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1. Introduction 1 
 2 
Material anisotropy is encountered in many engineering problems such as groundwater flow, 3 
transport in biological media, composite materials, nanotechnology and more recently, 4 
transformation thermodynamics [1-4]. In many of these problems, analytical solutions are 5 
limited to only a few idealized cases. As a result, numerical techniques are often used to 6 
obtain approximate solutions. Discretization techniques such as the finite element method 7 
(FEM) and the boundary element method (BEM) are well-established and have been widely 8 
used for this purpose. Meshless methods on the other hand, belong to a class of numerical 9 
methods that do not involve discretization of the solution domain. Instead, these methods 10 
require only the distribution of collocation nodes, thus offering greater freedom and 11 
flexibility in terms of how the system matrix is set up during the numerical analysis.  12 
 Of particular interest in this paper is the radial basis integral equation (RBIE) method, 13 
which is an integral equation-based meshless method introduced by Popov and Bui [5]. The 14 
RBIE is unique because it solves simultaneously for each node, the unknown potential and its 15 
spatial gradients [6]. Consequently, the computation of the derivatives of shape functions 16 
such as that required by other numerical methods, for example FEM, is not necessary. The 17 
RBIE has been successfully implemented to solve various engineering problems and its 18 
versatility as an efficient and accurate numerical technique is well proven [6-9]. Nevertheless, 19 
the problems considered in these studies were confined to isotropic bodies. Problems 20 
involving material anisotropy have so far, remain unexplored.  21 
 In this paper, the RBIE is derived for the first time to solve problems in anisotropic media. 22 
The coefficients of the anisotropic conductivity give rise to vector-based flux terms. 23 
Therefore, some additional steps are required when deriving the integral equations for the 24 
implementation of the RBIE. Results from numerical experiments revealed that the stability 25 
and the accuracy of the numerical method depend on the strength of the material anisotropy. 26 
As a result, the anisotropic RBIE behaved differently from the isotropic RBIE when 27 
computational parameters, such as the number of nodes, the number of Gauss points and the 28 
size of the subdomains, were varied. This paper presents a numerical investigation into the 29 
optimum computational parameters of the RBIE when solving anisotropic problems. To 30 
maintain conciseness of the paper, only anisotropic potential problems will be considered. 31 
Many engineering problems are governed by the potential equation, for instance heat 32 
conduction and groundwater flow. Consequently, the numerical method presented in this 33 
paper provides an alternative to how these problems can be solved numerically. 34 
 This paper is organized into seven sections. The mathematical formulations of the RBIE 35 
for solving anisotropic potential problems are presented in Section 2. Section 3 outlines the 36 
implementation of the numerical method, while Section 4 examines the effects of material 37 
anisotropy on the influence coefficients of the RBIE. In Section 5, the anisotropic RBIE is 38 
used to solve several test problems, where its accuracy is tested and validated against 39 
analytical benchmarks. Discussions and conclusions are presented in Sections 6 and 7, 40 
respectively. 41 
 42 
2. Mathematical formulations 43 
 44 
2.1 The problem 45 
 46 
Consider a two-dimensional homogeneous and anisotropic domain  bounded by the closed 47 
surface . The anisotropic potential equation defined across this domain is given by: 48 
 49 
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 1 
where (x1,x2) are the coordinates in the two-dimensional Cartesian system, u is potential and 2 
k is a second order tensor with Cartesian components kij (for i,j = 1, 2) where the strict 3 
conditions k12 = k21 and k11k22 – (k12)

2 > 0 apply. Depending on the type of problem, kij may 4 
stand for different material property. For instance, k can represent the anisotropic thermal 5 
conductivity in heat conduction and the anisotropic hydraulic conductivity in groundwater 6 
flow. The following boundary conditions are prescribed: 7 
 8 
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 9 
where uo and qo are suitably prescribed functions of (x1,x2), 1 and 2 are non-intersecting 10 
parts of  such that 12 = and ∂/∂n+ is the vector differential operator given by: 11 
 12 
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 13 
where ni is the outward unit normal vector in the xi direction at point (x1,x2). We seek the 14 
solution of Eq. (1) subject to the boundary conditions in Eqs. (2a) and (2b). 15 
 16 
2.2 The anisotropic radial basis integral equation method 17 
 18 
To carry out the RBIE, a series of Nt collocation nodes are distributed along the boundary and 19 
within the interior of the solution domain, see Figure 1(a). A circular subdomain denoted by 20 
i  i (for i = 1, 2, …, Nt – 1, Nt) centred at each node is generated. These circles may be of 21 
different radii, may overlap and may extend beyond the boundary of the solution domain, as 22 
shown in Figure 1(b). Once the collocation nodes and their respective subdomains are 23 
generated, an integral form of Eq. (1), which is valid in each subdomain i  i is derived. 24 
Using the reciprocal theorem and the fundamental solution of the anisotropic Laplace 25 
equation [10], and making use of the relationship in Eq. (3), one obtains: 26 
 27 
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 28 
where (1

