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Abstract

The problem of a penny-shaped crack in an inhomogeneous elastic
material under axisymmetric torsion is considered here. The shear
modulus of the material is assumed to exhibit a slight variation in
the direction perpendicular to the crack. A solution to the problem
in series form is proposed, and the first two terms of the series are
obtained analytically by using a Hankel transform technique.

Note. This has been a draft of the published paper (by WT Ang) in
the journal Solid Mechanics Archives Vol. 12 (No. 2) (1987) pp. 391-
422. (Solid Mechanics Archives was edited by Professor John Roorda
of the Solid Mechanics Division at the University of Waterloo, Canada,
before its last issue was published around 1990.) The analysis in this
draft is essentially the one given in the published paper, although
there may be differences in the numbering of the equations as well as
other descriptive details. The published paper also contains slightly
more analytical details including an appendix containing used results
taken from the table of Hankel transforms in Erdélyi et al [2].

1 Introduction

The present paper is concerned with an extension of the recent work in Ang
and Clements [1] to the case of a penny-shaped crack in an inhomogeneous
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elastic material under axisymmetric torsion. The shear modulus of the ma-
terial is assumed to exhbit a slight variation in the direction perpendicular
to the crack. A solution to the problem in series form is proposed, and the
first two terms of the series are derived analytically by using a Hankel trans-
form technique. The truncated series obtained by retaining only the first two
terms of the series is then used to derive an approximate expression for the
relevant stress intensity factor. Specific cases of the problem, such as the
case in which the shear modulus varies linearly, are considered.

2 Basic equations for axisymmetric torsion

With reference to a cylindrical coordinate system (r, θ, z), consider an elastic
material under axisymmetric torsion. The only non-zero component of the
displacement is uθ which is a function of r and z. The only non-zero stresses
are

σθz = µ
∂uθ
∂z

and σθr = µ[
∂uθ
∂r
− uθ
r
], (1)

where µ is the shear modulus of the material.
In the absence of body forces, the equilibrium equation is given by

∂

∂r
[σθr] +

∂

∂z
[σθz] +

2

r
σθr = 0. (2)

Following Ang and Clements [1], we take the shear modulus to be given
by

µ = µ0 + ²µ1(z), (3)

where µ0 is a constant, ² is some positive real constant such that |²| << 1
and µ1 is a continuous and differentiable function of z in the solution domain
of interest.
Substutition of (1) and (3) into (2) yields

[µ0 + ²µ1(z)][∇2uθ −
1

r2
uθ] + ²µ

0
1(z)

∂uθ
∂z

= 0. (4)

Note that the operator ∇2 is defined by

∇2 = ∂2

∂r2
+
1

r

∂

∂r
+

∂2

∂z2
. (5)
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Assume that the displacement uθ may be written in the form

uθ =
∞X
n=0

²nΦn(r, z). (6)

From (1), the stress σθz may be written as

σθz = σ(0)θz + ²σ
(1)
θz +O(²

2), (7)

where

σ(0)θz = µ0
∂Φ0
∂z

and σ(1)θz = µ0
∂Φ1
∂z

+ µ1
∂Φ0
∂z
. (8)

Substitution of (6) into (4) gives

∇2Φ0 − 1

r2
Φ0 = 0

∇2Φn − 1

r2
Φn = fn−1(r, z) for n ≥ 1, (9)

where

fn(r, z) = − 1
µ0
[µ1(z)(∇2Φn −

1

r2
Φn) + µ

0
1(z)

∂Φn
∂z
]. (10)

3 A penny-shaped crack problem

3.1 Statement of the problem

Consider an infinite elastic material with a penny-shaped crack in its interior.
The crack lies in the region 0 ≤ r < a, 0 ≤ θ < 2π, z = 0, where a is a
positive constant. The shear modulus is given by (3) with µ1 being an even
function of z. The material is subject to a small axisymmetric torsion so that
an internal stress σθz = s0(r) acts on the crack. The elastic field generated
by the crack vanishes at infinity. The problem is to find the displacement
and stress fields throughout the material. Specifically, we are interested in
finding out how the inhomogeneity of the material affects the stress intensity
factor K defined by

K = lim
r→a+

(r − a)1/2σθz(r, 0). (11)

3



From (7), K may be rewritten as

K = K(0) + ²K(1) +O(²2), (12)

where

K(i) = lim
r→a+

(r − a)1/2σ(i)θz (r, 0) for i = 0, 1. (13)

Mathematically, the problem is to solve (4) in the half-space z > 0 subject
to

uθ(r, 0) = 0 for r > a, (14)

and

σθz(r, 0) = s0(r) for 0 ≤ r < a. (15)

Assume that the problem admits a series solution of the form (6) and
that we are interested in finding only the first two terms of the series. The
task of solving (4) in the half-space z > 0 subject to (14) and (15) can then
be reduced to following two problems.

