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Abstract

The problem of determining the antiplane shear stress around periodic arrays
of planar cracks in a periodically-layered anisotropic elastic space is considered.
With a suitable integral expression for the displacement, it is eventually reduced to
a system of simultaneous hypersingular integral equations containing the ‘crack-
opening displacements’ as unknown functions. Once the integral equations are
solved, crack parameters of interest, such as the crack tip stress intensity factors,
may be readily computed. For some specific examples of the problem, the integral

equations are solved numerically by using a collocation technique, in order to
compute the relevant stress intensity factors.
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1 Introduction

Composites which are made up of two or more layers of dissimilar materials
are playing an increasingly important role in modern technology. For ex-
ample, media comprising a large number of very fine layers are employed in
optical recording, and synthetic materials, such as plywood and fabric lam-
inates, are widely used in the design and construction of modern aircrafts.
The importance of assessing the reliability and integrity of such composites
has prompted many researchers to carry out studies of cracks in multilayered
materials, e.g. Ryvkin [1], Lahiri et al. [2], Ang and Clements [3], Ang [4]
and Clements [5].
In the present paper, we consider the problem of analysing the stress

distribution around planar cracks in an elastic medium comprising infinitely
many layers that are alternately occupied by two dissimilar anisotropic ma-
terials. The cracks are acted upon by an internal antiplane shear stress. The
geometries of the layers and the cracks as well as the internal stress acting
on the cracks are periodic along the direction that is normal to the interfaces
separating the two dissimilar materials.
Problems concerning periodic arrays of cracks in elastic media may be

of useful relevance to certain physical situations in which multiple cracking
occurs. They have been studied by various authors, e.g. Ang and Park [6],
Ang and Clements [7], Tweed and Melrose [8] and Benthem and Koiter [9].
To solve the problem presently under consideration, we first derive a suit-

able integral expressions for the displacement, satisfying the relevant conti-
nuity conditions on the interfaces of the layers. The conditions on the cracks
then lead to a system of hypersingular integral equations with the ‘crack-
opening displacements’ as unknown functions. The integral equations can
be solved numerically. Once they are solved, crack parameters of interest,
such as the crack tip stress intensity factors, can be easily computed. For
specific examples of the problem, we solve the integral equations numerically
in order to calculate the relevant stress intensity factors.

2 Statement of the problem

With reference to a Cartesian coordinate system given by 0x1x2x3, con-
sider an infinite elastic space which comprises infinitely many layers S(2m) =
{(x1, x2, x3) : 2m(h+d) < x2 < 2m(h+d)+2h} and S(2m+1) = {(x1, x2, x3) :
2m(h+d)+2h < x2 < 2(m+1)(h+d)}, wherem = 0,±1,±2, · · · , and 2h and
2d are the thicknesses of the layers S(2m) and S(2m+1) respectively. The lay-
ers S(2m) and S(2m+1) are alternately occupied by two dissimilar anisotropic
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materials. The materials are assumed to adhere perfectly to each other
along the plane interfaces x2 = 2m(h + d) + 2h and x2 = 2(m+ 1)(h + d)
(m = 0,±1,±2, · · ·).
The interior of each of the layers S(2m) (m = 0,±1,±2, · · ·) contains N

arbitrarily-located planar cracks denoted by C(1)m , C
(2)
m , · · · , C(N−1)m and C(N)m .

We assume that the geometries of the cracks do not vary along the x3-axis
and the cracks do not intersect with one another or the interfaces separating
the layers. On the 0x1x2 plane, the tips of a typical k-th crack in the layer
S(2m), i.e. C(k)m , are given by (a

(k), b(k)+2m[h+d]) and (c(k), d(k)+2m[h+d]),
where 0 < b(k) < 2h and 0 < d(k) < 2h. Thus, for a fixed integer k (1 ≤
k ≤ N), C(k)0 , C (k)±1 , C

(k)
±2 , C

(k)
±3 , · · · constitute an array of periodically-located

planar cracks in the periodically-layered elastic space. The other layers S(±1),
S(±3), S(±5), · · · are flawless, devoid of any cracks. A sketch of the problem
for N = 2 is given in Figure 1.
The cracks are opened up by the action of a suitably prescribed internal

traction which is independent of time and the x3 coordinate and which are
periodic functions of x2 with period 2[h + d]. We further assume that the
cracks are deformed in such a way that the only non-zero component of
the Cartesian displacement is the one along the x3-direction. The stress
is required to vanish as |x1| → ∞. The problem is then to determine the
Cartesian displacement and stress in the layers, particularly near the cracks.

