
Numerical solution of a non-classical parabolic
problem: an integro-differential approach

Whye-Teong Ang
Division of Engineering Mechanics

School of Mechanical and Aerospace Engineering
Nanyang Technological University

50 Nanyang Avenue, Singapore 639798
E-mail: mwtang@ntu.edu.sg

http://www.ntu.edu.sg/home/mwtang/

Abstract

A numerical method based on an integro-differential formulation
and approximation by local interpolating functions is proposed for
solving a one-dimensional parabolic partial differential equation sub-
ject to non-classical conditions. Some specific test problems are solved
using the proposed method. Numerical results obtained indicate that
it can give accurate solutions and that it is an interesting and vi-
able alternative to existing numerical methods for solving the class of
problems under consideration.
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1 Introduction

Of interest here is the numerical solution of the one-dimensional parabolic

partial differential equation of the form

∂φ

∂t
− q(x, t) = ∂2φ

∂x2
for x ∈ (0, 1) and t > 0 (1)

subject to the initial condition

φ(x, 0) = f(x) for x ∈ (0, 1) (2)

and the non-classical conditions

α0φ(0, t) + β0p(0, t) =
`0R
0

k0(x)φ(x, t)dx+ r0(t)

α1φ(1, t) + β1p(1, t) =
`1R
0

k1(x)φ(x, t)dx+ r1(t)

 for t > 0, (3)

where x and t are the spatial and time coordinates respectively, φ(x, t) is the

unknown function to be determined, p(x, t) = ∂φ/∂x, α0, α1, β0, β1, `0 and `1

(with `0 and `1 selected from the real interval [0, 1]) are given constants and

q(x, t), f(x), k0(x), k1(x), r0(t) and r1(t) are suitably prescribed functions.

The problem defined by (1)-(3) arises in the modeling of mass and heat

transfer in many modern engineering applications. Classical initial-boundary

value problems for diffusion can be recovered from (1)-(3) by letting both

k0(x) ≡ 0 and k1(x) ≡ 0. If α0 = β0 = 0, k0(x) ≡ 1 and k1(x) ≡ 0, the

first equation in (3) specifies the total mass or energy stored inside a given

portion of the solution domain, that is, inside the region 0 < x < `0, while the

second equation implies that a certain linear combination of φ (concentration

or temperature) and its flux is known at x = 1. Certain problems in the quasi-

static theory of thermoelasticity are governed by (1)-(3) with α0 = α1 = 1,

β0 = β1 = 0 and `0 = `1 = 1 (see, e.g. Day [1] and [2]).
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Finite-difference methods for the numerical solution of (1)-(3) are given

by various researchers for specific cases of the problem, e.g. Cannon, Lin

and Wang [3] (for q(x, t) ≡ 0, α0 = α1 = β0 = 0, β1 = 1, k0(x) ≡ 1

and k1(x) ≡ 0), Cannon and van der Hoek [4] (for q(x, t) ≡ 0, α1 = 1,

α0 = β0 = β1 = 0, k0(x) ≡ 1 and k1(x) ≡ 0), Dehghan [5] (for α1 = 1,

α0 = β0 = β1 = 0, k0(x) ≡ 1 and k1(x) ≡ 0) and Liu [7] (for α0 = α1 = 1,

β0 = β1 = 0 and `0 = `1 = 1). A more extensive list of references as well as a

survey on progress made on this class of problems may be found in Dehghan

[5] and [6].

The present paper proposes a numerical method based on an integro-

differential formulation of the parabolic equation and the use of local inter-

polating functions in the approximation of φ for solving (1)-(3). The method

reduces the problem under consideration to an initial-value problem governed

by a linear system of first order ordinary differential equations containing un-

known functions of time t. To solve the intial-value problem numerically, the

first order time derivatives of the unknown functions are approximated using

quadratic functions of t. Numerical results obtained for specific test prob-

lems indicate that the proposed method can give accurate numerical solutions

and it is a useful and viable alternative to existing techniques for solving the

one-dimensional parabolic equation with non-classical conditions.

