = − πa

2d2

Z 1

−1
∆Up(s)Re{

X
α

Q
(2)
pkjlα

× csch2(iπ
d
{z(2)α − sa[cos θ+ τ (2)α sin θ]})

+
X
α,β,γ

L
(2)
kjαW αβ(N

(1)

βq T
(2)

plγq −M
(1)

βqQ
(2)

pq2lγ)

× csch2(iπ
d
{z(2)α − sa[cos θ+ τ (2)γ sin θ] + τ (2)γ h})}Nlds
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− πb

2d2

Z 1

−1
∆Vp(s)Re{

X
α

Q(2)pkjlα

× csch2(iπ
d
{z(2)α − c − sb[cos φ+ τ (2)α sinφ]})

+
X
α,β,γ

L(2)kjαW αβ(N
(1)

βq T
(2)

plγq −M
(1)

βqQ
(2)

pq2lγ)

× csch2(iπ
d
{z(2)α − c − sb[cos φ+ τ (2)γ sinφ] + τ(2)γ h})}N∗l ds,

(20)

where ∆Up(s) = ∆up(md + sa cos θ, sa sin θ) and ∆Vp(s) = ∆up(c +md +
sb cosφ, sb sinφ) (m = 0,±1,±2, ..., ), N1 = sin θ, N2 = − cos θ, N∗1 = sinφ,
and N∗2 = − cosφ.
For convenience, we may think of the crack Cm as being a closed curve

which is assigned a clockwise direction and which encloses an elliptical region
having an area that vanishes to zero. In the derivation of (20), we take the
“upper” face of the crack C2m to be the part of the ellipse assigned the
direction from the tip (md − a cos θ,−a sin θ) to (md + a cos θ, a sin θ), and
the “upper” face of C2m+1 to be the part of the ellipse from (c + md −
b cosφ,−b sinφ) to (c+md+ bcosφ, b sinφ). Also, in the derivation of (20),
we use the fact that, for the problem under consideration, the displacements
are periodic along the 0x1 direction, with period d.
Use of (20) in (19) yields the system of hypersingular integral equations

given by

1

2πa
Re{

X
α

Q(2)pkjlαNjNl

(cos θ + τ (2)α sin θ)2
}H

Z 1

−1

∆Up(s)

(t− s)2ds

+

Z 1

−1
∆Up(s)Ω

(A)
pk (s, ta cos θ, ta sin θ)ds

+

Z 1

−1
∆Vp(s)Ω

(B)
pk (s, ta cos θ, ta sin θ)ds

= −σ(0)kj (ta cos θ, ta sin θ)Nj for − 1 < t < 1, (21)
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and

1

2πb
Re{

X
α

Q
(2)
pkjlαN

∗
jN

∗
l

(cosφ+ τ (2)α sinφ)2
}H

Z 1

−1

∆Vp(s)

(t− s)2ds

+

Z 1

−1
∆Vp(s)Ω

(C)
pk (s, c+ tb cosφ, tb sinφ)ds

+

Z 1

−1
∆Up(s)Ω

(D)
pk (s, c + tb cosφ, tb sinφ)ds

= −σ(0)kj (c + tb cosφ, tb sinφ)N ∗
j for − 1 < t < 1, (22)

where H denotes that the integral is to be interpreted in the Hadamard
finite-part sense and

Ω(A)pk (s, x1, x2) = −
πa

2d2
NlNj Re{

X
α

Q(2)pkjlα

× [csch2(iπ
d
{z(2)α − sa[cos θ+ τ (2)α sin θ]})

+
d2

π2(z
(2)
α − sa[cos θ + τ

(2)
α sin θ])2

]

+
X
α,β ,γ

L
(2)
kjαWαβ(N

(1)

βq T
(2)

plγq −M
(1)

βqQ
(2)

pq2lγ)

× csch2( iπ
d
{z(2)α − sa[cos θ + τ (2)γ sin θ] + τ(2)γ h})},

Ω(B)pk (s, x1, x2) = −
πb

2d2
N∗l Nj Re {

X
α

Q(2)pkjlα

× csch2(iπ
d
{z(2)α − c− sb[cos φ+ τ (2)α sinφ]})

+
X
α,β,γ

L(2)kjαWαβ(N
(1)

βq T
(2)

plγq −M
(1)

βqQ
(2)

pq2lγ)

× csch2(iπ
d
{z(2)α − c− sb[cos φ+ τ (2)γ sinφ] + τ (2)γ h})},
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Ω(C)pk (s, x1, x2) = −
πb