3 Hypersingular integral equations

For the problem described in Section 2, if the x3-component (the only non-
zero component) of the displacement is given by u(m)3 = u(m)3 (x1, x2) for
(x1, x2) ∈ S(2m) ∪ S(2m+1), then the only non-zero components of the stress
(in S(2m) ∪ S(2m+1)) are

σ
(m)
k3 = λkj

∂u(m)3

∂xj
for k = 1, 2, (1)

where the elastic moduli λkj = λjk (k, j = 1, 2) are piecewise constant
functions of x2 given by

λkj =

 λ(0)kj if 2m(h + d) < x2 < 2m(h + d) + 2h,

λ
(1)
kj if 2m(h + d) + 2h < x2 < 2(m+ 1)(h + d).

(2)

Physical constraint requires that the constants λ(n)kj (n = 0,1) satisfy the

strict inequality (λ
(n)
12 )

2−λ(n)11 λ(n)22 < 0. Also, notice that in (1) and throughout
the present paper, the Einsteinian convention of summing over a repeated
index is assumed to hold for only latin subscripts which run from 1 to 2.
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Let us define

w(m)(y1, y2) ≡ u(m)3 (y1, y2 + 2m[h + d])

s
(m)
k (y1, y2) ≡ σ

(m)
k3 (y1, y2 + 2m[h+ d])

)
for y2 ∈ (0,2h) ∪ (2h,2[h + d]).

(3)
Since the materials occupying the layered space adhere perfectly to each

other, we have to impose the continuity conditions

w(m)(y1, [2h]
−)− w(m)(y1, [2h]+) = 0

s(m)2 (y1, [2h]
−)− s(m)2 (y1, [2h]

+) = 0
w(m)(y1, [2(h + d)]−)− w(m)(y1, 0+) = 0
s
(m)
2 (y1, [2(h + d)]−)− s(m)2 (y1,0+) = 0

(4)

for −∞ < y1 <∞. Notice that, due to the periodicity in the geometries and
boundary conditions along the x2 direction, we have w(0)(y) = w(m)(y) and

s(0)k (y) = s
(m)
k (y) (y = (y1, y2)) for −∞ < y1 < ∞, y2 ∈ (0, 2h) ∪ (2h, 2[h +

d]), and m = ±1,±2,±3, · · · .
We choose w(m)(y) (for m = 0,±1,±2, · · ·) to be given by

w(m)(y) =
NX
p=1

Z
D(p)

r(ξ)U(y;ξ;n(p))dS(ξ), (5)

where ξ = (ξ1, ξ2) (with −∞ < ξ1 < ∞ and 0 < ξ2 < 2h), D(p) denotes
the directed straight line from (a(p), b(p)) to (c(p), d(p)), r(ξ) is an unknown
function yet to be determined, n(p) = ([d(p) − b(p)]/`(p), [a(p) − c(p)]/`(p)) ≡
(n(p)1 , n

(p)
2 ), `

(p) =
q
(a(p) − c(p))2 + (d(p) − b(p))2 is the length of the cracks

C(p)m , and

U (y; ξ;n(p))

=
1

2π
[H(y2)−H(y2 − 2h)]Re

(
Θ(p)

(ξ1 − y1) + τ (0)(ξ2 − y2)
)

+G(y;ξ;n(p)) for y2 ∈ (0,2h) ∪ (2h, 2[h + d]), (6)

where L
(p)
k = λ(p)k1 + τ (p)λ(p)k2 , τ

(p) =
µ
−λ(p)12 + i

q
λ(p)11 λ

(p)
22 − (λ(p)12 )2

¶
/λ(p)22 (p =

0, 1), i =
√−1, Θ(p) = L(0)k n(p)k , H(y) is the usual Heaviside unit-step func-

tion, G(y;ξ;n(p)) is a function yet to be determined and Re denotes the real
part of a complex number.
For the displacement w(m)(y) in (5) to satisfy the equilirium equations

of elasticity, the function G(y; ξ;n(p)) in (6) must satisfy

λ(0)kj
∂2G

∂yk∂yj
= 0 for 0 < y2 < 2h,

λ
(1)
kj

∂2G

∂yk∂yj
= 0 for 2h < y2 < 2[h+ d]. (7)
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For (4) to be satisfied, the function G must be chosen in such a way that,
for −∞ < y1 <∞,

