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Abstract

Two micro-mechanics models are proposed for an imperfect (weak)
interface between two anisotropic elastic half-spaces under anti-plane
shear load. The imperfect interface in the ¯rst model contains an
array of periodically distributed micro-cracks with random lengths and
positions. The second model, a simpli¯ed version of the ¯rst, is a three-
phase model in which a period length of the interface contains a single
representative micro-crack, perfectly bonded parts and an e®ective
region. Both models are formulated in terms of hypersingular integral
equations which may be solved by boundary element procedures to
calculate the e®ective interface sti®ness and the critical failure load of
the interface.
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1 Introduction

A perfect bond between two joined materials is an idealization. In reality,
microscopic imperfections or gaps are bound to be present along the inter-
face of the materials. Thus, the analysis of imperfect interfaces in layered
and composite materials is a subject of considerable interest among many
researchers (see Andrianov et al [2], Avila-Pozos and Movchan [4], Fan and
Wang [9], Torquato and Rintoul [12] and other references therein).
An interface weakened by micro-cracks may be macroscopically modeled

as a continuously damaged interface. In the context of elasticity, the macro-
scopic model of such an imperfect weak interface may be described by the
interfacial conditions in Benveniste and Miloh [5] which involve elastic dis-
placement ¯elds that are discontinuous across opposite sides of the interface.
The interfacial displacement jump is linearly related to the traction on the
interface, that is, the weak interface may be physically interpreted as a con-
tinuous distribution of springs.
A micro-mechanics problem of interest is to estimate the e®ective sti®-

ness coe±cients of the \springs" in the macroscopic model by taking into
consideration the micro-cracks on the interface. Fan and Sze [10] proposed
a three-phase model that may be used to investigate the problem for the
case in which the imperfect interface is subject to an anti-plane deformation.
The ¯nite element method was employed in [10] to solve numerically the
boundary value problem of the model.
For the purpose of estimating the e®ective interface sti®ness of the anti-

plane imperfect interface between two anisotropic elastic half-spaces, two
micro-mechanics models of the interface are proposed in the current paper.
In the ¯rst micro-mechanics model, a given region of the imperfect interface
is modeled as containing an arbitrary number of arbitrarily located micro-
cracks of di®erent lengths. Those micro-cracks in the region are then period-
ically duplicated over the entire interface between the two half-spaces. The
second model, which may be regarded as a simpli¯ed version of the ¯rst, is
a three-phase model which follows quite closely the spirit of the work in Fan
and Sze [10]. In the three-phase model here, the interface is periodic and
a period length of the interface contains a single representative micro-crack,
perfectly bonded parts and an e®ective region that is modeled as a continu-
ously damaged interface with a yet to be determined interface sti®ness.
The boundary value problems in both models are formulated in terms

of hypersingular integral equations. The unknown function in the hyper-
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singular integral equations is directly given by the jump in the anti-plane
displacement across opposite sides of the micro-cracks or the e®ective re-
gions. Once the hypersingular integral equations for the ¯rst micro-crack
model are solved, the e®ective interface sti®ness of the imperfect interface
under anti-plane deformations can be easily calculated through an averag-
ing formula. For the three-phase model, a predictor-corrector method that
iterates to and fro between solving the hypersingular integral equations and
calculating the unknown interface sti®ness of the e®ective region are used
to solve the boundary value problem. The hypersingular integral equations
in both models are solved here by using boundary element procedures. The
hypersingular integral approach for solving problems involving cracks and
imperfect interfaces is well established in the literature (see, for example,
Ang [3], Chen and Hong [7] and Hong and Chen [11]).
The mode III (anti-plane) stress intensity factors at the tips of the micro-

cracks in the two micro-mechanics models mentioned above, which can be
easily extracted from the solutions of the hypersingular integral equations,
can be used to determine the critical load for the failure of the interface. The
calculation of the critical load based on the those models is also considered
in the current paper.

Figure 1. Micro-cracks and micro-voids distributed along the interface
between two dissimilar elastic half-spaces.
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2 Imperfect interface problems

With reference to a Cartesian coordinate system Ox1x2x3, consider two dis-
similar anisotropic elastic materials occupying the half-spaces x2 > 0 and
x2 < 0. The half-spaces are imperfectly joined along the interface x2 = 0;
with micro-cracks and micro-voids distributed along the entire interface. Re-
fer to Figure 1.
The bimaterial is assumed to undergo an anti-plane deformation such

that the only non-zero component of the elastic displacement is along the
x3 direction and depends on only x1 and x2. According to Hooke's law, the
anti-plane stress ¾3j is related to the anti-plane displacement u3 by

¾31 = C55
@u3
@x1

+ C45
@u3
@x2

;

¾32 = C45
@u3
@x1

+ C44
@u3
@x2

; (1)

where C44; C45 and C55 are independent elastic coe±cients of the bimaterials
de¯ned by

(C44; C45; C55) =

8
<
:
(C

(1)
44 ; C

(1)
45 ; C

(1)
55 ) for x2 > 0;

(C
(2)
44 ; C

(2)
45 ; C

(2)
55 ) for x2 < 0;

(2)

with (C
(p)
45 )

2 ¡ C(p)44 C
(p)
55 < 0:

From (1) and the stress equilibrium equation, the anti-plane displacement
u3 has to satisfy the elliptic partial di®erential equation

C55
@2u3
@x21

+ 2C45
@2u3
@x1@x2

+ C44
@2u3
@x22

= 0, (3)

in the half-spaces x2 > 0 and x2 < 0:
Two speci¯c problems on the mechanics of the imperfect interface between

the anisotropic half-spaces are studied here.

