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Abstract

The problem of multiple arbitrarily oriented planar cracks in an

infinite magnetoelectroelastic space under dynamic loadings is con-

sidered. An explicit solution to the problem is given in the Laplace

transform domain in terms of suitable exponential Fourier integral

representations. The unknown functions in the Fourier integrals are

directly related to the Laplace transform of the jumps in the displace-

ments, electric potential and magnetic potential across opposite crack

faces and are to be determined by solving a system of hypersingu-

lar integral equations. Once the hypersingular integral equations are

solved, the displacements, electric potential, magnetic potential and

other quantities of interest such as the crack tip intensity factors may

be easily computed in the Laplace transform domain and recovered in

the physical space with the help of a suitable algorithm for inverting

Laplace transforms.
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1 Introduction

In recent years, there has been considerable interest in the analysis of cracks

in magnetoelectroelastic solids. Most of the analytic or semi-analytic so-

lutions for magnetoelectroelastic cracks are for static loadings and specific

crack configurations. For example, Wang and Mai [12] had considered a sin-

gle planar crack in magnetoelectroelastic solids and Gao et al [5], Li and Lee

[9] and Zhong [15] had derived solutions for collinear cracks.

It appears that there are relatively few solutions of magnetoelectroelasto-

dynamic crack problems especially for inplane deformations. Li [8] reduced

the solution of a dynamic problem of a single permeable planar crack in

an infinite transversely isotropic magnetoelectroelastic material under pure

electric load and antiplane deformations to solving a Fredholm integral so-

lution of the second kind in the Laplace transform domain. Using Laplace

and Fourier transforms, Zhong et al [16]-[17] had obtained solutions for a

single planar crack and a pair of coplanar cracks in an infinite magnetoelec-

troelastic space under impact loadings. Rojas-Diaz et al [10] and Wünsche

et al [14] had presented hypersingular traction boundary element solutions

for dynamic planar cracks in a magnetoelectroelastic solid under inplane de-

formations. The boundary element approach requires the derivation of fun-

damental solutions for the governing partial equations. For static problems,

the fundamental solution is given in terms of simple elementary functions

(Hong and Chen [6] and Chen and Hong [4]). Nevertheless, the fundamen-

tal solution for dynamic problems is rather complicated to derive, as it is

expressed in terms of a line integral over a unit circle with integrand in the

form of exponential integrals (Wang and Zhang [13]).

In the current paper, a semi-analytic solution is given for an arbitrary

number of arbitrarily oriented planar cracks in a magnetoelectroelastic full-

space under dynamic loadings. The cracks are assumed to open up by inter-

nal stresses and are either electrically impermeable or permeable and either
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magnetically impermeable or permeable. The displacements, electric poten-

tial and magnetic potential in the Laplace transform domain are expressed in

terms of suitably constructed exponential Fourier transform representations.

The Fourier integrals contain unknown functions that are directly related

to the jumps in the Laplace transforms of the displacements, electrical po-

tential and magnetic potential across opposite crack faces. The unknown

functions are to be determined by solving a system of hypersingular integral

equations. Once they are determined, the displacements, electric potential,

magnetic potential and other physical quantities of interest, such as the crack

tip stress and electric displacement intensity factors, may be easily computed

in the Laplace transform domain and recovered in the physical space by using

a suitable algorithm for inverting Laplace transforms. The crack tip stress,

electric displacement and magnetic induction intensity factors are computed

for some specific cases of the problem. For cases involving a single planar

crack and two coplanar cracks, the values of the stress, electric displacement

and magnetic induction intensity factors computed are compared with those

in the literature.

2 A magnetoelectroelastic crack problem

With reference to an 123 Cartesian coordinate system, consider an infi-

nite magnetoelectroelastic space with0 arbitrarily oriented non-intersecting

planar cracks with geometries that do not change along the 3 axis. The

cracks are denoted by Γ(1) Γ(2) · · ·  Γ(0−1) and Γ(0). The -th planar

crack Γ() (as sketched in Figure 1) lies in the region

−()  
()
1 ( − 

()
 )  () 

()
2 ( − 

()
 ) = 0 −∞  3 ∞ (1)

where

[
()
 ] =

⎛⎝ sin(()) cos(()) 0

− cos(()) sin(()) 0
0 0 1

⎞⎠  (2)
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Note that the Einstenian convention of summing over a repeated index holds

here for lowercase Latin subscripts from 1 to 3

Figure 1: Parameters defining the -th crack Γ()

The displacements , electric potential  and magnetic potential  and

the corresponding stresses  electric displacements  and magnetic induc-

tions  in the magnetoelectroelastic space are assumed to be independent of

the 3 coordinate.