U(y1, [2h]
−;ξ;n(p)) − U(y1, [2h]+;ξ;n(p)) = 0,

Ξ(y1, [2h]
−;ξ;n(p)) − Ξ(y1, [2h]

+;ξ;n(p)) = 0,

U(y1, [2(h + d)]
−; ξ;n(p))− U (y1,0+;ξ;n(p)) = 0, (8)

Ξ(y1, [2(h + d)]
−; ξ;n(p))− Ξ(y1,0

+;ξ;n(p)) = 0,

where

Ξ(y;ξ;n(p)) =

(
λ(0)2j ∂U/∂yj if 0 < y2 < 2h,

λ(1)2j ∂U/∂yj if 2h < y2 < 2[h + d].

In addition, the partial derivatives of U (y; ξ;n(p)) with respect to yj are
required to vanish as |y1|→∞.
We can rewrite conditions (8) as:Z ∞
−∞

h
U(y1, [2h]

−; ξ;n(p))− U(y1, [2h]+; ξ;n(p))
i
exp(−iγy1)dy1 = 0,Z ∞

−∞

h
Ξ(y1, [2h]

−;ξ;n(p)) − Ξ(y1, [2h]
+; ξ;n(p))

i
exp(−iγy1)dy1 = 0,Z ∞

−∞

h
U(y1, [2(h + d)]

−;ξ;n(p))− U (y1,0+; ξ;n(p))
i
exp(−iγy1)dy1 = 0,Z ∞

−∞

h
Ξ(y1, [2(h + d)]

−; ξ;n(p))− Ξ(y1,0
+; ξ;n(p))

i
exp(−iγy1)dy1 = 0,

(9)

where γ > 0 is a constant parameter.
For the solution of (7) subject to (9), we choose

G(y;ξ;n(p))

=
1

2π
[H(y2)−H(y2 − 2h)]

×Re
Z ∞
0

h
E(0)(u;ξ;n(p)) exp(iuz(0))

+F
(0)
(u; ξ;n(p)) exp(iuz(0))du+ Λ(u; ξ;n(p))

¸
du

+
1

2π
[H(y2 − 2h)−H(y2 − 2[h+ d])]

×Re
Z ∞
0

h
E(1)(u;ξ;n(p)) exp(iuz(1))

+F
(1)
(u; ξ;n(p)) exp(iuz(1))du+ Λ(u; ξ;n(p))

¸
du

for y2 ∈ (0, 2h) ∪ (2h, 2[h + d]), (10)

where z(p) = y1+τ(p)y2 (p = 0, 1), E(m)(u;ξ;n(p)), F
(m)
(u; ξ;n(p)) (m = 0,1)

and Λ(u;ξ;n(p)) are functions yet to be determined, and the overhead bar
denotes the complex conjugate of a complex number.
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Now, the first two conditions in (9) give rise to

E(1)(u; ξ;n(p)) exp(2iuτ(1)h) + F
(1)
(u;ξ;n(p)) exp(2iuτ (1)h)

−E(0)(u;ξ;n(p)) exp(2iuτ (0)h) −F (0)(u;ξ;n(p)) exp(2iuτ (0)h)
= iΘ(p) exp(−iu[ξ1 + τ (0){ξ2 − 2h}]),

L(1)2 E
(1)(u;ξ;n(p)) exp(2iuτ (1)h) + L

(1)
2 F

(1)
(u; ξ;n(p)) exp(2iuτ(1)h)

−L(0)2 E(0)(u; ξ;n(p)) exp(2iuτ (0)h)− L(0)2 F (0)(u; ξ;n(p)) exp(2iuτ (0)h)
= iL

(0)
2 Θ(p) exp(−iu[ξ1 + τ (0){ξ2 − 2h}]), (11)

and the last two conditions yield

E(1)(u;ξ;n(p)) exp(2iuτ (1)[h + d])

+F
(1)
(u;ξ;n(p)) exp(2iuτ (1)[h + d])

−E(0)(u;ξ;n(p)) −F (0)(u;ξ;n(p))
= iΘ

(p)
exp(−iu[ξ1 + τ (0)ξ2]),

L
(1)
2 E

(1)(u;ξ;n(p)) exp(2iuτ (1)[h + d])

+L
(1)
2 F

(1)
(u; ξ;n(p)) exp(2iuτ (1)[h + d])

−L(0)2 E(0)(u; ξ;n(p))− L(0)2 F (0)(u; ξ;n(p))
= iL

(0)
2 Θ

(p)
exp(−iu[ξ1 + τ(0)ξ2]). (12)