(i),2
(i)) (for i = 1, 2, …, Nt – 1, Nt) are the source point coordinates, which are 29 

represented by the centre of the subdomain i, ds(x1,x2) is the infinitesimal length of the 30 
curve i and 1 and 2 are coefficients defined by: 31 
 32 
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 33 
(x1,x2;1

(i),2
(i)) and (x1,x2;1

(i),2
(i)) in Eq. (4) are the anisotropic fundamental solution of 34 

the Laplace equation and its normal derivative, respectively, which can be expressed as [11]: 35 
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 2 
where sij is the inverse of the matrix kij and |. | is the determinant. 3 
 The fundamental solution and its normal derivative in Eqs. (6a) and (6b) are different from 4 
those of the isotropic case due to the presence of the anisotropic conductivity tensor kij, which 5 
is here expressed in terms of its inverse sij. Therefore, the material anisotropy can influence 6 
the variation of the fundamental solution and its normal derivative along the subdomain 7 
boundary. This will be examined in Section 4.  8 
 9 

 10 
Figure 1: (a) Distribution of collocation nodes, (b) generation of circular subdomains, (c) 11 
interpolation of field variables, and (d) extrapolation of field variables. 12 
 13 
 As pointed out in Section 1, the RBIE solves simultaneously for the unknown potential 14 
and its spatial gradients at each node. Therefore, two additional equations are required in 15 
order to complete the formulation. These equations are obtained by differentiating Eq. (4) 16 
with respect to the source point coordinate, 1 and 2. This results in [6]: 17 
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and 20 
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 1 
where the terms indicating spatial dependence have been dropped for simplicity. The 2 
complete expressions of ∂/∂i and ∂/∂i are given in Appendix A. 3 
 In the RBIE, the field variables u(x1,x2), ∂u(x1,x2)/∂x1 and ∂u(x1,x2)/∂x2 in Eqs. (4), (7) and 4 
(8) are approximated based on values of the surrounding nodes using radial basis function 5 
(RBF) interpolations, see Figure 1(c). For added numerical stability, these interpolations are 6 
usually augmented with global polynomials [12]. Therefore: 7 
 8 
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 9 
where f(x1,x2;x1

(k),x2
(k)) is the RBF, Na is the number of points used in the interpolation, Nm is 10 

the number of terms contained in the polynomial p(x1,x2;x1
(m),x2

(m)), which has the same order 11 
as the RBF [12] and ai, bi (for i = 1, 2 and 3) are unknown coefficients that are determined by 12 
collocating Eqs. (9a) to (9c) at the Na interpolation points. This results in three system 13 
matrices, each corresponding to Eqs. (9a), (9b) and (9c), that can be inverted to give: 14 
 15 
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 16 
where u = u(k)