2d2
N∗l N

∗
j Re {

X
α

Q(2)pkjlα

× [csch2( iπ
d
{z(2)α − c− sb[cosφ+ τ (2)α sinφ]})

+
d2

π2(z(2)α − c − sb[cosφ + τ (2)α sinφ])2
]

+
X
α,β,γ

L(2)kjαW αβ(N
(1)

βq T
(2)

plγq −M
(1)

βqQ
(2)

pq2lγ)

× csch2(iπ
d
{z(2)α − c − sb[cosφ + τ (2)γ sinφ] + τ(2)γ h})},

Ω(D)pk (s, x1, x2) = −
πa

2d2
NlN

∗
j Re{

X
α

Q(2)pkjlα

× csch2(iπ
d
{z(2)α − sa[cos θ + τ (2)α sin θ]})

+
X
α,β ,γ

L(2)kjαWαβ(N
(1)

βq T
(2)

plγq −M
(1)

βqQ
(2)

pq2lγ)

× csch2(iπ
d
{z(2)α − sa[cos θ + τ (2)γ sin θ] + τ (2)γ h})}.

(23)

Equations (21) and (22) constitute a system of hypersingular integral
equations from which the unknown functions ∆Up(s) and ∆Vp(s) can be
solved for. Once the functions are determined, the displacements and stresses,
and other useful quantities such as the crack tip stress intensity factors, can
be calculated using (4). An accurate and effective numerical technique for
solving the hypersingular integral equations is described by Kaya and Erdo-
gan [11].

5 NUMERICALRESULTS FORA SPECIFIC

CASE

In the present section, for the purpose of illustration, we will solve equations
(21) and (22) numerically for a specific case involving particular transversely-
isotropic materials, and compute the crack tip stress intensity factors. The

10



stress intensity factors are important quantities for forming criteria for crack
extension.
The elastic behaviour of a transversely isotropic material which has trans-

verse planes parallel to the 0x2x3 plane and which undergoes plane deforma-
tions is governed by the system

C
∂2u1
∂x21

+L
∂2u1
∂x22

+ (F + L)
∂2u2

∂x1∂x2
= 0,

A
∂2u2
∂x22

+L
∂2u2
∂x21

+ (F + L)
∂2u1

∂x1∂x2
= 0, (24)

where A, F , C and L are the elastic coefficients of the material. Some details
on the computation of constants like Akα, τα and Lkjα which correspond to
the system (24) are given in Clements [9] or Ang [4].
We take the elastic behaviour of the material in region n to be governed

by (24), with the elastic coefficients A = A(n), F = F (n), C = C(n) and
L = L(n).
Let us now consider the specific case where region 2 contains a periodic

array of equal length and evenly spaced out cracks which lie on a plane
parallel to the interface x2 = h > 0 and are subject to a plane deformation.
Specifically, in accordance with the notations used in Section 2, we take
θ = φ = 0, a = b and c = d/2, with d > 4a, and assume that the cracks

are acted upon by an internal stress which is such that σ(0)22 = P0 ( P0 is a
positive constant) and ∆U1(s) = ∆U3(s) = ∆V1(s) = ∆V3(s) = 0.
For this particular case, the system of hypersingular integral equations

given by (21) and (22) gives

χH
Z 1

−1

∆u(s)ds

(t− s)2 + 2πa
Z 1

−1
∆u(s)Ω(t, s)ds = 2πP0 for − 1 < t < 1, (25)

where ∆u(s) = ∆U2(s)/a = ∆V2(s)/a, χ = Re{PαQ
(2)
2222α} and Ω(t, s) =

Ω(A)22 (s, ta,0) + Ω(B)22 (s, ta,0).
For the numerical solution of (25), we make the approximation:

∆u(s) ' √1− s2
JX
j=1

ϕjUj−1(s), (26)

where ϕj are real constant coefficients to be determined and Uj(x) is the j-th
order Chebyshev polynomial of the second kind.
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Substituting (26) into (25), and using some results in Kaya and Erdogan
[11], we obtain

JX
j=1

Kj(t)ϕj = 2πP0 for − 1 < t < 1, (27)

where

Kj(t) = −πjUj−1(t)χ+ 2πa
Z 1

−1

√
1− s2Uj−1(s)Ω(t, s)ds. (28)