Problem I. On the macroscopic level, the imperfect interface between the
elastic materials in the half-spaces may be modeled as a continuous distribu-
tion of springs (see, for example, Hashin [13]). For anti-plane deformations,
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the macroscopic model of the continuously damaged interface x2 = 0 is given
by the boundary conditions

¾32(x1; 0
+) = ¾32(x1; 0

¡)

k¢u3(x1) = ¾32(x1; 0
+)

9
=
; for ¡1 < x1 <1, (4)

where ¾ij are components of the elastic stress, ¢u3(x1) = u3(x1; 0
+) ¡

u3(x1; 0
¡) denotes the jump of u3 across the interface, u3 is the x3 component

of the elastic displacement and k is the interface sti®ness. The problem is to
estimate the e®ective k for the macroscopic model of the interface by taking
into consideration some details of the micro-cracks.

Problem II. The imperfect interface starts to fail if the mode III stress
intensity factor at any of the micro-crack tips exceeds a critical value Kcritical

III

which depends on the composition of the bimaterial. If the far-¯eld stress in
the bimaterial is given by

¾3j(x1; x2)! ±j2S0 as x
2
1 + x

2
2 !1; (5)

the problem is to determine the critical constant anti-plane load S0 needed
to initiate the failure of the interface.

3 Micro-mechanics models

To study the two problems stated in Section 2 above, two micro-mechanics
models of the imperfect interface are used here.

3.1 Multiple micro-crack model

In this model, a region of length L on the interface is modeled as containing
M arbitrarily located micro-cracks of possibly di®erent lengths. On the part
of the interface de¯ned by 0 < x1 < L; x2 = 0; a typical m-th crack has tips
(a(m); 0) and (b(m); 0); where a(m) and b(m) are constants such that

0 < a(1) < b(1) < a(2) < b(2) < ¢ ¢ ¢ < a(M) < b(M) < L:

Micro-cracks on the remaining parts of the interface are given by a(m) +
nL < x1 < b(m) + nL for m = 1; 2; ¢ ¢ ¢ ; M and n = §1; §2; ¢ ¢ ¢ ; that
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is, the remaining micro-cracks are periodically distributed exact replicas of
the M micro-cracks on 0 < x1 < L; x2 = 0: For illustration, a sketch of the
micro-cracks for M = 3 is given in Figure 2:

Figure 2. An illustrative sketch of the periodic micro-crack model for
M = 3:

For the micro-crack model here, we de¯ne the fracture ratio parameter R
by

R =
sum of lengths of the M micro-cracks

L
=
1

L

MX

m=1

(b(m) ¡ a(m)): (6)

The bimaterial is subject to an external anti-plane shear stress S0 at
in¯nity, the micro-cracks are traction free and the displacement u3 and the
stress ¾32 are continuous across the uncracked parts of the interface x2 = 0:
Speci¯cally, at the micro-level, the conditions on the interface are given by

¾32(x1; 0
+) = ¾32(x1; 0

¡) = 0 for a(m) + pL < x1 < b
(m) + pL

(m = 1; 2; ¢ ¢ ¢ ;M ; p = 0;§1;§2; ¢ ¢ ¢ ); (7)

and

u3(x1; 0
+) = u3(x1; 0

¡)

¾32(x1; 0
+) = ¾32(x1; 0

¡)

9
=
; on uncracked parts of the interface. (8)
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Note that (7) implies that the micro-cracks are traction free. To determine
the jump in u3 (that is, ¢u3) across opposite faces of the micro-cracks, the
partial di®erential equation in (3) has to be solved subject to (7) and (8). The
stress formula (A2) in the Appendix may be used to derive the hypersingular
integral equations

MX

m=1

=

Z b(m)

a(m)
¢u3(x1)[

1

(x1 ¡ »1)2
+

1

(L+ x1 ¡ »1)2

+
1

(L+ »1 ¡ x1)2
+
1

L2
Ã¤(

L+ x1 ¡ »1
L

) +
1

L2
Ã¤(

L+ »1 ¡ x1
L

)]dx1

= ¡¼(¯
(1) + ¯(2))

¯(1)¯(2)
S0 for a

(n) < »1 < b
(n) (n = 1; 2; ¢ ¢ ¢ ;M).

(9)

where =
R
denotes that the integral is to be interpreted in the Hadamard ¯nite-

part sense, Ã¤(x) is related to the trigamma function Ã1(x) as explained in
the Appendix and ¯(p) is de¯ned by

¯(p) =

q
j[C(p)45 ]2 ¡ C

(p)
44 C

(p)
55 j: (10)

Once ¢u3 is determined for each of the micro-cracks by solving the hy-
persingular integral equations in (9), the e®ective interface sti®ness k for
the macroscopic model of the imperfect interface may be estimated by an
averaging the jump in u3 over the micro-cracks.
The micro-mechanics model described above may be used with samples

of a large number of micro-cracks with random lengths and randomly cho-
sen positions along a period length of the interface to carry out statistical
simulations of the imperfect interface.

3.2 Three-phase model

The micro-crack model above may be simpli¯ed to a so called three-phase
model. The interface is still periodic in the simpli¯ed model, but a period
length of the interface, as denoted by 0 < x1 < L; x2 = 0; which is assumed to
contain many micro-cracks, is modeled as comprising three parts as follows:

(a) a single representative micro-crack c(1) < x1 < d
(1); x2 = 0;

7



(b) perfectly bonded parts de¯ned by 0 < x1 < c
(1) and d(1) < x1 < c

(2) on
x2 = 0; and

(c) a so called e®ective region c(2) < x1 < d
(2); x2 = 0; where the constants

c(1); c(2), d(1) and d(2) are such that 0 < c(1) < d(1) < c(2) < d(2) = L;
c(1) = c(2) ¡ d(1) and c(2) is very much smaller than L:

The micro-crack, the perfectly bonded parts and the e®ective region are
periodically reproduced with period L to the left and right along the x1 axis.
Refer to Figure 3.

Figure 3. A sketch of the three-phase micro-model of the imperfect
interface.