, ∂u/∂x1 = ∂u(k)/∂x1 and ∂u/∂x2 = ∂u(k)/∂x2 (for k = 1, 2,…, Na). Substituting Eq. 17 
(10) into (9) leads to: 18 
 19 
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 20 
where  21 
 22 
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 For the nodes that are located at the global boundary, part of the subdomain is outside of 24 
Ω, as shown in Figure 1(b). In this case, the RBF approximations defined in Eqs. (9) to (11) 25 
are still applicable; the unknown field variables are now extrapolated based on the values at 26 
the nearby nodes located within the solution domain, see Figure 1(d). 27 
 Substituting Eqs. (9), (10) and (11) into (4), (7) and (8) and expressing the resulting 28 
equations in matrix notation yields: 29 
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 3 
and  4 
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 6 
where H, G1, G2 and their derivatives with respect to 1 and 2 are known as the influence 7 
coefficients of the anisotropic RBIE. The explicit terms of H, G1 and G2 are: 8 
 9 
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 10 
Eqs. (12), (13) and (14) along with the boundary conditions precscribed, when applied to all 11 
the collocation nodes, set up a system of equations that can be solved for the unknown u, 12 
∂u/∂x1 and ∂u/∂x2 at each node. 13 
 The anisotropic RBIE formulated above, which solves for the potential and its spatial 14 
gradients, is referred to in this paper as the standard formulation. It is possible to formulate 15 
the anisotropic RBIE differently such that it solves for the potential and the components of 16 
fluxes. The derivation of this different formulation, which is hereafter referred to as the 17 
alternative formulation, is presented in Appendix B. We shall restrict our investigations in 18 
this paper to the standard formulation. The accuracy and merits of the alternative formulation 19 
will be discussed in Section 6. 20 
 21 
 22 
 23 
 24 
 25 
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3. Numerical procedure 1 
 2 
3.1 Implementation 3 
 4 
To implement the anisotropic RBIE, Eqs. (12), (13) and (14) are applied at the Nt collocation 5 
nodes. When the collocation node is inside the solution domain, u, ∂u/∂x1 and ∂u/∂x2 are 6 
unknowns. Hence, all three equations are used to set up the system of linear algebraic 7 
equations. When the collocation node is on the boundary where the Dirichlet condition is 8 
prescribed, Eqs. (13) and (14) are used to set up the system of equations since the potential at 9 
this node is known from the boundary condition. When the collocation node is at the 10 
boundary where the Neumann condition is prescribed, two cases are prevalent. To illustrate 11 
the implementation for each case, consider the definition of the flux in an anisotropic medium 12 
given by Eq. (3). Expanding Eq. (3) and rearranging the terms gives: 13 
 14 
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 15 
In the case where |1| > |2|, Eqs. (12) and (14) are used to set up the system matrix. The 16 
variable ∂u/∂x1 is eliminated from the equations by using the relationship in Eq. (16). When 17 
|2| > |1|, Eqs. (12) and (13) are used instead, with ∂u/∂x2 eliminated from these equations 18 
using Eq. (16). 19 
 20 
3.2 Selection of interpolation points 21 
  22 
The two approaches outlined by Popov and Bui [5] may be used to select the interpolation 23 
points in the RBF approximations. In the first approach, a fictitious circle with a pre-defined 24 
radius centred at the collocated node is generated. The nodes that lie inside the fictitious 25 
circle are then selected for the RBF interpolation. In the second approach, the Na points 26 
closest to the collocated node are selected. The second approach is usually preferred since it 27 
ensures that every node employs the same number of interpolation points. While this is not 28 
necessary a criterion for implementing the RBIE, it is computationally more convenient and 29 
shall be adopted in this paper.  30 
 31 
3.3 Selection of subdomain radius 32 
 33 
When implementing the isotropic RBIE, the radius of the subdomain for the node at the 34 
interior is usually chosen to be the same as the distance to the nearest node. This is optimal 35 
for producing numerical results that are stable and accurate [13]. For the subdomains that are 36 
centred on the nodes at the global boundary, the radius is chosen to be 0.1 times the distance 37 
to the nearest node. This is to minimize the error due to extrapolation of the field variables 38 
that are exterior to the solution domain [5]. 39 
 The conditions above, which are optimal for isotropic RBIE [13], may not be ideal for the 40 
anisotropic problems considered here. As shall be demonstrated in Section 4, the variations of 41 
the fundamental solution and its spatial derivatives depend on the size of the subdomain. 42 
Consequently, the choice of 0.1 times the smallest distance between nodes for the boundary 43 
subdomain may introduce significant error especially when the number of nodes is increased. 44 
In the subsequent studies, numerical investigations are carried out to determine the optimum 45 
radii for the interior and boundary subdomains when solving anisotropic problems.  46 
 47 
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3.4 Choice of radial basis functions 1 
 2 
 The choice of which RBF to use is an open question. Various RBFs are available to carry 3 
out the interpolation of the field variables in Eq. (9). A good choice is one that can produce 4 
accurate numerical solutions and is independent of the computational parameters and the type 5 
of problems. Ooi and Popov [6] investigated the performance of the first and second order 6 
polyharmonic splines when solving isotropic problems using the RBIE and concluded that the 7 
second order spline of the form: 8 
 9 
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produced results that are more accurate than its first order counterpart. The parameter r(x-11 
1,x2;x1

(k),x2
(k)) is the Euclidean distance between the points (x1,x2) and (x1

(k),x2
(k)). More 12 

recently, Ooi and Popov [14] employed the third order polyharmonic spline of the form: 13 
 14 
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 15 
to solve incompressible flow problems. They found that the third order spline is important to 16 
ensure convergence when the problem has a high degree of nonlinearity. 17 
 Other RBFs that have been used by researchers include the multiquadrics [15, 16] and the 18 
Gaussian function [17], which are known to yield very accurate results. However, these RBFs 19 
contain a free parameter, which has an optimal value that depends on the type of problem 20 
solved, the distribution of nodes and the precision of the computation [18]. Although various 21 
algorithms exist that help to determine the optimal free parameter, they are mostly tailored 22 
for solving partial differential equations and not for approximating field variables. 23 
 In this paper, we extend the work of Ooi and Popov [6, 14] by investigating the accuracies 24 
of the anisotropic RBIE when implemented with the second and third order polyharmonic 25 
splines (see Eqs. (17) and (18)). The global polynomial p(x1,x2) associated with these RBFs 26 
(see Eq. (9)) have the same order as the RBFs and are given by p(x1,x2) = 1 + x1 + x2 + x1

2 + 27 
x1x2 + x2

2 for the second order RBF and p(x1,x2) = 1 + x1 + x2 + x1
2 + x1x2 + x2

2 + x1
3 + x1

2x2 + 28 
x1x2

2 + x2
3 for the third order RBF. 29 

 30 
3.5 Effects of geodesic distance 31 
 32 
The term r(x1,x2;x1

(k),x2
(k)) in Eqs. (17) and (18) refers to the Euclidean distance between two 33 

points. When the problem is anisotropic, the coefficients of the conductivity tensor have the 34 
capacity to ‘virtually stretch’ the dimensions of the solution domain. In order to help the 35 
numerical scheme cope with this, it is more feasible to adopt the geodesic distance, i.e.: 36 
 37 

,)())((2)(),;,( 22
2222

)(
22

)(
1112

2)(
1111

)(
2

)(
121 xxsxxxxsxxsxxxxr kkkkk   (19)