Problem 1. Solve (in the half-space z > 0)

∇2Φ0 − 1

r2
Φ0 = 0, (16)

subject to

Φ0(r, 0) = 0 for r > a, (17)

and

σ(0)θz (r, 0) = s0(r) for 0 ≤ r < a. (18)

Problem 2. Solve (in the half-space z > 0)

∇2Φ1 − 1

r2
Φ1 = −µ

0
1(z)

µ0

∂Φ0
∂z
, (19)

subject to

Φ1(r, 0) = 0 for r > a, (20)

and

σ(1)θz (r, 0) = 0 for 0 ≤ r < a. (21)
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3.2 Solution of problem 1

A solution of (16) is given by

Φ0(r, z) =

Z ∞

0

ψ (ξ) exp(−ξz)J1(ξr)dξ, (22)

where J1 is a Bessel function of order 1 and ψ is an arbitrary function yet to
be determined. Note Φ0 as given above tends to 0 as r2 + z2 →∞.
Now, let

ψ(ξ) = ξm
Z a

0

g(t)Jν(ξt)dt, (23)

where Jν is a Bessel function of order ν and g is an arbitrary function to be
determined. From (22) and (23), we find that

Φ0(r, z) =

Z a

0

r−1/2g(t)
Z ∞

0

ξm−1/2Jν(ξt)J1(ξr)(ξr)1/2dξdt. (24)

From the table of Hankel transforms in Erdélyi et al [2], we find that Φ0(r, 0) =
0 for r > t, if we select m = 1/2 and ν = 3/2. The inequality r > t is al-
ways true if r > a (since 0 < t < a). This implies that the condition (17) is
satisfied if we take ψ to be

ψ(ξ) = ξ1/2
Z a

0

g(t)J3/2(ξt)dt. (25)

It follows that

σ
(0)
θz (r, 0) = −

µ0τ

r2
d

dr

Z min(r,a)

0

r3/2g(t)dt

(r2 − t2)1/2 (τ =

r
2

π
), (26)

if we make use of some results from the table of Hankel transforms in Erdélyi
et al [2].
Condition (18) now becomes

d

dr

Z r

0

r3/2g(t)dt

(r2 − t2)1/2 = −
r2

µ0
τs0(r) for 0 ≤ r < a, (27)

which can be inverted to give

g(t) = − 2

µ0
√
2πt

Z t

0

u2s0(u)du

(t2 − u2)1/2 for 0 < t < a. (28)
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From (13) and (26), the stress intensity factor K(0) may be given by (after
integration by parts)

K(0) =
µ0g(a)

a
√
π
. (29)

Note that g(a) can be evaluated either analytically or numerically from (28).

3.3 Solution of problem 2

Let

Φ1(r, z) =

Z ∞

0

ω(ξ, z)J1(ξr)dξ. (30)

From (22), we find that (30) is a solution of (19) if

(ξr)2J 001 (ξr) + ξrJ 01(ξr) + [
r2

ω

∂2ω

∂z2
− r2ξ

ωµ0
µ01(z)ψ(ξ) exp(−ξz)− 1]J1(ξr) = 0.

(31)

Equation (31) holds if ω satisfies

∂2ω

∂z2
− ξ2ω =

ξ

µ0
µ01(z)ψ(ξ) exp(−ξz). (32)

The general solution of (32) is

ω(ξ, z) = α(ξ) exp(ξz) + [β(ξ) + φ(ξ, z)] exp(−ξz), (33)

where α and β are arbitrary functions to be determined and

φ(ξ, z) =
ξ

µ0
ψ(ξ) exp(2ξz)

Z z

µ1(t) exp(−2ξt)dt. (34)

We set α(ξ) = 0 since we require Φ1 → 0 as z →∞. Thus, from (30) and
(33), we find that

Φ1(r, z) =

Z ∞

0

[β(ξ) + φ(ξ, z)] exp(−ξz)J1(ξr)dξ. (35)

6



Condition (20) is satisfied if β is chosen to be

β(ξ) = ξ1/2
Z a

0

h(t)J3/2(ξt)dt− φ(ξ, 0), (36)

where h is yet to be determined.
From (8), (35) and (36), we find that

σ(1)θz (r, 0) = µ0

Z ∞

0

φz(ξ, 0)J1(ξr)dξ −
τ

r2

Z min(r,a)

0

u3/2[µ0h(u) + µ1(0)g(u)]du

(r2 − u2)1/2 .