2 Integro-differential formulation

The partial differential equation (1) may be re-cast into an integro-differential

equation of the form

2φ(x, t) = φ(0, t) + φ(1, t) + xp(0, t) + (x− 1)p(1, t)

+

Z 1

0

|ξ − x|( ∂
∂t
[φ(ξ, t)]− q(ξ, t))dξ. (4)

It is easy to verify that partial differentiation of the right hand side of (4)

with respect to x twice yields the term on the left hand side of (1).
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The problem stated in Section 1 may now be reformulated as one which

requires one to determine φ(x, t) from (4) [instead of (1)] subject to (2)-(3).

It is worthwhile noting that the function p(x, t) = ∂φ/∂x (flux) in (2)-(3)

appear directly in (4). Thus, an advantage in using (4) for devising a numer-

ical method for the problem under consideration is that it is not necessary

to approximate the partial derivative ∂φ/∂x at x = 0 and x = 1 in treating

the conditions in (3). A numerical method for solving (4) subject to (2)-(3)

based on approximating φ(x, t) by local interpolating functions is described

below. The approach adopted may be viewed as a one-dimensional version

of the well known dual-reciprocity boundary element method as described

in, e.g. Zhang and Zhu [8].

3 Initial-value problem

The unknown function φ is approximated using

φ(x, t) '
NX
m=1

φm(t)
NX
n=1

cnmσn(x), (5)

where φm(t) = φ(ξm, t), ξ1, ξ2, · · · , ξN−1 and ξN are N distinct well-spaced

points selected from the interval [0, 1] with ξ1 = 0 and ξN = 1, σn(x) =

1 + |x− ξn|3/2 is the local interpolating function centered about ξn and cnm
are constant coefficients defined by

NX
k=1

σn(ξk)cpk =

½
1 if n = p,
0 if n 6= p. (6)

Note that (5) implies that [cpk] is the inverse matrix of [aij], where aij =

σj(ξi).

Substitution of (5) into (4) with x = ξr (for r = 1, 2, · · · , N) yields the
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system

2φr(t) + Sr(t)

= φ1(t) + φN(t) + ξrθ(t) + (ξr − 1)ω(t) +
NX
m=1

Frm
d

dt
[φm(t)]

for r = 1, 2, · · · , N, (7)

where θ(t) = p(0, t), ω(t) = p(1, t) and

Sr(t) =

Z 1

0

|ξ − ξr|q(ξ, t)dξ,

Frm =
NX
n=1

cnm(
1

2
[(1− ξr)

2 + ξ2r ]

+
2

5
[(1− ξr)(1− ξn)

5/2 + ξrξ
5/2
n ]

− 4

35
[(1− ξn)

7/2 + ξ7/2n ] +
8

35
|ξr − ξn|7/2). (8)

If the function q(x, t) in (1) is such that Sr(t) as defined in (8) cannot be

evaluated analytically then one may approximate q(x, t) as

q(x, t) '
NX
m=1

q(ξm, t)
NX
n=1

cnmσn(x) (9)

to obtain the approximate formula

Sr(t) '
NX
m=1

Frmq(ξm, t). (10)

The system (7) comprises N linear equations containing N + 2 unknown

functions of t as given by φr(t) (r = 1, 2, · · · , N), θ(t) and ω(t). Another

2 equations are needed to complete the system. These come from the non-

classical conditions (3).

With the approximation

ki(x)φ(x, t) '
NX
m=1

ki(ξm)φm(t)
NX
n=1

cnmσn(x) for i = 0, 1, (11)
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the conditions in (3) may be approximately re-written as

α0φ1(t) + β0θ(t)−
NX
m=1

Gm(`0)k0(ξm)φm(t) = r0(t),

α1φN(t) + β1ω(t)−
NX
m=1

Gm(`1)k1(ξm)φm(t) = r1(t), (12)

where

Gm(`) =
NX
n=1

cnm(`+
2

5
sgn(`− ξn) |`− ξn|5/2 + 2

5
ξ5/2n ). (13)

Thus, the problem stated in Section 1 can now be formulated approxi-

mately as an initial-value problem which requires solving (7) and (12) subject

to

φm(0) = f(ξm) for m = 1, 2, · · · , N. (14)

Note that (14) is obtained from (2).