 38 
instead of the Euclidean distance when implementing the RBF interpolations. These RBFs, 39 
which are defined by the geodesic distance, were used by Ang et al. [19] in their 40 
implementation of the dual reciprocity boundary element method for analysing non-41 
homogeneous anisotropic materials. One may notice that the square of the geodesic distance 42 
in Eq. (19) is identical to the expression inside the logarithm in Eq. (6a).  43 
 44 
 45 
 46 
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4. Effects of material anisotropy on the influence coefficients 1 
 2 
Chang et al. [11] reported that the ease of which anisotropic potential problems can be solved 3 
depends on the determinant of the anisotropic tensor, i.e. |kij| = k11k22 – (k12)

2. A smaller |kij| 4 
yields a more asymmetrical potential distribution, hence increasing the difficulty in obtaining 5 
a numerical solution. From Eq. (6), one may observe that    ∂∂ ∂∂ 6 
∂∂ ∂∂ ∂∂and ∂∂are expressed in terms of the anisotropic material 7 
tensor. Based on the argument of Chang et al. [11], it is reasonable to expect the integrals 8 
defined in Eq. (15) to become more difficult to compute as |kij| becomes smaller. To 9 
investigate if this is true, we set k11 = k22 = 1 and examine the variations of and 10 
their spatial derivatives with respect to 1 and 2 along the subdomain boundary for 0 < k12 < 11 
1. A similar argument applies for the same terms defined in Eqs. (A2) – (A9) in Appendix A. 12 
 Figure 2 plots the values of and their spatial derivatives along the 13 
circumference of a circular subdomain [0 2] of radius 0.1. Results for the isotropic case (k12 14 
= 0) are also plotted for comparison. The variations in the plots increase with the value of k12. 15 
Likewise, the variations in the anisotropic cases are greater than their isotropic counterparts. 16 
From a numerical standpoint, the larger variations imply that the numerical integrals are more 17 
difficult to solve. Hence, more quadrature points are needed to solve more accurately the 18 
integrals in Eq. (15). 19 
 20 

 21 
Figure 2: Plots of and their derivatives with respect to 1 and 2 along the 22 
circumference of the circular subdomain for k12 = 0.2 (solid blue), 0.4 (dashed red), 0.6 23 
(dotted black), 0.8 (dotted-dashed purple) and 0 [isotropic] (solid green). 24 
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  1 
 Next, we investigate the importance of the ratio k11/k22 by choosing five values, namely 2 
k11/k22 = 1, 2, 3, 4 and 5. The value of k12 and the subdomain radius in this case are set to zero 3 
and 0.1, respectively. Figure 3 plots the values of and their spatial derivatives 4 
along the circumference of a circular subdomain [0 2]. As the ratio k11/k22 increases, the 5 
variations of the plotted parameters increase; suggesting that the integrals defined in Eqs. 6 
(15a) to (15c) become more difficult to evaluate. 7 

 8 
Figure 3: Plots of and their derivatives with respect to 1 and 2 along the 9 
circumference of the circular subdomain for k11/k12 = 2 (solid blue), 3 (dashed red), 4 (dotted 10 
black), 5 (dotted-dashed purple) and 1 [isotropic] (solid green). 11 
 12 
 We also investigated the effects of the subdomain radius on the distribution of 13 
and their spatial derivatives. Since the subdomain radius was chosen to be 14 
equivalent to the distance to the nearest node (see Section 3), smaller subdomains imply the 15 
use of larger number of nodes. For this study, we set k11 = k22 = 1 and k12 = 0.5 and observe 16 
the responses of    ∂∂ ∂∂ ∂∂ ∂∂ ∂∂and 17 
∂∂for subdomain radii of 0.1, 0.05 and 0.025. The results are illustrated in Figure 4, 18 
where and their spatial derivatives were found to vary more greatly as the 19 
subdomain becomes smaller. As indicated earlier, this suggests that the integrals in Eq. (15) 20 
will become more difficult to solve.  21 
 From the analyses carried out in this section we have shown that in problems that are 22 
highly anisotropic, i.e. when k12 is large, increasing the number of nodes while maintaining 23 
the subdomain radius to be equivalent to the distance to the nearest node – as in the isotropic 24 
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case [6, 13] – may not necessarily yield more accurate numerical results if the evaluations of 1 
the integrals in Eq. (15) are not sufficiently accurate. 2 
 3 