For the simpli¯ed model here, the fracture ratio parameter R which to
corresponds to (6) is de¯ned by

R =
d(1) ¡ c(1)
c(2)

: (11)

As in the micro-crack model, the micro-cracks here are traction free and
the conditions on the uncracked parts given by (8). The conditions on the
e®ective regions are the ones in the macroscopic model of the imperfect in-
terface, that is,

¾32(x1; 0
+) = ¾32(x1; 0

¡)

k¢u3(x1) = ¾32(x1; 0
+)

9
=
; for c(2) + pL < x1 < d

(2) + pL

(p = 0;§1;§2; ¢ ¢ ¢ ); (12)
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but the interface sti®ness k here is an unknown to be determined as part of
the solution.
For the three-phase model here, the stress formula (A2) in the Appendix

may be used to derive the hypersingular integral equations

2X

i=1

=

Z d(i)

c(i)
¢u3(x1)[

1

(x1 ¡ »1)2
+

1

(d(2) + x1 ¡ »1)2

+
1

(d(2) + »1 ¡ x1)2
+

1

[d(2)]2
Ã¤(

d(2) + x1 ¡ »1
d(2)

)

+
1

[d(2)]2
Ã¤(

d(2) + »1 ¡ x1
d(2)

)]dx1

= ¡¼(¯
(1) + ¯(2))

¯(1)¯(2)

½
S0 for c(1) < »1 < d

(1);
S0 ¡ k¢u3(»1) for c(2) < »1 < d

(2);

(13)

where ¢u3 denotes the discontinuity of u3 across opposite faces of the micro-
cracks and the e®ective regions.
As the interface sti®ness k is a macroscopic quantity that is not known a

priori, the hypersingular integral equations in (13) are to be solved together
with

k

c(2)

d(1)Z

c(1)

¢u3(x1)dx1 = S0 (14)

for the unknowns k and ¢u3(x1) for c
(1) < x1 < d(1) and c(2) < x1 < d(2):

Note that (14) is derived from the relation

k £ (average value of ¢u3(x1) over 0 < x1 < c(2)) = S0:

4 Estimation of the e®ective interface sti®-

ness

In this section, the two micro-mechanics models are used to solve Problem
I, that is, to estimate the e®ective interface sti®ness k for the macroscopic
model of the interface. The hypersingular integral equations in (9) and (14)
are solved using boundary element procedures.
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4.1 Statistical simulation approach

In this approach, the hypersingular integral equations in (9) (for the multi-
ple micro-crack model) are solved for large samples of a selected number of
randomly chosen micro-cracks randomly located within one period length L
of the interface x2 = 0: For a given sample of micro-cracks, once ¢u3(x1) is
determined for a(m) < x1 < b

(m) (m = 1; 2; ¢ ¢ ¢ ;M), the interface sti®ness k
of the imperfect interface x2 = 0 can then be computed using the averaging
formula

k = S0L[
MX

m=1

b(m)Z

a(m)

¢u3(x1)dx1]
¡1: (15)

The mean value of k with its standard deviation can then be calculated from
all the samples of micro-cracks.
For the numerical solution of (9), the crack a(n) < x1 < b(n); x2 = 0;

is discretized into N (n) elements. The elements are intervals on the x1 axis
given by [x(m); y(m)] for m = 1; 2; ¢ ¢ ¢ ; (N (1) +N (2) + :::+N (n)), that is,

x(j) =
a(1) + b(1)

2
¡ b

(1) ¡ a(1)
2

cos(
[j ¡ 1]¼
N (1)

)

y(j) =
a(1) + b(1)

2
¡ b

(1) ¡ a(1)
2

cos(
j¼

N (1)
)

9
>>>=
>>>;
for j = 1; 2; ¢ ¢ ¢ ;N (1);

x(N
(1)+N(2)+¢¢¢+N(n¡1)+j) =

a(n) + b(n)

2
¡ b

(n) ¡ a(n)
2

cos(
[j ¡ 1]¼
N (n)

)

y(N
(1)+N (2)+¢¢¢+N(n¡1)+j) =

a(n) + b(n)

2
¡ b

(n) ¡ a(n)
2

cos(
j¼

N (n)
)

9
>>>=
>>>;

for j = 1; 2; ¢ ¢ ¢ ; N (n) and n = 2; 3; ¢ ¢ ¢ ;M: (16)

Note that (16) distributes more elements of shorter lengths nearer to the tips
of the micro-cracks.
The displacement jump function ¢u3(x1) is written in the form

¯(1)¯(2)

S0(¯
(1) + ¯(2))

¢u3(x1) =
q
(x1 ¡ a(n))(b(n) ¡ x1)w(x1)

for a(n) · x1 · b(n) (n = 1; 2; ¢ ¢ ¢ ;M), (17)
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where w(x1) is approximated as a constant over an element, that is,

w(x1) ' w(m) (constant) for x1 2 [x(m); y(m)]; (18)

With the above approximations, the hypersingular integral equations in
(9) can be collocated at »1 = »(j) (»(j) is the midpoint of the j-th element
[x(j); y(j)]) (j = 1; 2; ¢ ¢ ¢ ;N (1) + N (2) + ::: + N (M)) to obtain the system of
linear algebraic equations

N(1)+N(2)+:::+N(M)X

m=1

w(m)[F (y(m); »(j); s(m); t(m))¡ F (x(m); »(j); s(m); t(m))

+F (y(m); »(j) ¡ L; s(m); t(m))¡ F (x(m); »(j) ¡ L; s(m); t(m))
+F (y(m); »(j) + L; s(m); t(m))¡ F (x(m); »(j) + L; s(m); t(m))

+
1

L2
fÃ¤(L+ »

(m) ¡ »(j)

L
) + Ã¤(

L+ »(j) ¡ »(m)