(37)

Thus, by using (27), condition (21) may be rewritten as

d

dr

Z r

0

t3/2h(t)dt

(r2 − t2)1/2 = τr2[

Z ∞

0

φz(ξ, 0)J1(ξr)dξ +
µ1(0)

µ20
s0(r)] for 0 ≤ r < a.

(38)

Equation (38) can be inverted to obtain

h(t) +
µ1(0)

µ0
g(t) =

2√
2πt

Z t

0

Z ∞

0

u2J1(ξu)

(t2 − u2)1/2φz(ξ, 0)dξdu for 0 ≤ t < a.
(39)

It follows that the stress intensity factor K(1) defined in (13) is given by

K(1) = µ0 lim
r→a+

(r − a)1/2
Z ∞

0

φz(ξ, 0)J1(ξr)dξ

+
2µ0

πa
√
2a

Z a

0

Z ∞

0

u2J1(ξu)

(a2 − u2)1/2φz(ξ, 0)dξdu. (40)

4 Uniform torsion

Take s0(r) = −σ0 (constant), that is, the crack is acted upon by a constant
torsion. From (28), we obtain

g(t) =
t2σ0

2µ0τ
√
t
. (41)
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From (29), K (0) is then given by

K(0) =
aσ0

2
√
2a
. (42)

Through (25) and (41) together with the result (in Abramowitz and Ste-
gun [3])

J3/2(z) =
τ√
z
[
sin(z)

z2
− cos(z)

z
], (43)

we obtain

ψ(ξ) =
σ0

2µ0ξ
2 [2(1− cos(aξ))− aξ sin(aξ)]. (44)

Consider the following cases.

Case 1. µ1 = k|z| (k is a positive constant). From (34), we obtain

φ(ξ, z) = −kψ(ξ)
4µ0ξ

[2ξz + 1], (45)

and hence

φ(ξ, z) = −kψ(ξ)
2µ0

. (46)

Using (44) and (46) together with the fact that Jν(z) behaves asO(z−1/2)
for large |z|, we find that the integrand of the first integral in (40) be-
haves as O(ξ−3/2) for large ξ. The integrand is also bounded everywhere
within the interval 0 ≤ ξ < ∞. Thus, the integral is well defined for
all r ≥ 0 and does not contribute to the stress intensity factor K(1). It
follows that

K(1) = − kσ0

2µ0π
√
2a

Z a

0

u2du

(a2 − u2)1/2

×
Z ∞

0

1

ξ2
[2(1− cos(aξ))− aξ sin(aξ)]J1(ξu)dξ. (47)

With the help of the table of Hankel transforms, the integral in (47)
can be evaluated to obtain

K(1) =
kσ0a2(1− λ)

4πµ0
√
2a

, (48)
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where λ = 4(ln(2) + 1/2)/3 > 1. Thus, for this particular case in
which µ = µ0 + ²|z|, the stress intensity factor K is lower than the
corresponding stress intensity factor for a material with constant shear
modulus µ0. It is interesting to note that as µ0 decreases the difference
between these stress intensity factors becomes more pronounced. This
observation is consistent with that in Ang and Clements [1] for the case
in which the variation of the elastic modulus is linear.

Case 2. µ1 = kz
2 (k is a positive constant). From (34), we obtain

φ(ξ, z) = −kψ(ξ)
4µ0ξ

2 [2ξ
2z2 + 2ξz + 1]. (49)

As in Case 1, the first integral in (40) is finite for r ≥ 0 and does not
contribute to the stress intensity factor K(1). Hence

K(1) = − kσ0

2µ0π
√
2a

Z a

0

u2du

(a2 − u2)1/2

×
Z ∞

0

[
2

ξ3
(1− cos(aξ))− a

ξ2
sin(aξ)]J1(ξu)dξ, (50)

which eventually gives (after some analytical manipulations using re-
sults from the table of Hankel transforms)

K(1) = − kσ0a3

48µ0
√
2a
. (51)

As in Case 1, the variation of the shear modulus considered here has
the effect of reducing the stress intensity factor K. Also, decreasing µ0
has the effect of increasing the magnitude of K(1).

Case 3. µ1 = k(z − δ)2 if 0 < z ≤ δ and µ1 = 0 if z > δ (k and δ are
positive constants). The results in Cases 1 and 2 may be used to derive

K(1) =
kσ0a2

2µ0
√
2a
(− a
24
+ |1− λ| δ

π
). (52)

From (52), it is obvious that K(1) > 0 if a < 24|1− λ|δ/π, that is, the
crack is less stable in the particular inhomogeneous material considered
here than in a homogeneous material with shear modulus µ0 if the crack
length a is shorter than a critical value which depends on δ. Note that
if δ is very large it is more likely for the crack to be less stable.
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