 4 
Figure 4: Plots of and their derivatives with respect to 1 and 2 along the 5 
circumference of the circular subdomain for radius of 0.1 (solid blue), 0.05 (dashed red) and 6 
0.025 (dotted black). 7 
 8 
5. Results 9 
 10 
5.1 Test problem 1 11 
 12 
We consider the unit square domain (x1,x2: [0, 1]) where the coefficients of the anisotropic 13 
conductivity are given by k11 = 5, k22 = 1 and k12 = 2.  The Dirichlet condition: 14 
 15 
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 16 
is applied to all the boundaries. Eq. (20) also represents the analytical solution across the 17 
boundary and interior of the solution domain. In order to quantify the accuracy of the 18 
numerical scheme, we calculate the root mean squared (RMS) error erms: 19 
 20 
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where can represent either u, ∂u/∂x1 or ∂u/∂x2, n is the total number of observations and the 1 
subscripts ‘ex’ and ‘num’ represent the exact and numerical values, respectively.  2 
 One of the benefits of using the RMS error is its capability to provide a rough indication 3 
on the level of accuracy of the numerical solutions [20]. Generally, the number of zeroes after 4 
the decimal in erms indicates the number of decimal places in the numerical values that are 5 
calculated correctly. For instance, an RMS error of 0.0001 suggests that the numerical 6 
solution is correct up to 3 decimal places.  7 
 In all the numerical results presented, the RBF interpolations were carried out using the 8 
second order polyharmonic splines, 25 points interpolation points and the RBF defined based 9 
on the geodesic distance (see Section 3.5). Numerical experiments indicated that increasing 10 
the number of interpolation points beyond 25 did not significantly improve the numerical 11 
solutions. The integrals in Eq. (15) were calculated numerically using the Gaussian 12 
quadrature.  All numerical simulations were carried out using a laptop with Intel Core i3 13 
(2.4GHz) processor and 4GB of memory. 14 
 15 
5.1.1 Optimum subdomain radius 16 
 17 
We examine first the optimum subdomain radius for solving anisotropic problems. Four 18 
values were considered, namely 0.5x, 1.0x, 1.5x and 2.0x, where x is the smallest 19 
distance between two adjacent nodes. For simplicity, we assume a uniform distribution of 20 
nodes so that x is homogeneous across the solution domain. Three sets of nodes were 21 
considered: Nt = 121 (x = 0.1), 441 (x = 0.05) and 1681 (x = 0.025). In order to minimize 22 
errors from the numerical integration, we employ 150 Gauss points to numerically evaluate 23 
Eq. (15). Figures 5a, 5b and 5c plots the contours of the RMS errors of u, ∂u/∂x1 and 24 
∂u/∂x2, respectively against the different radii of interior (Ri) and boundary (Rb) subdomains. 25 
The contours of u, ∂u/∂x1 and ∂u/∂x2 obtained using x = 0.05, Ri = 1.0x and Rb = 0.1x are 26 
shown in Figure 5d. The numerical solutions obtained when x = 0.1 were unreliable, as 27 
indicated by the RMS error of the order of O(-1). For the case when x = 0.05, the optimum 28 
values of Ri and Rb were 1.5x and 0.5x, respectively. With x = 0.025, the corresponding 29 
optimum values became 2.0x and 1.0x.  30 
 The differences in the optimum values for different x are likely due to the dependence of 31 
the fundamental solution and its spatial derivatives (see Section 4) on the size of the 32 
subdomain, which is scaled according to x. As x becomes smaller, the variation of these 33 
functions become larger, thus necessitating the subdomains to be larger in order to give more 34 
accurate numerical solutions. 35 
 Nevertheless, it must be noted that except for the case where Ri < 0.1, there is very little 36 
difference in the order of RMS error obtained for the different combinations of Ri  and Rb 37 
when x = 0.025. This indicates that the numerical solutions are less sensitive to the 38 
variations in the subdomain radius. The large errors observed when Rb = 2.0x are due to 39 
extrapolation errors where a large part of the subdomain lie outside the solution domain. 40 
 41 
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 1 
Figure 5: Contours of the RMS norm errors (%) of u, ∂u/∂x1 and ∂u/∂x2 obtained for (a) x = 2 
0.1, (b) x = 0.05 and (c) x = 0.025. Figure 5(d) plots the contours of u, ∂u/∂x1 and ∂u/∂x2. 3 
 4 
5.1.2 Effects of Gauss points 5 
 6 
The effects of the number of Gauss points on the performance of the anisotropic RBIE are 7 
investigated. Based on the results from the previous section, we set the radii of the interior 8 
and boundary subdomain to 2.0x and 1.0x, respectively. Simulations were carried out using 9 
75, 100, 125, 150 and 175 Gauss points. All other parameters were set to be the same as those 10 
employed in Section 5.1.1.  11 
 Figure 6 plots the variation of the RMS error of u, ∂u/∂x1 and ∂u/∂x2 against the number of 12 
Gauss points. When Nt is small, approximately 100 Gauss points were needed to obtain 13 
converged solution. However, these results are not meaningful due to their poor accuracy. By 14 
increasing the number of nodes, the number of Gauss points needed to attain convergence 15 
increased to 150. This is to ensure that the evaluations of the numerical integration in Eq. (15) 16 
are accurate. If the number of Gauss points is insufficient, then errors from the numerical 17 
integration will dominate, as indicated by the larger RMS error for Nt = 1681 using Ng ≤ 100. 18 
 19 
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 1 
Figure 6: Variations of the RMS norm errors (%) of u, ∂u/∂x1 and ∂u/∂x2 against the number 2 
of Gauss points. 3 
 4 
5.1.3 Effects of using geodesic distance 5 
 6 
The reason for opting for the geodesic distance when defining the RBF has been detailed in 7 
Section 3.5. In this section, we investigate the importance of using the geodesic distance by 8 
comparing the results against those obtained using the Euclidean-based RBFs. For this 9 
purpose, we set the number of Gauss points to 150 and the radii of interior and boundary 10 
subdomains to be 2.0x and 1.0x, respectively.  11 
 Table 1 compares the RMS error of u, ∂u/∂x1 and ∂u/∂x2 obtained using the geodesic- and 12 
the Euclidean-based RBFs. The results suggest that the algorithm employing the geodesic-13 
based RBFs is on average, 1.6 times more accurate than those obtained using Euclidean-14 
based RBFs. This is improvement is significant, which highlights the importance of adopting 15 
the geodesic distance instead of the Euclidean distance in defining the RBF when solving 16 
anisotropic problems. 17 
 18 
Table 1: Comparisons of RMS errors (%) of u, ∂u/∂x1 and ∂u/∂x2 between the geodesic- and 19 
Euclidean-based RBFs.  20 