L
)g

£(K(y(m); s(m); t(m))¡K(x(m); s(m); t(m)))]
= ¡¼ for j = 1; 2; ¢ ¢ ¢ ;N (1) +N (2) + :::+N (M), (19)

where

s(m) = a(p)

t(m) = b(p)

¾
if [x(m); y(m)] lies on a(p) < x1 < b

(p); x2 = 0;

F (x; »; a; b) = F0(x; »; a; b) + F1(x; »; a; b);

K(x; a; b) = ¡1
4
(¡2x+ a+ b)

p
(b¡ x)(x¡ a)

+
1

8
(a¡ b)2 arctan( 2x¡ a¡ b

2
p
(b¡ x)(x¡ a)

);

F0(x; »; a; b) = ¡ ((x¡ a)(b¡ x))3=2
(» ¡ a)(b¡ ») (x¡ ») +

(a+ b¡ » ¡ x)
p
(x¡ a)(b¡ x)

(» ¡ a)(b¡ »)

¡

8
><
>:

arctan(
2x¡ a¡ b

2
p
(x¡ a)(b¡ x)

) for (x¡ a)(b¡ x) 6= 0;

sgn(2x¡ a¡ b)¼
2

for (x¡ a)(b¡ x) = 0;
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F1(x; »; a; b)

=
(a+ b¡ 2»)

4
p
(b¡ ») (» ¡ a)

f ln j2
p
(b¡ ») (» ¡ a)

p
(x¡ a)(b¡ x)

¡(»a+ »b¡ 2x» ¡ 2ab+ ax+ bx)j
¡ ln j2

p
(b¡ ») (» ¡ a)

p
(x¡ a)(b¡ x)

+(»a+ »b¡ 2x» ¡ 2ab+ ax+ bx)j g
if (b¡ ») (» ¡ a) > 0;

F1(x; »; a; b) = ¡ (a+ b¡ 2»)
2
p
(» ¡ b) (» ¡ a)

£

8
>>>>><
>>>>>:

arctan(¡ (»a+ »b¡ 2x» ¡ 2ab+ ax+ bx)
2
p
(» ¡ b) (» ¡ a)

p
(x¡ a)(b¡ x)

)

for (x¡ a)(b¡ x) 6= 0;
sgn(¡(»a+ »b¡ 2x» ¡ 2ab+ ax+ bx))¼

2
for (x¡ a)(b¡ x) = 0;

if (b¡ ») (» ¡ a) < 0: (20)

Once the system of linear algebraic equations is solved for w(m); the in-
terface sti®ness k of the imperfect interface can be computed using

(¯(1) + ¯(2))

¯(1)¯(2)
k

= L f
N(1)+N (2)+:::+N(M)X

m=1

w(m)[K(y(m); s(m); t(m))¡K(x(m); s(m); t(m))]g¡1:

(21)

4.2 Three-phase model

Equations (13) and (14) in the three-phase model may be solved numerically
for the interface sti®ness k and the displacement jump ¢u3 across opposite
micro-crack faces by using the following boundary element procedure.
We discretize the micro-crack c(1) < x1 < d

(1); x2 = 0 into N
(1) boundary

elements given by the intervals [x(1); y(1)]; [x(2); y(2)]; ¢ ¢ ¢ ; [x(N (1)¡1); y(N
(1)¡1)]

and [x(N
(1)); y(N

(1))] and the e®ective region c(2) < x1 < d(2); x2 = 0 into
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N (2) boundary elements given by [x(N
(1)+1); y(N

(1)+1)]; [x(N
(1)+2); y(N

(1)+2)];

¢ ¢ ¢ ; [x(N(1)+N(2)¡1); y(N
(1)+N(2)¡1)] and [x(N

(1)+N(2)); y(N
(1)+N(2))], where

x(j) =
c(1) + d(1)

2
¡ d

(1) ¡ c(1)
2

cos(
[j ¡ 1]¼
N (1)

)

y(j) =
c(1) + d(1)

2
¡ d

(1) ¡ c(1)
2

cos(
j¼

N (1)
)

9
>>>=
>>>;
for j = 1; 2; ¢ ¢ ¢ ;N (1);

x(N
(1)+j) =

c(2) + d(2)

2
¡ d

(2) ¡ c(2)
2

cos(
[j ¡ 1]¼
N (2)

)

y(N
(1)+j) =

c(2) + d(2)

2
¡ d

(2) ¡ c(2)
2

cos(
j¼

N (2)
)

9
>>>=
>>>;
for j = 1; 2; ¢ ¢ ¢ ; N (2):

(22)

Note that (22) distributes more elements of shorter lengths nearer to the tips
of the micro-crack and the e®ective region.
We let

¯(1)¯(2)

S0(¯
(1) + ¯(2))

¢u3(x1)

=

½ p
(x1 ¡ c(1))(d(1) ¡ x1)w(x1) for c(1) < x1 < d

(1);
w(x1) for c(2) < x1 < d

(2);
(23)

where the function w(x1) is approximated as a constant over each of the
elements, that is,

w(x1) ' w(n) (constant) for x1 2 [x(n); y(n)]

(n = 1; 2; ¢ ¢ ¢ ; N (1) +N (2)): (24)

Using (23) and (24), we collocate (13) at »1 = »(n) (where »(n) is the
midpoint of the n-th element [x(n); y(n)]) to obtain the algebraic equations
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N(1)X

m=1

w(m)[F (y(m); »(n); c(1); d(1))¡ F (x(m); »(n); c(1); d(1))

+F (y(m); »(n) ¡ d(2); c(1); d(1))¡ F (x(m); »(n) ¡ d(2); c(1); d(1))
+F (y(m); »(n) + d(2); c(1); d(1))¡ F (x(m); »(n) + d(2); c(1); d(1))