4 Numerical procedure

A numerical procedure for solving (7) and (12) subject to (14) is as described

below.

The function φn(t) (n = 1, 2, · · · , N) is approximated as a cubic function
of time t over the interval [τ, τ + 3∆t], that is,

φn(t) ' 1

(∆t)3
[−1
6
(t− τ −∆t)(t− τ − 2∆t)(t− τ − 3∆t)φn(τ)

+
1

2
(t− τ)(t− τ − 2∆t)(t− τ − 3∆t)φn(τ +∆t)

− 1
2
(t− τ)(t− τ −∆t)(t− τ − 3∆t)φn(τ + 2∆t)

+
1

6
(t− τ)(t− τ −∆t)(t− τ − 2∆t)φn(τ + 3∆t)]

for t ∈ [τ, τ + 3∆t]. (15)
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Differentiation of (15) with respect to t gives

d

dt
[φn(t)] ' 1

(∆t)3
[−(1

2
[t− τ ]2 − 2[t− τ ]∆t+

11

6
[∆t]2)φn(τ)

+ (
3

2
[t− τ ]2 − 5[t− τ ]∆t+ 3[∆t]2)φn(τ +∆t)

− (3
2
[t− τ ]2 − 4[t− τ ]∆t+

3

2
[∆t]2)φn(τ + 2∆t)

+ (
1

2
[t− τ ]2 − [t− τ ]∆t+

1

3
[∆t]2)φn(τ + 3∆t)]

for t ∈ [τ, τ + 3∆t]. (16)

If one lets t = τ+j∆t (for j = 1, 2, 3) in (7), after using (16), one obtains

2φr(τ + j∆t) + Sr(τ + j∆t)

= φ1(τ + j∆t) + φN(τ + j∆t) + ξrθ(τ + j∆t) + (ξr − 1)ω(τ + j∆t)

+
1

∆t

NX
m=1

Frm[−(1
2
j2 − 2j + 11

6
)φm(τ) + (

3

2
j2 − 5j + 3)φm(τ +∆t)

− (3
2
j2 − 4j + 3

2
)φm(τ + 2∆t) + (

1

2
j2 − j + 1

3
)φm(τ + 3∆t)]

for r = 1, 2, · · · , N and j = 1, 2, 3. (17)

Letting t = τ + j∆t (for j = 1, 2, 3) in (12) gives

α0φ1(τ + j∆t) + β0θ(τ + j∆t)−
NX
m=1

Gm(`0)k0(ξm)φm(τ + j∆t)

= r0(τ + j∆t) for j = 1, 2, 3, (18)

and

α1φN(τ + j∆t) + β1ω(τ + j∆t)−
NX
m=1

Gm(`1)k1(ξm)φm(τ + j∆t)

= r1(τ + j∆t) for j = 1, 2, 3. (19)

If φm(τ) is assumed known for m = 1, 2, · · · , N, then (17)-(19) may be
regarded as a system of 3(N + 2) linear algebraic equations with 3(N + 2)
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unknowns given by θ(τ + j∆t), ω(τ + j∆t) and φm(τ + j∆t) for j = 1, 2, 3

and m = 1, 2, · · · , N.
A time-stepping scheme for solving (17)-(19) is as follows.

Compute φm(0) using (14) and solve (17)-(19) with τ = 0 for θ(∆t),

θ(2∆t), θ(3∆t), ω(∆t), ω(2∆t), ω(3∆t), φm(∆t), φm(2∆t) and φm(3∆t).

With φm(3∆t) just determined, one may then let τ = 3∆t in (17)-(19) to

solve for θ(4∆t), θ(5∆t), θ(6∆t), ω(4∆t), ω(5∆t), ω(6∆t), φm(4∆t), φm(5∆t)

and φm(6∆t). The process may be repeated using τ = 6∆t, 9∆t, 12∆t, · · ·
to solve for the unknown functions φm(t), θ(t) and ω(t) at higher and higher

time levels.