Nt u ∂u/∂x1 ∂u/∂x2 
 Geodesic Euclidean Geodesic Euclidean Geodesic Euclidean 
121 0.0556 0.0975 0.1302 0.1868 0.0875 0.1595 
441 0.0067 0.0130 0.0241 0.0300 0.0158 0.0254 
1681 0.0011 0.0019 0.0053 0.0078 0.0034 0.0048 

 21 
5.2 Test problem 2 22 
 23 
As a second test problem, we consider an irregular-shaped domain, which is defined by: 24 
 25 
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where r is the radius that depends on the angle  (see Figure 7(a)) and n determines the 1 
number of rounded corners. For the purpose of this study, we have selected n = 4 and the 2 
resulting domain is shown in Figure 7(a). The coefficients of the anisotropic conductivity 3 
were chosen to be k11 = 3, k22 = 2 and k12 = 1.5. The following Dirichlet condition is 4 
prescribed along the boundary: 5 
 6 
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 7 
The exact solution across the boundary and interior of the solution domain is also represented 8 
by Eq. (23). 9 
 10 

 11 
Figure 7: (a) Geometry of test problem 3 (n = 4) and (b) an example of meshless nodes 12 
distribution. 13 
 14 
 We set the radii of interior and boundary subdomains to be 2.0x and 1.0x, respectively. 15 
The problem is solved by prescribing five different nodes distributions within the domain, 16 
namely Nt = 145, 225, 769, 1369 and 3093. A sample distribution of the collocated nodes 17 
across the solution domain is illustrated in Figure 7(b). It was found that for this problem, 60 18 
Gauss points are sufficient to produce converged solutions. Simulations were carried out 19 
using the second and third order polyharmonic splines with second and third order 20 
polynomial augmentations, respectively.  21 
 Figure 8 plots the variation of RMS error of u, ∂u/∂x1 and ∂u/∂x2 against the total number 22 
of nodes used. In general, the accuracy of the numerical solution increases by one order of 23 
magnitude when the order of the RBF is increases from second to third. Using the third order 24 
RBF also increases the convergence rate of the numerical scheme.  25 
 Figure 9 compares the distribution of absolute error (eabs = |unumerical – uexact|) of u, ∂u/∂x1 26 
and ∂u/∂x2 between the second and third order RBFs obtained using Nt = 3093. The 27 
improvements in the numerical solution obtained by using the third order RBF are clearly 28 
elucidated. 29 
 30 
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 1 
Figure 8: Plots of RMS error of u, ∂u/∂x1 and ∂u/∂x2 against the total number of nodes for test 2 
problem 2. 3 
 4 

 5 
Figure 9: Distribution of absolute error of u, ∂u/∂x1 and ∂u/∂x2 in test problem 2 obtained 6 
using: (a) second and (b) third order RBFs. 7 
 8 
 9 
 10 
 11 
 12 
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6. Discussion 1 
 2 
The accuracy and stability of the anisotropic RBIE were found to depend on the accuracy at 3 
which the influence coefficients are evaluated. This takes precedence over the total number of 4 
nodes used. This is the result of the large variation of the anisotropic fundamental solution 5 
over the subdomain boundary as both the strength of the material anisotropy increases and the 6 
subdomain radius becomes smaller. This problem does not exist when solving isotropic 7 
problems, where typical convergence behaviour is demonstrated in most cases [6]. 8 
 The anisotropic fundamental solution and its spatial gradients also vary more greatly than 9 
the isotropic case. These larger variations suggest that more Gauss points are needed to 10 
compute more accurately the integrals in Eq. (15). In test problem 1, at least 150 Gauss points 11 
were needed in the numerical integration in order to achieve convergent numerical solutions. 12 
In other words, increasing the number of nodes in the simulation may not guarantee improved 13 
results if the calculations of the influence coefficients are not sufficiently accurate. In 14 
contrast, quadrature points as low as 10 have been reported to yield excellent results in 15 
isotropic RBIE [6]. Provided that sufficient Gauss points are used, the anisotropic RBIE can 16 
yield solutions that are accurate up to 4 decimal places. 17 
 One of the consequences of using large number of Gauss points in the numerical 18 
integration is the longer CPU time required. Table 2 presents the total CPU time of the 19 
anisotropic RBIE utilizing the second and third order RBFs for Ng = 10, 20, 40, 80 and 160. 20 
The data suggest that the CPU time increases exponentially as the number of Gauss points is 21 
doubled successively. For the two test problems considered here, the largest number of Gauss 22 
points needed is 150. Based on the tabulated data, the CPU time needed to solve anisotropic 23 
problems using the RBIE is still reasonably short. It is important to point out that the CPU 24 
time used in numerically calculating Eq. (15) is independent of the number of nodes used. 25 
These integrals are evaluated only once for the subdomains with the same radius. 26 
 The third order RBF requires a slightly longer CPU time than the second order RBF. The 27 
difference is due to the larger number of terms used in the accompanying polynomial 28 
augmentation. The difference appears to be negligible, however. 29 
  30 