The cracks are assumed to open up under the action of suitably prescribed

internal tractions, that is,

(1 2 )
()
 → − () (1 2 ) ( = 1 2 3)

as (1 2)→ (1 2) ∈ Γ()( = 1 2 · · ·  0) (3)
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The electric and magnetic conditions on the cracks are given by either

(1 2 )
()
 → − ()4 (1 2 )

as (1 2)→ (1 2) ∈ Γ()( = 1 2 · · ·  0)

if the cracks are electrically impermeable, (4)

or

∆(1 2 )→ 0 as (1 2)→ (1 2) ∈ Γ() ( = 1 2 · · ·  0)

if the cracks are electrically permeable, (5)

and either

(1 2 )
()
 → − ()

5 (1 2 )

as (1 2)→ (1 2) ∈ Γ()( = 1 2 · · ·  0)

if the cracks are magnetically impermeable, (6)

or

∆(1 2 )→ 0 as (1 2)→ (1 2) ∈ Γ() ( = 1 2 · · ·  0)

if the cracks are magnetically permeable, (7)

where 
()
1 (1 2 ) 

()
2 (1 2 ) 

()
3 (1 2 ) 

()
4 (1 2 ), 

()
5 (1 2 )

are suitably prescribed functions for (1 2) ∈ Γ(),
()
 = −()2 are the com-

ponents of a unit magnitude normal vector to the crack Γ() and ∆(1 2)

and ∆(1 2) respectively denote the jump in the electrical potential  and

magnetic potential  across the crack Γ() as defined by

∆(1 2 ) = lim
→0
[(1 − ||()

1  2 − ||()
2  )

−(1 + ||()
1  2 + ||()

2  )]

for (1 2) ∈ Γ()
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∆(1 2 ) = lim
→0
[(1 − ||()

1  2 − ||()
2  )

−(1 + ||()
1  2 + ||()

2  )]

for (1 2) ∈ Γ() (8)

Furthermore, it is required that the displacements  and its first order par-

tial derivative with respect to time are both zero at time  = 0 and that

(1 2 ), (1 2 ) and (1 2 ) vanish as 
2
1 + 22 tends to infinity.

The governing partial differential equations for plane magnetoelectroelas-

tostatic problems involving a homogeneous solid are given (in compact form)

by


2


= 

2

2
( = 1 2 3 4 5) (9)

with

 =

⎧⎨⎩  for  =  = 1 2 3
 for  = 4
 for  = 5

 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

 for  =  = 1 2 3 and  =  = 1 2 3
 for  =  = 1 2 3 and  = 4
 for  =  = 1 2 3 and  = 5
 for  = 4 and  =  = 1 2 3
− for  = 4 and  = 4
− for  = 4 and  = 5
 for  = 5 and  =  = 1 2 3
− for  = 5 and  = 4
− for  = 5 and  = 5

 =

½
 if  =  and  6= 4 5
0 otherwise.

(10)

where , ,, , , and  are the constant elastic moduli (N/m
2),

piezoelectric coefficient (C/m2), dielectric coefficient (C2/Nm2), piezomag-

netic coefficient (N/Am), magnetoelectric coefficient (Ns/VC) and magnetic-

permeability coefficient (Ns2/C2) respectively and  is the density (kg/m3),
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uppercase Latin subscripts (such as  and ) have values 1 2 3 4 and 5,

and the Einsteinian convention of summing over a repeated is also assumed

for uppercase Latin subscripts.

If the generalized stresses  are defined by

 =

⎧⎨⎩  for  =  = 1 2 3
 for  = 4
 for  = 5

(11)

then the linear constitutive equations for magnetoelectroelasticity are given

by

 = 



 (12)

Application of the Laplace transformation on (9) together with the initial

conditions stated below (8) gives


2 b


− 2

b(1 2 ) = 0 ( = 1 2 3 4 5) (13)

where b(1 2 ) denotes the Laplace transform of (1 2 ) and  is

the Laplace transform parameter (assumed to be real here).