Notice that, in our derivation of (11) and (12), we make use of the in-
equality 0 < ξ2 < 2h and the results (taken from Erdélyi et al. [10])Z ∞

−∞
(a− ix)−1 exp(−ixy)dx = H(y)2π exp(−ay),Z ∞

−∞
(a + ix)−1 exp(−ixy)dx = −H(−y)2π exp(ay),Z ∞

−∞
exp(ip[u − x])dp = 2πδ(u − x),

where a is a constant such that Re{a} > 0 and δ(x) is the Dirac-delta
function.
From (11), we obtain

E(1)(u; ξ;n(p)) exp(2iuτ (1)h)

= −Ψ
n
iΩΘ(p) exp(−iu[ξ1 + τ (0){ξ2 − 2h}])
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+ΩE(0)(u;ξ;n(p)) exp(2iuτ (0)h) + ΓF
(0)
(u; ξ;n(p)) exp(2iuτ (0)h)

¾
,

F
(1)
(u; ξ;n(p)) exp(2iuτ (1)h)

= Ψ
n
iΓΘ(p) exp(−iu[ξ1 + τ (0){ξ2 − 2h}])

+ΓE(0)(u;ξ;n(p)) exp(2iuτ (0)h) + ΩF
(0)
(u; ξ;n(p)) exp(2iuτ (0)h)

¾
,

(13)

where Ψ = 1/(L
(1)
2 − L(1)2 ), Ω = L(1)2 − L(0)2 and Γ = L(1)2 −L(0)2 .

Substitution of (13) into (12) yieldsh
Υ1(u) exp(2iuτ

(0)h) − 1
i
E(0)(u; ξ;n(p))

+
h
Υ1(−u) exp(2iuτ (0)h)− 1

i
F
(0)
(u;ξ;n(p))

= i
·
Θ
(p)
exp(−iuτ (0)ξ2) −Θ(p)Υ1(u) exp(−iuτ (0){ξ2 − 2h})

¸
exp(−iuξ1),

h
Υ2(u) exp(2iuτ

(0)h) − L(0)2
i
E(0)(u; ξ;n(p))

+
·
Υ2(−u) exp(2iuτ (0)h) −L(0)2

¸
F
(0)
(u;ξ;n(p))

= i
·
L
(0)
2 Θ

(p)
exp(−iuτ (0)ξ2)

−Θ(p)Υ2(u) exp(−iuτ(0){ξ2 − 2h})
i
exp(−iuξ1), (14)

where

Υ1(u) = Ψ
h
Γ exp(2iuτ (1)d)− Ω exp(2iuτ (1)d)

i
,

Υ2(u) = Ψ
·
L
(1)
2 Γ exp(2iuτ (1)d)− L(1)2 Ω exp(2iuτ (1)d)

¸
. (15)

Equations (14) can be readily inverted to obtain E(0)(u; ξ;n(p)) and

F
(0)
(u; ξ;n(p)). The functions E(1)(u;ξ;n(p)) and F

(1)
(u; ξ;n(p)) can then

be determined from (13). From (14), it is clear that E(m)(u; ξ;n(p)) and

F
(m)
(u;ξ;n(p)) (m = 0, 1) are singular at u = 0. Specifically, they behave as

O(1/u) for u close to 0. The improper integrals over [0,∞) in (10) will be
divergent if we do not choose Λ(u; ξ;n(p)) in a careful manner to cancel out
the singularities in the integrands. To substract away these singularities, we
select

Λ(u; ξ;n(p)) = −1
u
κ(ξ;n(p)), (16)

where
κ(ξ;n(p)) = lim

u→0+
u
·
E(0)(u; ξ;n(p)) + F

(0)
(u; ξ;n(p))

¸
. (17)
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Now that we can determine E(0)(u;ξ;n(p)) and F
(0)
(u; ξ;n(p)) from (14),

we are ready to use (5) together with (6) and (10) to deal with the conditions
on the crack faces. These conditions can be written as

s(0)k (y)n
(q)
k →−s(int)k (ξ)n(q)k as y→ ξ ∈ D(q) (q = 1,2, · · · , N), (18)

where s(int)k (ξ) = σ(int)k3 (ξ) and σ(int)k3 (x1, x2) which give the non-zero compo-
nents of the internal stress acting on the cracks are assumed to be periodic
functions of x2 with period 2[h + d]. Notice that in (18) ξ = (ξ1, ξ2), with
0 < ξ2 < 2h.
Using (5) together with (6) and (10), we find that the conditions in (18)

give rise to:

χ(q)H
Z 1

−1
R(q)(t)dt

(t− s)2 +
NX
p=1

Z 1

−1
K (qp)(t, s)R(p)(t)dt

= −s(int)k (X (q)
1 (s), X

(q)
2 (s))n

(q)
k for − 1 < s < 1 (q = 1,2, · · · , N),

(19)

where H denotes that the integral over the appropriate interval is to be
interpreted in the Hadamard finite-part sense, 2X (q)

1 (s) = (a
(q)+c(q))+(c(q)−

a(q))s, 2X (q)
2 (s) = (b(q) + d(q)) + (d(q) − b(q))s, R(q)(t) = r(X(q)

1 (t), X
(q)
2 (t))

and

χ(q) =
1

π
Re


h
Θ(q)

i2
`(q)

[(c(q) − a(q)) + τ (0)(d(q) − b(q))]2

 ,
K(qp)(t, s) =

`(p)

4π
Re{ Θ(q)Θ(p)(1− δqp)h

(X(p)
1 (t)−X(q)

1 (s)) + τ (0)(X (p)
2 (t)−X (q)

2 (s))
i2

+
Z ∞
0
iu
h
Θ(q)E(0)(u;X

(p)
1 (t),X

(p)
2 (t);n

(p))

× exp(iuτ (0)X(q)
2 (s))

+Θ
(q)
F
(0)
(u;X

(p)
1 (t),X

(p)
2 (t);n

(p)) exp(iuτ (0)X
(q)
2 (s))

¸
× exp[iuX(q)

1 (s)]du}.
(20)

Equations (19) constitute a system of N hypersingular integral equations
from which we can solve for the unknown functions R(q)(t) (q = 1, 2, ..., N)
(and hence r(y) for y∈ D(q)). Once the unknown functions are determined,
the displacement can be computed by using (5), and other physical quan-
tities of interest, such as the crack tip stress intensity factors, can also be
readily calculated. Numerical techniques for solving the hypersingular inte-
gral equations are available.
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Using (5) together with the limit

lim
ε→0±

ε
Z 1

−1
r(t)dt

[t− s]2 + ε2
= ±πr(s) for − 1 < s < 1,

the functions R(q)(s) can be shown to be directly related to the difference
between the displacement on the “upper” face of the crack C(q)m and that on
the “lower” face, or the so called “crack-opening displacement.” As we shall
see in the next section, once R(p)(u) are determined, physical quantities
of interest, such as the crack tip stress intensity factors, can be readily
computed.

4 Special cases

If we let either h→∞ or d→∞ (not both), the periodically-layered elastic
space degenerates into an elastic layer of finite width sandwiched between
two similar elastic half-spaces. For the case where h→∞, the elastic layer
is flawless (devoid of any cracks) and planar cracks are present in the half-
space(s). On the other hand, for d → ∞, planar cracks exist in the elastic
layer but not in the half-space. (The case d→∞ corresponds geometrically
to the problem considered in Ang and Clements [3].)
If both h and d tend to infinity, the periodically-layered elastic space

reduces to two dissimilar elastic half-spaces which adhere perfectly to each
other. Planar cracks are found in only one of the elastic half-spaces.

For these limiting cases, the calculation of E(0)(u;ξ;n(p)) and F
(0)
(u;ξ;n(p))

becomes somewhat simpler.
From (14), it can be shown that, for the limiting case where h → ∞,

E(0)(u; ξ;n(p)) and F
(0)
(u;ξ;n(p)) are given by

E(0)(u;ξ;n(p))

=
i Θ

(p)
·
Υ2(−u) −L(0)2 Υ1(−u)

¸
exp(−iu

h
ξ1 + τ (0)ξ2

i
)

L(0)2 Υ1(−u) −Υ2(−u)
,

F
(0)
(u; ξ;n(p)) = 0. (21)

Similarly, for d→∞, we find that E(0)(u;ξ;n(p)) and F (0)(u; ξ;n(p)) are
given by

E(0)(u; ξ;n(p)) = −i Γ exp(−iuξ1)
∆(u)

n
Θ(p)ΨΓ exp(−iuτ (0){ξ2− 2h})