Table 2: Total CPU time (s) of the anisotropic RBIE with Nt = 961. 31 
Ng RBF 
 2nd order 3rd order 
   10 4.698 4.840 
   20 4.968 5.097 
   40 5.555 5.759 
   80 6.851 7.106 
   160 10.503 10.669 

  32 
 Errors from the numerical integration and problems with the extended CPU time can be 33 
avoided if alternative techniques to evaluate the integrals in Eq. (15) are available. In 34 
anisotropic BEM, integration of the anisotropic fundamental solution over a boundary 35 
element can be carried out analytically if the boundary elements are represented by a straight 36 
line [21, 22]. In RBIE, analytical evaluation of the integrals along the circular boundary is 37 
complicated by the presence of the RBF term f(x1,x2;x1

(k),x2
(k)). 38 

 Some researchers have used the BEM along with a transformation approach to solve 39 
anisotropic problems in order to avoid having to deal with anisotropic fundamental solutions 40 
[23-26]. In this approach, the Cartesian axes are re-oriented into the principal axes such that 41 
the governing anisotropic potential equation becomes the Laplace equation. The problem is 42 
then solved using the BEM in the transformed (principal) axes. This transformation technique 43 
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can be used with the RBIE; however, it is noteworthy that for problems with strong 1 
anisotropy, the transformation produces a domain that is severely distorted. For the square 2 
domain considered in Section 5.1, the domain in the transformed space becomes extremely 3 
thin. Consequently, while the effects of anisotropy on the sensitivity of the influence 4 
coefficients is inconsequential in the transformed space, one would have to deal with an 5 
extremely slender domain, which is problematic and very difficult to solve. 6 
 The numerical experiments showed that for x = 0.025, the optimum interior and boundary 7 
subdomain radii were 2.0x and 1.0x, respectively. These values are different from the case 8 
when solving isotropic problems (1.0x for interior subdomains and 0.1x for boundary 9 
subdomains), largely because the variations of the fundamental solution and its spatial 10 
derivatives depend on the size of the subdomain. For the set of nodes where x = 0.025, the 11 
RMS errors are also less sensitive to the subdomain radius, suggesting that choosing 12 
subdomain sizes that deviate from their optimal values have very little impact on the accuracy 13 
of the numerical method.   14 
 It is possible to generate the subdomains by setting the radius to a constant so that the 15 
dependence on the number of nodes is eliminated. However, this approach does not guarantee 16 
more accurate results because the majority of the interpolation points will be located inside 17 
the subdomain when the number of nodes is increased. This scenario is shown in Figure 10. 18 
In Figure 10 (a), the radius of the subdomain is scaled according to 2.0x. With Na = 25, the 19 
points selected for the RBF interpolation are both located inside and outside of the 20 
subdomain, as depicted by the dashed-red square in Figure 10 (a).  21 
 Conversely, if the subdomain size is fixed, then increasing the number of nodes will result 22 
in all the RBF points lying inside the subdomain (Figure 10 (b)). This can introduce errors to 23 
the numerical solution, since the method is similar to extrapolating the unknown functions 24 
along the subdomain boundary using only nodes inside the subdomain. This problem can be 25 
alleviated by increasing the number of interpolation points, as shown by the green dashed-26 
dotted box in Figure 10 (b). However, this approach will increase the computational time and 27 
may not guarantee better results due to the additional error introduced when inversing the 28 
larger system matrix (see Eq. (10)).  29 
 30 

 31 
Figure 10: (a) Interior subdomain having radius 2.0x and (b) interior subdomain at a fixed 32 
value with increased number of nodes. The red dot represents the centre of subdomain, while 33 
the blue points inside the dashed red square represent the nodes used in the RBF 34 
interpolations.  35 
 36 
 The analyses and the numerical results presented in Section 5 have been carried out and 37 
obtained using the standard formulation, which computes the unknown potential and its 38 
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spatial gradients at each node. As pointed out in Section 2, an alternative formulation may be 1 
derived that solves for the potential and the component of fluxes q1 and q2: 2 
 3 
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 4 
 In order to test the performance of the alternative formulation, we repeated the simulations 5 
for test problem 2 using the same parameters as those used in Section 5.2. Figure 11 6 
compares the RMS error of u, ∂u/∂x1 and ∂u/∂x2 obtained using the standard and alternative 7 
formulations. The accuracies of both the standard and alternative formulations in calculating 8 
u were indistinguishable. The standard formulation calculated ∂u/∂x1 and ∂u/∂x2 more 9 
accurately, albeit insignificantly, than the alternative formulation in calculating q1 and q2. 10 
Nevertheless, direct comparison between the standard and alternative formulations is 11 
difficult, since q1 and q2 are themselves, functions of both ∂u/∂x1 and ∂u/∂x2, see Eq. (23). 12 
 13 