5 Specific problems

Problem 1. For an example problem from Day [1], take

q(x, t) = −[x(x− 1) + δ

6{1 + δ} + 2] exp(−t),

f(x) = −[x(x− 1) + δ

6{1 + δ} + 2],
`0 = `1 = 1, α0 = 1, β0 = 0, α1 = 1, β1 = 0,

k0(x) = −δ, k1(x) = −δ, r0(t) = 0, r1(t) = 0, (20)

where δ is a constant with the value 0.0144.

The exact solution of this problem is

φ(x, t) = [x(x− 1) + δ

6{1 + δ} ] exp(−t). (21)

To apply the numerical procedure in Section 4 to solve the problem here,

the collocation points ξ1, ξ2, · · · , ξN−1 and ξN are taken to be given by

ξi = (i− 1)/(N − 1) for i = 1, 2, · · · , N. Table 1 shows the absolute errors
of the numerical values of φ at x = 0.50 and selected time levels. The

numerical values of φ are obtained by using various values of N and ∆t.
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There is a good agreement between the numerical and exact values, even for

N = 5 and ∆t = 0.10. It is obvious from Table 1 that the numerical values

converge to the exact ones when the calculation is refined by increasing N

and decreasing ∆t.

Table 1. Absolute errors of the numerical values of φ at x = 0.50 and selected

time levels, as obtained by using various values of N and ∆t, for Problem 1.

t Exact
N = 5

∆t = 0.10
Absolute error

N = 17
∆t = 0.05

Absolute error

N = 33
∆t = 0.025
Absolute error

0.30 −0.183451 83 2.3× 10−4 5.4× 10−6 8.2× 10−7
0.60 −0.13590446 1.9× 10−4 4.3× 10−6 6.5× 10−7
0.90 −0.100680 49 1.4× 10−4 3.2× 10−6 4.9× 10−7
1.20 −0.07458595 1.1× 10−4 2.3× 10−6 3.6× 10−7
1.50 −0.05525463 7.6× 10−5 1.7× 10−6 2.7× 10−7
1.80 −0.04093364 5.6× 10−5 1.3× 10−6 1.9× 10−7
2.10 −0.03032438 4.2× 10−5 9.5× 10−7 1.5× 10−7
2.30 −0.02246486 3.1× 10−5 7.1× 10−7 1.1× 10−7
2.70 −0.01664237 2.3× 10−5 8.1× 10−7 8.1× 10−8
3.00 −0.01232897 1.7× 10−5 3.9× 10−7 5.9× 10−8

Problem 2. Take

q(x, t) = 0, f(x) = cos(
1

2
πx) + cos(

1

3
πx), `0 = `1 = 1/2,

α0 = 0, β0 = 0, k0(x) = 1, α1 = 1, β1 = 0, k1(x) = 0,

r0(t) = − 1
2π
[2
√
2 exp(−1

4
π2t) + 3 exp(−1

9
π2t)],

r1(t) =
1

2
exp(−1

9
π2t). (22)

It is easy to verify that the exact solution for this problem is given by

φ(x, t) = exp(−1
4
π2t) cos(

1

2
πx) + exp(−1

9
π2t) cos(

1

3
πx). (23)
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Table 2. Absolute errors of the numerical values of φ(x, t) at selected points

and at t = 0.90, as computed using various values of N and ∆t, for Problem

2.

x Exact φ
N = 5

∆t = 0.10
Absolute error

N = 17
∆t = 0.05

Absolute error

N = 33
∆t = 0.025
Absolute error

0.00 0.481245 2.9× 10−3 1.2× 10−4 2.4× 10−5
0.25 0.460284 2.3× 10−3 9.7× 10−5 1.9× 10−5
0.50 0.399522 1.6× 10−3 6.7× 10−5 1.4× 10−5
0.75 0.305080 7.1× 10−4 3.3× 10−5 6.9× 10−6

Figure 1. Plots of numerical and exact |ω(t)| against t for Problem 2.
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As in the first problem above, the collocation points ξ1, ξ2, · · · , ξN−1 and
ξN are given by ξi = (i− 1)/(N − 1) for i = 1, 2, · · · , N. For various values
of N and ∆t, the absolute errors of the numerically obtained φ at selected

points and at time t = 0.90 are given in Table 2. The numerical and exact

values of φ agree well with each other. Convergence is also observed when

the calculation is repeated using larger N and smaller ∆t.