+
1

[d(2)]2
fÃ¤(d

(2) + »(m) ¡ »(n)

d(2)
) + Ã¤(

d(2) + »(n) ¡ »(m)

d(2)
)g

£(K(y(m); c(1); d(1))¡K(x(m); c(1); d(1)))]

+
N(2)X

m=1

w(N
(1)+m)[G(x(N

(1)+m); y(N
(1)+m); »(n))

+G(x(N
(1)+m); y(N

(1)+m); »(n) ¡ d(2))

+G(x(N
(1)+m); y(N

(1)+m); »(n) + d(2))¡ (¯
(1) + ¯(2))¼

¯(1)¯(2)
kg((N

(1)+m)n)

+
(y(N

(1)+m) ¡ x(N(1)+m))

[d(2)]2
fÃ¤(d

(2) + »(N
(1)+m) ¡ »(n)

d(2)
)

+Ã¤(
d(2) + »(n) ¡ »(N(1)+m)

d(2)
)g ]

= ¡¼ for n = 1; 2; ¢ ¢ ¢ ;N (1) +N (2), (25)

where

G(x; y; ») =
y ¡ x

(» ¡ x)(» ¡ y) ;

g(pk) =

½
1 if p = k ¸ N (1) + 1;
0 otherwise.

(26)

With the above approximations, (14) can be written as

(¯(1) + ¯(2))

¯(1)¯(2)
k = c(2) f

N(1)X

m=1

w(m)[K(y(m); c(1); d(1))¡K(x(m); c(1); d(1))]g¡1:

(27)

The iterative procedure for solving (25) and (27) is outlined step by step
below.
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1. Give k an estimated value. For a cold start, k can be taken to be zero.
Go to step 2.

2. For the current value of k; solve (25) for w(m) (m = 1; 2; ¢ ¢ ¢ ; N (1) +
N (2)): Go to step 3.

3. Use the current values of w(m) (m = 1; 2; ¢ ¢ ¢ ; N (1)) to calculate k ac-
cording to (27). Check the absolute di®erence between the last two
consecutive values of k: If the absolute di®erence agrees to a chosen
number of signi¯cant ¯gures, stop the iterative procedure. If the ab-
solute di®erence does not satisfy the stopping criterion yet, go to step
2.

5 Failure analysis of imperfect interface

The micro-mechanics models are used here to determine the critical anti-
plane load S0 for initiating the failure of the imperfect interface.

5.1 Statistical simulation approach

For the micro-cracks in the multiple micro-crack model in Subsection 3.1, we
de¯ne the mode III crack tip stress intensity factors

K(m)
III = lim

"!0+

p
2" ¾32(a

(m) ¡ "; 0)

K
(M+m)
III = lim

"!0+

p
2"¾32(b

(m) + "; 0)

9
=
; for m = 1; 2; ¢ ¢ ¢ ;M: (28)

If the loading S0 is such that

max
n=1;2;¢¢¢ ;2M

fjK(n)
III jg > Kcritical

III ; (29)

where Kcritical
III is the critical stress intensity factor of the bimaterial, then the

imperfect interface starts to fail.
From (28), use of the stress formula (A2) in the Appendix gives

K
(m)
III =

S0
p
2(b(m) ¡ a(m))w(a(m))

2
;

K
(M+m)
III =

S0
p
2(b(m) ¡ a(m))w(b(m))

2
: (30)
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Thus, once w(x1) is determined by solving numerically the hypersingular
integral equations in (9) as described above, we can estimate w(a(m)) and

w(b(m))to compute K
(m)
III and K

(M+m)
III approximately for m = 1; 2; ¢ ¢ ¢ ; M:

From (29), if the magnitude of the mode III stress intensity factor is
largest at the crack tip (a(p); 0) then the critical load Scritical0 for the failure
of the imperfect interface is given by

Scritical0 =
2Kcritical

IIIp
2(b(p) ¡ a(p)) jw(a(p))j

: (31)

If the magnitude of the mode III stress intensity factor is maximum at the
crack tip (b(p); 0) then

Scritical0 =
2Kcritical

IIIp
2(b(p) ¡ a(p)) jw(b(p))j

: (32)

In the statistical simulation approach, the hypersingular integral equa-
tions in (9) are solved for many samples of a selected number of randomly
chosen micro-cracks randomly located within one period length L of the in-
terface x2 = 0: For each sample of micro-cracks, the critical load Scritical0 is
calculated according to (31) or (32). The mean value of Scritical0 with its stan-
dard deviation can then be calculated from all the samples of micro-cracks.

5.2 Three-phase model

For the three-phase model in Subsection 3.2, the mode III stress intensity
factors of the micro-crack c(1) < x1 < d

(1); x2 = 0 are de¯ned by

K¡
III = lim

"!0+

p
2" ¾32(c

(1) ¡ "; 0);

K+
III = lim

"!0+

p
2"¾32(d

(1) + "; 0): (33)

It follows that

K¡
III =

S0
p
2(d(1) ¡ c(1))w(c(1))

2
;

K+
III =

S0
p
2(d(1) ¡ c(1))w(d(1))

2
: (34)
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The critical load Scritical0 is given by

Scritical0 =
2Kcritical

IIIp
2(d(1) ¡ c(1)) jw(c(1))j

=
2Kcritical

IIIp
2(d(1) ¡ c(1)) jw(d(1))j

(35)

By the symmetry of the three-phase model with constant load S0, note that
K¡
III = K

+
III :

Note that once w(x1) is determined by solving numerically the hypersin-
gular integral equations in (9) the stress intensity factors K¡

III and K
+
III and

the critical load Scritical0 can be calculated using the formulae in (34) and (35).