 14 
Figure 11: Comparison of RMS error of u, ∂u/∂x1 and ∂u/∂x2 between the standard and the 15 
alternative formulations. 16 
 17 
 The plots in Figure 11 suggest that both the standard and alternative formulations are 18 
capable of producing comparable numerical results and that the difference in the level of 19 
accuracy in both formulations have little influence over the choice of which formulation to 20 
use in a particular problem. The merit of the alternative formulation can be appreciated when 21 
solving practical engineering problems, where the fluxes on the boundary known instead of 22 
the spatial potential gradients. For instance, in heat transfer problems, heat flux is usually 23 
known at the boundary instead of temperature gradients. 24 
 25 
7. Conclusions 26 
 27 
The RBIE has been derived for the first time to solve potential problems involving material 28 
anisotropy. The performance of the numerical method was tested by solving some numerical 29 
benchmarks. Unlike the isotropic case, solutions of anisotropic problems using the RBIE are 30 
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less straightforward. The variations of the fundamental solution and its spatial derivatives 1 
were found to depend on both the material anisotropy and the size of the subdomain, which 2 
affected the optimum computational parameters. 3 
 Numerical experiments indicated that for the problems considered in this paper, the 4 
optimum radius was found to be 2.0x for subdomains at the interior and 1.0x for 5 
subdomains at the boundary with x = 0.025. It was also determined that at this x, the 6 
accuracy of the numerical algorithm is less sensitive towards the changes in the subdomain 7 
radius. This is true provided that the number of Gauss points used is sufficient to accurately 8 
capture the variation of the fundamental solution and its spatial gradients along the 9 
subdomain boundary. The importance of using the geodesic distance to define the RBF is 10 
also demonstrated. Comparisons between the second and third order polyharmonic splines 11 
showed that the third order spline is one order more accurate than the second order spline. 12 
The increase in CPU time as a result from implementing the third order spline is negligible. 13 
 One of the key aspects when implementing the anisotropic RBIE is the accurate evaluation 14 
of the influence coefficients. This appears to be the most significant criterion and supersedes 15 
the increase in the number of nodes used. In order to accurately evaluate the influence 16 
coefficients, large number of Gauss points is needed for the numerical integration, which 17 
leads to considerable increases in the total CPU time. This drawback may be avoided if 18 
analytical or semi-analytical solutions of the integrals in Eq. (15) can be derived and is the 19 
subject of future investigations.  20 
 An alternative formulation of the anisotropic RBIE, which allows for the potential and 21 
fluxes in the x1- and x2-directions to be calculated was also presented. There were no 22 
significant differences in the accuracies between the standard and alternative formulations. 23 
The alternative formulation is suggested to be more practical for solving problems where 24 
fluxes are prescribed as the boundary conditions instead of the potential gradients. 25 
 26 
Appendix A 27 
 28 
For simplicity, we define the geodesic distance as: 29 
 30 
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 31 
The fundamental solution of the anisotropic Laplace equation and its first and second order 32 
derivatives are given by: 33 
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 6 
Appendix B 7 
 8 
In this appendix, we derive the alternative formulation of the anisotropic RBIE which solves 9 
for the potential and the components of flux instead of the spatial gradients. We begin by 10 
defining the normal component of the flux qn, which may be written as: 11 
 12 

),,(),(),(),(
),(

),( 212212211211
21

21 xxqxxnxxqxxn
n

xxu
xxqn 




 
 (B1)

 13 
where 14 
 15 

,
),(),(

),(
2

21
12

1

21
11211 x

xxu
k

x

xxu
kxxq








  (B2a)

.
),(),(

),(
2

21
22

1

21
12212 x

xxu
k

x

xxu
kxxq








  (B2b)

  16 
Substituting the expressions above into the integral equation for potential (Eq. (4)) yields: 17 
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 19 
Differentiating Eq. (B3) with respect to 1 and 2 and by making use of the following 20 
relationship: 21 
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 1 
one obtains: 2 
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 5 
where the fundamental solution and its first and second order derivatives are given as in 6 
Appendix A. As in the standard formulation, the field variables u, q1 and q2 may be expressed 7 
in terms of the values at the surrounding nodes by using RBF interpolations. Detailed 8 
derivation following these steps will not be presented as they are identical to those adopted in 9 
the standard formulation. 10 
 Implementation of the alternative formulation is slightly different from the standard 11 
formulation. For nodes that are located at the interior and at the boundary where the Dirichlet 12 
condition is prescribed, the procedures are the same as in the standard formulation. When the 13 
collocation node is at the boundary where the Neumann condition is prescribed, the two cases 14 
adopted in the standard formulation is also applicable to the alternative formulation. 15 
However, instead of checking for the conditions of |1| and |2|, the conditions are checked 16 
for |n1| and |n2| and Eq. (B1) is used to eliminate one of q1 or q2. 17 
 18 
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