It is possible to compute the integral in (28) accurately by using the quadra-
ture formula (25.4.40) in Abramowitz and Stegun [12].
Equation (27) contains J unknowns, namely ϕ1, ϕ2, ...., ϕJ . We choose

the free parameter t in (27) to be given in turn by

t = tp = cos([2p− 1]π/[2J ]) for p = 1, 2, ..., J,

in order to generate a system of J linear algebraic equations in ϕj . The
system thus generated is readily solved using standard computer packages.
For this particular case, the mode I stress intensity factor which is of

practical interest has the same value at all the crack tips. We define the
factor by

KI = lim
x→a+

p
2(x − a)σ(2)22 (x,0),

and it can be computed approximately via

KI ' − χ

2
√
a

JX
j=1

ϕjUj−1(1), (29)

once ϕj are determined.
To obtain some numerical results, we will use the elastic constants for

magnesium and titanium. For magnesium, these constants are given by A =
5.96, N = 2.57, F = 2.14, C = 6.14 and L = 1.64; for titanium, they
are A = 16.2, F = 6.9, C = 18.1 and L = 4.67. If these constants are
multiplied by 1011, their units are in dynes per centimeter square. Notice
that the magnitudes of the elastic constants for magnesium are lower than
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the corresponding ones for titanium, i.e. magnesium is a “softer” material
than titanium.
Let us now solve (25), with regions 1 and 2 being occupied by titanium

and magnesium respectively, and then compute the stress intensity factor
KI/(P0

√
a) according to (29). From our calculation, we observe that, for

a fixed d/a > 4, the stress intensity factor increases in magnitude as h/a
increases, i.e. the cracks are more stable if they are closer to region 1. This
is as expected, since region 1 is occupied by a material which is “harder” than
that in region 2. Also, for a fixed h/a > 0, KI/(P0

√
a) is larger in magnitude

for smaller d/a, i.e. the cracks are less stable when the crack spacing is
smaller. In Table 1, we present the numerical values of KI/(P0

√
a) for some

selected values of h/a and d/a.
We repeat the calculation of the stress intensity factor, with regions 1

and 2 occupied by magnesium and titanium respectively. As in the earlier
calculation above, we observe that, for a fixed h/a, the stress intensity factor
KI/(P0

√
a) decreases with increasing d/a. However, for a fixed d/a, it is

observed that the factor decreases in magnitude as h/a increases. This is not
surprising as, in the present case, the material in region 1 is “softer” than
that in region 2 and the cracks may be expected to be less stable when they
are closer to the “softer” material. Numerical values of KI/(P0

√
a) for some

selected values of h/a and d/a are given in Table 2.
Lastly, we carry out the computation of the stress intensity factor for the

case where region 2 is occupied by magnesium and region 1 by a material with
elastic constants A(1) = ξ ≥ 16.2, F (1) = 6.9, L(1) = 4.67 and C(1) = 18.1.
As ξ → ∞, the material in region 1 becomes inextensible along the 0x2
direction. Since fiber-reinforced materials may be reasonably modelled using
inextensible anisotropic materials (see, e.g. Clements [13]), it may be of some
practical relevance for us to examine the effect of increasing the parameter
ξ on the stress intensity factor. In Table 3, for h/a = 1.00 and d/a =
5.00, we present the stress intensity factor KI/(P0

√
a) for various values

of ξ. It is clear from the table that the stress intensity factor KI/(P0
√
a)

decreases as ξ increases, i.e. the cracks are more stable as the material
in region 1 becomes more and more inextensible along the 0x2 direction.
Also, KI/(P0

√
a) converges slowly (from above) to the particular value 1.495

(correct to 4 significant figures) as ξ →∞.
In our calculation above, we typically use J = 5 in the approximation

(26). When the calculation is repeated using J = 10, convergence to 3 or 4
significant figures is observed in the numerical results. However, for situations

13



involving extreme parameters, i.e. for very small h/a or d/a very close to 4,
it is necessary to use a larger number of terms in (26) to achieve the same
level of accuracy in the computation.

6 SUMMARY

We have considered the task of determining the displacement and stress fields
around a periodic array of planar cracks in an anisotropic elastic half-space
which adheres perfectly to another anisotropic half-space. A singular solu-
tion which satisfies the continuity conditions on the interface separating the
two half-spaces is constructed and used to form a suitable integral expression
for the displacements. The conditions on the crack faces then give rise to a
system of hypersingular integral equations with the crack-opening displace-
ments as unknown functions. The integral equations can be readily solved
using a numerical technique. For a specific case involving a periodic array of
planar cracks and particular transversely-isotropic materials, we have carried
out the task of solving the integral equations numerically and compute the
relevant crack tip stress intensity factor.
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