6 Results and discussions

6.1 Veri¯cation of hypersingular integral formulations

For the fracture ratio parameter R not too close to 1;values of the e®ective
interface sti®ness k and the critical load Scritical0 predicted by the three-phase
model in Subsection 3.2 are expected to be close to those predicted by the
multiple micro-crack model in Subsection 3.1, if all the micro-cracks in the
latter model are chosen to be of equal length and are evenly distributed on
the interface. Thus, to verify that the hypersingular integral equations for
the two models are correctly derived, we distribute evenly 15 micro-cracks,
each of length 2a; on one period length of the interface, calculate k and
Scritical0 by solving the hypersingular integral equations in (9) and using (15)
(multiple micro-crack model), and compare the values obtained with those
calculated by solving the hypersingular integral equations (13) together with
(14) (three-phase model).
For the comparison, plots of the non-dimensionalized interface sti®ness

a(¯(1) + ¯(2))k=(2¯(1)¯(2)) and critical load
p
aScritical0 =Kcritical

III against R for
0:10 < R < 0:90 are given in Figures 4 and 5 respectively. The plots of
the two models here are in good agreement, especially for smaller R: The
percentage di®erence between the plots for a(¯(1)+ ¯(2))k=(2¯(1)¯(2)) ranges
approximately from 0:25% (R = 0:10) to 2:5% (R = 0:90) and that forp
aScritical0 =Kcritical

III from 0:02% (R = 0:10) to 5:5% (R = 0:90): Thus, as ex-
pected, the multiple micro-crack model with evenly distributed equal length
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micro-cracks gives values of k and Scritical0 that agree closely with those cal-
culated using the three-phase model, provided that R is not too close to
1:

Figure 4. Plots of a(¯(1) + ¯(2))k=(2¯(1)¯(2)) against R:

Figure 5. Plots of
p
aScritical0 =Kcritical

III against R:
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In Figure 4, a(¯(1)+ ¯(2))k=(2¯(1)¯(2)) computed using the ¯nite element
method three-phase model in Fan and Sze [10] is also plotted against R: It
may be of interest to note that as many as ten thousand elements are em-
ployed in the ¯nite element calculation for the three-phase model in [10],
whereas less than three hundred elements are needed in the hypersingular
boundary element calculation here for the three-phase model. The plots of
a(¯(1) + ¯(2))k=(2¯(1)¯(2)) calculated using the two models here and that
of Fan and Sze [10] are nearly visually indistinguishable for smaller R, but
the percentage di®erence between the value calculated using the multiple
micro-crack model and that given in [10] ranges from 2:5% (R = 0:10)
to 25% (R = 0:90). The percentage di®erences in the values of a(¯(1) +
¯(2))k=(2¯(1)¯(2)) computed using the multiple micro-crack model and the
three-phase model presented in this paper are roughly ten times smaller in
magnitude, ranging from around 0:25% to 2:5% (as mentioned above). It
is obvious that the multiple micro-crack model is in better agreement with
the three-phase model here than with the one in [10]. This is because the
three-phase model in Fan and Sze [10] ignores the e®ect that the stress in-
duced by the micro-crack has on the e®ective region, that is, the model
imposes the condition k¢u3(x1) = S0 on the e®ective region (instead of
k¢u3(x1) = ¾32(x1; 0

+) as done in (12) for the three-phase model here).
Thus, it is not surprising that, compared to the three-phase model here, the
three-phase model in [10] deviates much more signi¯cantly from the multi-
ple micro-crack model if R is very to close to unity, that is, if there is a
stronger interaction between the micro-crack and the e®ective region in the
three-phase models.

6.2 Statistical simulations using multiple micro-crack
model and comparisons with three-phase model

For statistical simulations, we take 15 micro-cracks to form a sample. The
length of a micro-crack in the sample is normally distributed with a given
theoretical mean and standard deviation: Once the lengths of the 15 micro-
cracks are chosen randomly, the micro-cracks are randomly positioned within
one period length L of the interface x2 = 0, with the help of a pseudo-random
number generator. If a denotes the average half length of the 15 micro-
cracks, we take the length L to be 30a=R: For a chosen R, we solve (19) to
calculate the non-dimensionalized interface sti®ness a(¯(1)+¯(2))k=(2¯(1)¯(2))
and critical load

p
` Scritical0 =Kcritical

III ;where ` is the half length of the micro-
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crack that gives the maximum magnitude of the mode III crack tip stress
intensity factor. We repeat the calculations using 50 di®erent samples of 15
micro-cracks having the same theoretical mean and standard deviation of the
micro-crack length. The average interface sti®ness and the average critical
load together with the corresponding standard deviations are then computed
from the sample data of size 50.

Table 1. The percentage di®erence (% di®) and the number of standard
deviations (no. of SD) between the average interface sti®ness and the cor-
responding value predicted by the three-phase model for di®erent values of
the fracture ratio parameter R and theoretical standard deviation of the
micro-crack length (SD of ML).

SD of ML = 0:05a
R 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

% di® 1.58 3.18 5.19 5.83 7.63 8.54 8.96 9.62 14.3 16.9

No. of SD 1.20 1.92 2.26 1.85 2.07 2.31 2.02 2.60 3.12 3.64

SD of ML = 0:10a
R 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

% di® 1.46 2.84 5.05 7.10 7.44 8.75 8.59 10.4 14.7 16.7

No. of SD 1.18 1.84 1.97 2.58 2.58 2.50 2.55 3.47 3.06 3.22

SD of ML = 1:50a
R 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

% di® 23.1 25.3 26.9 26.3 25.9 27.3 27.7 29.5 30.0 30.4

No. of SD 3.88 3.36 4.15 4.01 3.65 4.22 3.98 4.30 4.76 5.31

SD of ML = 1:90a
R 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

% di® 27.3 27.9 29.9 28.8 29.8 27.0 29.6 30.3 29.4 31.6

No. of SD 3.22 4.04 4.09 3.58 3.97 3.84 4.95 3.90 4.46 6.67

We compare the average e®ective interface sti®ness computed from the
sample data of size 50 with the corresponding value predicted by the three-
phase model in Subsection 3.1 by examining the percentage di®erence (%
di®) and the number of standard deviations (no. of SD) between the two