The flux function at x = 1, that is, ω(t) as defined by ∂φ/∂x at x = 1, is

directly obtained after (17)-(19) is solved. Figure 1 compares graphically the

numerical magnitude of ω(t) as obtained by using N = 21 and ∆t = 0.025

with the exact value over the time interval [0.15, 2.0]. The graphs for the

numerical and exact |ω(t)| are visually indistinguishable, as the two sets of
results agree to at least 4 significant figures.

Problem 3. Take

q(x, t) = [1 + (
π2

4
− 1)t] exp(−t) cos(1

2
πx),

f(x) = 0, `0 = `1 = 1,α0 = 0, β0 = 0,

k0(x) = sin(
1

2
πx), α1 = 0, β1 = 1, k1(x) = 0,

r0(t) = −1
π
t exp(−t), r1(t) = −π

2
t exp(−t). (24)

The exact solution of this problem is

φ(x, t) = t exp(−t) cos(1
2
πx). (25)

The collocation points are chosen as in the first two problems above. In

Figure 2, the numerical solution φ at t = 1, as obtained using N = 21 and

∆t = 1/15, is compared graphically with the exact solution for x ∈ [0, 1].
The numerical values of φ agree well with the exact ones.
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Figure 2. Plots of numerical and exact φ(x, 1) against x for Problem 3.

6 Conclusion

A numerical method for solving a one-dimensional parabolic partial differen-

tial equation subject to non-classical conditions has been successfully devel-

oped and implemented on the computer.

It (the method) uses an integro-differential formulation of the parabolic

equation and approximation by local interpolating functions to reduce the

problem under consideration into a linear system of first order ordinary dif-

ferential equations and may be viewed as a one-dimensional version of the

well known dual-reciprocity boundary element method. The unknown func-

tions of time in the ordinary differential equations are approximated using

cubic functions over a time interval consisting of 4 consecutive time levels.
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This gives rise to a system of linear algebraic equations AX = B, where A

and B are known matrices of order N×N and N×1 respectively and X is an
unknown N × 1 matrix, over the time interval. An approximate solution to
the problem under consideration can then be obtained at higher and higher

time levels by using a time-stepping scheme which requires solving the linear

algebraic equations over consecutive time intervals. If the size of each of the

time intervals is the same, the matrix A has to be evaluated and processed

only once in order to solve the linear algebraic equations. For example, if the

LU decomposition technique together with backward substitutions is used

to solve the linear algebraic equations, then the square matrix has to be

decomposed only once.

To check the numerical method, it is applied to solve several different

test problems with known exact solutions. The numerical solutions obtained

agree well with the exact ones. Convergence is also observed in the numerical

solutions when the calculation is refined by increasing the number of collo-

cation points used or by reducing the size of the time interval over which

the unknown functions are approximated by cubic functions of time. The

numerical results confirm the validity of the numerical method and suggest

that it is an interesting and viable alternative to existing numerical methods

for solving the problem under consideration.
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Captions for Figures and Tables

Figure 1. Plots of numerical and exact |ω(t)| against t for Problem 2.

Figure 2. Plots of numerical and exact φ(x, 1) against x for Problem 3.

Table 1. Absolute errors of the numerical values of φ at x = 0.50 and

selected time levels, as obtained by using various values of N and ∆t,

for Problem 1.

Table 2. Absolute errors of the numerical values of φ(x, t) at selected

points and at t = 0.90, as computed using various values of N and ∆t,

for Problem 2.
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