+ Θ(p)ΨΩ exp(−iuτ (0)ξ2) exp(2iuτ (0)h)
o
,

F
(0)
(u; ξ;n(p)) =

iΨΓ exp(−iuξ1)
∆(u)

n
Θ(p)Ω exp(−iuτ (0){ξ2− 2h})
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− Θ(p)Γ exp(−iuτ (0)ξ2) exp(2iuτ(0)h)
o
,

(22)

where ∆(u) = ΨΓΓ exp(2iuτ (0)h) +ΨΩΩ exp(2iuτ (0)h).
Lastly, for h→∞ and d→∞ together, from either (21) or (22), we find

that E(0)(u; ξ;n(p)) and F
(0)
(u;ξ;n(p)) reduce to

E(0)(u;ξ;n(p)) = −i Θ
(p)Γ

Ω
exp(−iu{ξ1 + τ (0)ξ2}),

F
(0)
(u;ξ;n(p)) = 0. (23)

For isotropic materials (i.e. λ(n)ij = µ(n)δij [n = 0,1]), it can be verified
that (22) and (23) are essentially in agreement with the analysis of Ang and
Clements [3].

5 Numerical calculations for specific examples

In this section, we shall solve the hypersingular integral equations (19) for
some specific examples where the elastic constants λ(m)ij (m = 0, 1) are such

that λ(m)12 = λ(m)21 = 0.

5.1 A periodic array of cracks perpendicular to the interfaces

The interior of each of the layers S(2m) (m = 0,±1,±2, · · ·) contains a single
planar crack of length 2` on a plane that is perpendicular to the interfaces
separating the layers. More specifically, the tips of the crack are given by
(a(1), b(1)) = (0, b) and (c(1), d(1)) = (0, b + 2`), where b and ` are positive

constants such that b+ 2` < 2h. The internal stress is such that s
(int)
1 = σ0

(a constant) on the crack.
For this particular case, the system of hypersingular integral equations

in (19) reduces to a single equation given by

1

2`π
χH

Z 1

−1
R(t)dt

(t− s)2 +
Z 1

−1
K(t, s)R(t)dt = −σ0 for − 1 < s < 1, (24)

where R(t) = R(1)(t), χ = Re{[L(0)1 /τ(0)]2} and

K(t, s) =
`

2π
Re{

Z ∞
0
iu
h
L(0)1 E

(0)(u; 0, Y (t); 1,0) exp(iuτ (0)Y (s))

+L
(0)
1 F

(0)
(u; 0, Y (t); 1,0) exp(iuτ (0)Y (s))

¸
du,

(25)

with Y (t) = b+ (t + 1)`.
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For the solution of (19), we make the approximation (as in, e.g. [3])

R(t) ≈
√
1− t2

JX
j=1

AjUj−1(t), (26)

where Aj are real constant coefficients yet to be determined and Uk(x) is
the k-th order Chebyshev polynomial of the second kind.
Substitution of (26) into (19) yields

JX
j=1

AjMj(s) = −σ0 for − 1 < s < 1, (27)

where

Mj(s) = − 1
2`

χjUj−1(s) +
Z 1

−1

√
1− t2Uj−1(t)K(t, s)dt. (28)

The integral in (28) can be accurately calculated by using the numerical
quadrature (25.4.40) in Abramowitz and Stegun [11].
There are J unknowns Aj (j = 1,2, · · · , J) in (27). As many as J

equations are needed to solve for these unknowns. To generate J equations
out of (27), we choose the value of the parameter s to be given, in turn, by

s = sp ≡ cos
"
(2p− 1)π
2J

#
for p = 1,2, · · · , J. (29)

The resulting system of linear algebraic equations can be easily solved by
using standard computer packages.
We define the stress intensity factor

K− = lim
ε→0+

√
2εσ13(0, b− ε) and K+ = lim

ε→0+
√
2εσ13(0, b+ 2`+ ε)

which can be approximately computed using

K± ≈ 1

2
√
`
χ

JX
j=1

AjUj−1(±1), (30)

once we have determined Aj .
For the purpose of using (30) to obtain numerical values of the stress

intensity factor, we consider three separate cases for the elastic moduli of
the materials in the layers:
(a) the layers S(2m) occupied by magnesium and the layers S(2m+1) by tita-
nium, i.e. λ(0)11 = 0.164, λ

(0)
22 = 0.170, λ

(1)
11 = 0.467 and λ(1)22 = 0.350 (in gram

per centimeter per microsecond square),
(b) all the layers are occupied by the materials having the same elastic
moduli, i.e. λ

(0)
11 = λ

(1)
11 and λ

(0)
22 = λ

(1)
22 , and

11



(c) the layers S(2m) occupied by titanium and the layers S(2m+1) by magne-
sium, i.e. λ(0)11 = 0.467, λ

(0)
22 = 0.350, λ

(1)
11 = 0.164 and λ(1)22 = 0.170.