20



values as de¯ned by

% di® =

¯̄
¯̄(value from three-phase model)¡ (average value)

(value from three-phase model)

¯̄
¯̄£ 100%;

No. of SD =

¯̄
¯̄ (value from three-phase model)¡ (average value)
(standard deviation of the data from average value)

¯̄
¯̄ :

Table 1 shows the values of the above percentage di®erence and the num-
ber of standard deviations for statistical simulations with the theoretical
mean of the micro-crack length ¯xed at 2a (where a is a basic length) and
selected values of the standard deviation of the micro-crack length (SD of
ML).
For a ¯xed R, if the theoretical standard deviation of the micro-crack

length is small compared with the theoretical mean of the micro-crack length,
the percentage di®erence between the average interface sti®ness and the cor-
responding value predicted by the three-phase model tends to be smaller. If
the theoretical standard deviation is close to the theoretical mean, the num-
ber of standard deviations between the average interface sti®ness and the
value predicted by the three-phase model is 4 or greater, that is, the inter-
face sti®ness predicted by the three-phase model is not likely to be within
the range of data collected from the statistical simulations, even if R is small.
For the theoretical standard deviation given by 0:05a and 0:10a, the number
of standard deviations between the average interface sti®ness and the value
predicted by the three-phase model is less than 3, mainly around 2; for lower
values of R: In all the simulations, the average value of the interface sti®ness
is found to be less than the corresponding value given by the three-phase
model.
In Figure 6, the average non-dimensionalized sti®ness from the statistical

simulations with the theoretical mean and standard deviation of the micro-
crack length given by 2a and 0:10a respectively is plotted against R and
compared with the corresponding value predicted by the three-phase model.
A similar comparison is made in Figure 7 for the average non-dimensionalized
interface sti®ness from the statistical simulations with the theoretical mean
and standard deviation of the micro-crack length given by 2a and 1:50a
respectively.
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The di®erence between the two plots under comparison is more obvious
in Figure 7 (with a larger standard deviation of the micro-crack length) than
in Figure 6 (with a smaller standard deviation of the micro-crack length).
Although the gap between the minimum and maximum values of the data
for the non-dimensionalized interface sti®ness from the statistical simulations
and the di®erence in the two plots in each of the ¯gures seems smaller for
R closer to 1, the actual percentage di®erence between the average interface
sti®ness and the corresponding value predicted by the three-phase model may
actually be bigger for larger R (as shown in Table 1).

Figure 6. A comparison of the average interface sti®ness from the
statistical simulations (mean and standard deviation of the micro-crack
length given by 2a and 0:10a respectively) with the corresponding value

predicted by the three-phase model.
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Figure 7. A comparison of the average interface sti®ness from the
statistical simulations (mean and standard deviation of the micro-crack
length given by 2a and 1:50a respectively) with the corresponding value

predicted by the three-phase model.

The average critical load (AVL) of
p
`Scritical0 =Kcritical

III (` is the half length
of the micro-crack that gives the maximum mode III crack tip stress intensity
factor) and the minimum and the maximum non-dimensionalized critical load
(min CL and max CL respectively) from the sample data of size 50 in the
statistical simulations are given in Table 2 for the theoretical mean of the
micro-crack length given by 2a, several di®erent values of the theoretical
standard deviation of the micro-crack length and selected values of R: For
a given R; the corresponding critical load given by the three-phase model
(as plotted in Figure 5 against R) is closer to the maximum critical load
than to the average and minimum critical load.There is a very signi¯cant
di®erence between the minimum critical load and the critical load calculated
using the three-phase model. Thus, the three-phase model cannot be relied
upon to predict the failure of the imperfect interface. Table 2 shows that the
critical load reduces signi¯cantly as R increases. This is expected as there is
a stronger interaction between the micro-cracks for larger R (higher density
of micro-cracks on the interface).
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Table 2. The maximum, average and minimum values of the critical loadp
`Scritical0 =Kcritical

III (max CL, AVL and min CL respectively) from the sample
data of size 50 in the statistical simulations with the theoretical mean of the
micro-crack length given by 2a for several di®erent values of the theoretical
standard deviation of the micro-crack length (SD of ML) and selected values
of R:

SD of ML = 0:05a
R 0.05 0.10 0.30 0.50 0.70 0.90

max CL 0.9987 0.9880 0.8768 0.7150 0.5963 0.3237

AVL 0.8897 0.8013 0.6656 0.4698 0.3345 0.1422

min CL 0.4655 0.4755 0.2856 0.1215 0.1062 0.0655

SD of ML = 0:10a
R 0.05 0.10 0.30 0.50 0.70 0.90

max CL 0.9997 0.9970 0.9153 0.7456 0.5639 0.2930

AVL 0.9176 0.8370 0.6150 0.4854 0.3367 0.1371

min CL 0.2356 0.4780 0.1448 0.2180 0.1240 0.0654

SD of ML = 1:50a
R 0.05 0.10 0.30 0.50 0.70 0.90

max CL 0.9997 0.9993 0.9917 0.8218 0.6597 0.3199

AVL 0.9471 0.8941 0.7329 0.5769 0.3622 0.1573

min CL 0.2993 0.4121 0.2756 0.1338 0.0723 0.0469

SD of ML = 1:90a
R 0.05 0.10 0.30 0.50 0.70 0.90

max CL 0.9997 0.9880 0.9690 0.9093 0.6967 0.3770

AVL 0.9662 0.9076 0.7346 0.6271 0.4129 0.1826

min CL 0.3784 0.3015 0.2857 0.1595 0.0955 0.0374

7 Summary and conclusion

Micro-mechanics models for an imperfect interface between two anisotropic
elastic half-spaces under anti-plane shear load are proposed here. In the
¯rst model, which is the so called multiple micro-crack model, the imperfect
interface contains an array of periodically distributed micro-cracks. The
number of micro-cracks within a periodic length of the interface is arbitrary
and so are their lengths and positions. The second model is a simpli¯ed
three-phase model of the imperfect interface. In the simpli¯ed model, the
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interface is still periodic but a period length of the interface is modeled as
containing a single representative micro-crack, perfectly bonded parts and an
e®ective region which may be regarded as continuously damaged spring-like
interface with an unknown sti®ness.
The multiple micro-crack model is a more general and realistic model as

it takes into account not only the percentage of the interface damaged by
micro-cracks but also the positions and the relative sizes of the micro-cracks
present. Such details which are not captured in the three-phase model may
play an important role in the macroscopic behaviours of the interface.
The hypersingular integral formulations for the models are veri¯ed by

checking that they predict interface sti®ness and the critical load for interface
failure that are close to each other for the special case where the micro-cracks
in the multiple micro-crack model have equal length, are evenly distributed
and do not occupy a very large portion of the interface.
For more realistic cases of microscopically damaged interfaces, the mul-

tiple micro-crack model is used to carry out statistical simulations with ran-
domly positioned micro-cracks whose lengths are normally distributed. Re-
sults from carrying out a large number of simulations seem to suggest the
average value of the e®ective interface sti®ness di®ers from the one predicted
by the three-phase model by less than 10% if the percentage of the interface
occupied by micro-cracks is 60% or less and the standard deviation of the
micro-crack length is not greater than one tenth of the theoretical mean of
the micro-crack length. It appears that the three-phase model may not be
reliably used in general to predict the critical failure load if the interface has
randomly positioned micro-cracks.
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Appendix

Consider two dissimilar anisotropic elastic materials occupying the half-
spaces x2 > 0 and x2 < 0. The interface x2 = 0 contains periodically
distributed line defects de¯ned by

p(m) + nL < x1 < q
(m) + nL; x2 = 0 (m = 1; 2; ¢ ¢ ¢ ; J ; n = 0;§1;§2; ¢ ¢ ¢ ),

where p(m) and q(m) are constants such that 0 < p(1) < q(1) < p(2) < q(2) <
¢ ¢ ¢ < p(M) < q(M) < L:
The stress ¾k2 is continuous on the interface x2 = 0 between the two

anisotropic materials, and the displacement uk is allowed to jump across
opposite sides of the line defects but is continuous everywhere else on the
interface.
If the bimaterial is subject to an anti-plane deformation governed by (3)

with the elastic coe±cients given by (2) and if the anti-plane stress ¾3j is
such that ¾3j ! ±j2S0 as x

2
1 + x

2
2 !1, then the anti-plane displacement u3

may be written in the form

u3(»1; »2) =
S0»2

C44(»1; »2)
¡

1X

n=¡1

JX

m=1

q(m)+nLZ

p(m)+nL

¢u3(x1)

£
(
C
(1)
45

@

@x1
[©(x1; x2; »1; »2)]

¯̄
¯̄
x2=0+

+C
(1)
44

@

@x2
[©(x1; x2; »1; »2)]

¯̄
¯̄
x2=0+

)
dx1

for »2 > 0: (A1)

where ¢u3(x1) = u3(x1; 0
+) ¡ u3(x1; 0¡) denotes the jump of u3 across the

opposite sides of the line defects and ©(x1; x2; »1; »2) is given by

©(x1; x2; »1; »2) =
1

2¼¯(1)
Refln([x1 ¡ »1] + ¿ (1)[x2 ¡ »2])

+
¯(1) ¡ ¯(2)

¯(1) + ¯(2)
ln(x1 + ¿

(1)x2 ¡ »1 ¡ ¿ (1)»2)g

for »2 > 0:
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with ¯(p) =

q
j[C(p)45 ]2 ¡ C

(p)
44 C

(p)
55 j, ¿ (p) = (¡C

(p)
45 + i¯

(p))=C
(p)
44 and i =

p
¡1:

Note that the integral expression in (A1) can be derived from the bound-
ary integral equation for (3) together with the perfect interface Green's func-
tion in Berger and Karageorghis [6]. For details on the boundary integral
equation, one may refer to Clements [8].
Use of (1) and (A1) together with the periodic property of ¢u3(x1) (that

is, ¢u3(x1) = ¢u3(x1 + L)) and the formula

1X

n=1

1

(a§ bn)2 =
1

b2
Ã1(1§

a

b
) for 1§ a

b
> 0;

yields the interfacial stress formula

¾32(»1; 0)

= S0 +
¯(1)¯(2)

¼(¯(1) + ¯(2))

JX

m=1

=

Z q(m)

p(m)
¢u3(x1)[

1

(x1 ¡ »1)2
+

1

(L+ x1 ¡ »1)2

+
1

(L+ »1 ¡ x1)2
+
1

L2
Ã¤(

L+ x1 ¡ »1
L

) +
1

L2
Ã¤(

L+ »1 ¡ x1
L

)]dx1

for p(n) < »1 < q
(n) (n = 1; 2; ¢ ¢ ¢ ; J), (A2)

where =
R
denotes that the integral is to be interpreted in the Hadamard ¯nite-

part sense, Ã¤(x) = Ã1(x)¡1=x2 and Ã1(x) is the trigamma function de¯ned
by

Ã1(x) =

1Z

0

t exp(¡xt)dt
1¡ exp(¡t) :

Note that the function Ã¤(x) tends to ¼2=6 as x ! 0+: In fact, it can be
shown that 0 < Ã¤(x) < ¼2=6 for x > 0. Accurate and e±cient algorithms
for evaluating Ã¤(x) are available (Abramowitz and Stegun [1]).
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