Notice that titanium is a more rigid material than magnesium and case
(b) gives the corresponding problem involving a periodic array of collinear
cracks of equal length in an infinite homogeneous elastic space.
For b = h − ` (i.e. the crack is centrally located in the interior of each

of the layers S(2m)) and for selected values h/` = d/` = δ/` > 1 (i.e.
layers S(2m) and S(2m+1) have equal width given by δ), numerical results for
the non-dimensionalised stress intensity factor K+/(σ0

√
`) or K−/(σ0

√
`)

(K+/(σ0
√
`) = K−/(σ0

√
`) for the centrally-located crack) obtained are

given in Table 1 for cases (a), (b) and (c) described above. From the table,
it is obvious that, for any fixed δ/`, the state of stress around the cracks in
case (b) is more severe than that in case (a) but is less severe than that in case
(c). In case (a), for the values of δ/` considered, it appears that K+/(σ0

√
`)

increases with increasing δ/`, while in cases (b) and (c)K+/(σ0
√
`) decreases

with increasing δ/`. In all the three cases, K+/(σ0
√
`)→ 1 as δ/`→∞, as

expected. (Notice K+/(σ0
√
`) = 1 for the corresponding problem involving

a single planar crack in a homogeneous elastic space.)

Table 1. Numerical values of K+/(σ0
√
`) (= K−/(σ0

√
`)).

δ/` case (a) case (b) case (c)
1.100 0.8728 1.102 1.444
1.250 0.9359 1.075 1.257
1.500 0.9682 1.050 1.146
1.750 0.9805 1.036 1.098
2.000 0.9866 1.027 1.071
2.500 0.9924 1.017 1.043
3.000 0.9951 1.012 1.029
4.000 0.9974 1.007 1.016
5.000 0.9984 1.004 1.010
6.000 0.9988 1.003 1.007

For the degenerate geometry h → ∞, a sketch of the problem is given
in Figure 2. From the figure, it is clear that case (b) (where λ(0)11 = λ(1)11
and λ(0)22 = λ(1)22 ) corresponds to the problem of a single planar crack in an
infinite homogeneous elastic space. Hence, K±/(σ0

√
`) is unity for case (b),

no matter what value we give to b/`. For h →∞, d/` = 1.000 and selected
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values of b/`, we calculate the non-dimensionalised stress intensity factor
K±/(σ0

√
`) for cases (a) and (c). (We solve (24) using E(0)(u;ξ;n(p)) and

F
(0)
(u; ξ;n(p)) as given by (21) in (25) in order to compute K±/(σ0

√
`).)

The numerical results of K±/(σ0
√
`) are tabulated in Tables 2 and 3 for

cases (a) and (c) respectively.
From Table 2, for case (a), we observe that the magnitudes ofK±/(σ0

√
`)

is less than unity, i.e. the state of stress around the crack tips are less severe
than that around a single crack in an infinite homogeneous elastic space. It
appears that the presence of the titanium strip has the effect of reducing the
stress around the crack which is embedded in magnesium. This is perhaps
to be expected since titanium is a more rigid material than magnesium. For
case (a), it is interesting to observe that K+/(σ0

√
`) > K−/(σ0

√
`), i.e. the

state of stress around the crack tip (0, b) is less severe than that around the
tip (0, b + 2`). The tip (0, b) is located nearer to the titanium strip than
the other tip. It is also clear that moving the crack farther away from the
titanium strip aggravates the stress around both crack tips.
The results for case (c) in Table 3 indicate that the presence of the

magnesium strip worsens the stress around the crack in titanium, the state
of stress around the crack tip (0, b) is more severe than that around the other
tip and locating the crack farther away from the magnesium strip reduces
the stress distribution around the crack tips.

Table 2. Numerical values of K±/(σ0
√
`) for case (a).

b/` K−/(σ0
√
`) K+/(σ0

√
`)

0.1000 0.8596 0.9656
0.2000 0.9109 0.9723
0.4000 0.9513 0.9806
0.6000 0.9686 0.9856
0.8000 0.9781 0.9888
1.000 0.9838 0.9912
2.000 0.9946 0.9964
4.000 0.9986 0.9989
8.000 0.9997 0.9998
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Table 3. Numerical values of K±/(σ0
√
`) for case (c).

b/` K−/(σ0
√
`) K+/(σ0

√
`)

0.1000 1.1650 1.0383
0.2000 1.0975 1.0292
0.4000 1.0499 1.0193
0.6000 1.0310 1.0139
0.8000 1.0212 1.0105
1.000 1.0153 1.0082
2.000 1.0048 1.0032
4.000 1.0012 1.0009
8.000 1.0002 1.0002

5.2 A periodic array of cracks parallel to the interfaces

The interior of each of the layers S(2m) (m = 0,±1,±2, · · ·) contains a pair
of cracks of equal length lying on planes parallel to the interfaces separating
the layers. More precisely, the tips of the cracks are given by (a(1), b(1)) =
(`,3h/2), (c(1), d(1)) = (−`,3h/2), (a(2), b(2)) = (`, h/2) and (c(2), d(2)) =
(−`, h/2), where ` is a positive constant. The internal stress is such that
s(int)2 = σ0 (a constant) on the cracks.
For this case, the system of hypersingular integral equations in (19) also

reduces to (24) but with R(t) = R(1)(t) = R(2)(t), χ = Re{[L(0)2 ]2} and

K(t, s) =
`

2π
Re{ [L(0)2 ]

2

[(X(t)−X(s))− τ (0)h]2

+
Z ∞
0
iu
·
L(0)2 E(u; t, s) + L

(0)
2 F (u; t, s)

¸
exp[iuX(s)]du},

(31)

where X(t) = −t` and
E(u; t, s) =

h
E(0)(u;X(t), 3h/2; 0,1) + E(0)(u;X(t), h/2; 0,1)

i
× exp(3ihuτ(0)/2),

F (u; t, s) =
·
F
(0)
(u;X(t), 3h/2; 0, 1) + F

(0)
(u;X(t), h/2; 0, 1)

¸
× exp(3ihuτ(0)/2). (32)

The stress intensity factor defined by

K = lim
ε→0+

√
2εσ23(`+ ε,3h/2)
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can be computed approximately using (30).
As in the previous example, to compute the non-dimensionalised stress

intensity factor K/(σ0
√
`) using (30), for the elastic moduli of the layers, we

consider cases (a), (b) and (c) as described above.
Numerical results of K/(σ0

√
`) for selected values of h/` = d/` = δ/` >

0 are given in Table 4. In all the three cases, K/(σ0
√
`) increases with

increasing δ/`, i.e. it seems that in each case the cracks are more stable when
they are closer to one another. It is also clear that in all the casesK/(σ0

√
`)

approaches unity from below as δ/` increases. The non-dimensionalised
stress intensity factor K/(σ0

√
`) for case (b) is greater in magnitude than

that for case (a) but less than that for case (c).

Table 4. Numerical values of K/(σ0
√
`).

δ/` case (a) case (b) case (c)
0.1250 0.2305 0.2892 0.3536
0.2500 0.3394 0.4291 0.5298
0.5000 0.4811 0.5969 0.7175
0.7500 0.5798 0.7018 0.8128
1.000 0.6554 0.7718 0.8659
1.500 0.7613 0.8565 0.9210
2.000 0.8292 0.9035 0.9483
3.000 0.9042 0.9494 0.9735
5.000 0.9600 0.9798 0.9896
10.00 0.9892 0.9947 0.9973

In the calculations above for the examples, we use J = 10 in the approxi-
mation (26). When the calculations are repeated using J = 20, convergence
to at least 3 significant figures is observed in the numerical results.

6 Closing remarks

To solve the problem under consideration, we have constructed a suitable
singular solution (of the equilibrium equation of elasticity) that satisfies
the relevant continuity conditions on the interfaces separating the dissimilar
materials. The solution is given by (6) together with (10) and (13)-(17). It
is used to form an integral expression for the displacement as in (5). The
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integral expression contains unknown functions which are determined from
the system of hypersingular integral equations in (19). We have also shown
that the analysis presented can also be used to recover special cases of the
problem which involve bimaterials and trilayered materials.
For specific examples of the problem involving particular transversely-

isotropic materials, we have solved the hypersingular integral equations nu-
merically in order to compute the relevant stress intensity factors.
In principle, it is possible to extend the analysis in the present paper to

include plane deformations. We may, however, expect the algebraic manip-
ulations required in the extension to be more tedious.
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