The problem of interest is to solve the partial differential equations (13)

subject to the Laplace transforms of the boundary conditions (3)-(7) and the

far-field conditions stated below (8).

3 Solution in Laplace transform domain

Extending the analysis in Ang and Athanasius [2] for the electroelastody-

namic analysis of multiple planar cracks in a piezoelectric space to the mag-

netoelectroelastic crack problem in Section 2, we find that the magnetoelec-

troelastic fields in the Laplace transform domain may be expressed in terms
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of exponential Fourier integrals as given by

b(1 2 )

=
0X
=1

Re{
5X

=1

∞Z
0


()
( )[(

()
2 ( − () ))

()
 ( )

()
 ( )

× exp((()1 +  () ( )
()
2 )( − 

()
 ))

+(−()2 ( − () ))
()
 ( )

()

 ( )

× exp(−(()1 +  () ( )
()
2 )( − 

()
 ))]} (14)

and

b(1 2 )
=

0X
=1

Re{
5X

=1

∞Z
0


()
( )[(

()
2 ( − () ))

()
 ( )

()
 ( )

× exp((()1 +  () ( )
()
2 )( − 

()
 ))

−(−()2 ( − () ))
()
 ( )

()

 ( )

× exp(−(()1 +  () ( )
()
2 )( − 

()
 ))]} (15)

where  =
√−1, the overhead bar denotes the complex conjugate of a complex

number, b(1 2 ) is the Laplace transform of (1 2 ) () is the

unit-step Heaviside function, 
()
 ( ) ( = 1 2 · · ·  0) are roots, with

positive imaginary parts, of the 10-th order polynomial equation (in ) given

by

det[
2

2
 + (

()
11 + 

()
12 )

211

+(
()
21 + 

()
22 )(

()
11 + 

()
12 )(12 + 21)

+(
()
21 + 

()
22 )

222] = 0 (16)
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()
( ) ( = 1 2 · · ·  0) are non-trivial solutions of the system

[
2

2
 + (

()
11 +  () ( )

()
12 )

211

+(
()
21 +  () ( )

()
22 )(

()
11 +  () ( )

()
12 )(12 + 21)

+(
()
21 +  () ( )

()
22 )

222]
()
 = 0 (17)


()
( ) are given by


()
( ) = [(

()
11 +  () ( )

()
12 )1

+(
()
21 +  () ( )

()
22 )2]

()
, (18)


()
 ( ) are defined by

5X
=1


()
 

()
( )

()
 ( ) =  ( = 1 2 · · ·  0) (19)

 is the kronecker-delta and 
()
 ( ) are given by


()
 ( ) = 

()
 ( )

()Z
−()


()
 ( ) exp(−) (20)

with 
()
 ( ) being implictly defined by



5X
=1

[
()
( )

()
 ( )− 

()

( )
()

 ( )]
()
 ( ) =   (21)

and 
()
 ( ) being related to the Laplace transform of the generalized crack

opening displacement ∆(1 2 ) by


()
 (

()
1 ( − 

()
 ) ) =

1


∆b(1 2 )

for − ()  
()
1 ( − 

()
 )  () 

()
2 ( − 

()
 ) = 0(22)
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For electrically and magnetically impermeable cracks with conditions

given by (4) and (6), the functions 
()
 ( ) are determined by solving the

hypersingular integral equations

1

()
=

1Z
−1


()


()
 (

() )

( − )2
+ ()

1Z
−1


()
 (

() )Ω
()
(  )

+ () −
1Z

−1

2
()


()
 (

() ) cosh(()| − |) ln(()| − |)

+
0X
=1
6=

()
1Z

−1


()
 (() )Θ

()
 (  )

= − b () (
()
1 () 

()
2 () ) ( = 1 2 3 4 5)

for − 1    1 ( = 1 2 · · ·  0) (23)

where 
()
1 () = 

()
1 +() sin(()) 

()
2 () = 

()
2 −() cos(()), −

R
denotes

that the integral is to be interpreted in the Cauchy principal sense and =
R

denotes that the integral is to be interpreted in the Hadamard finite-part

sense, 
()
 and 

()
 are given by


()
 = lim

()→∞

()
( )


()
 = lim

()→∞
(



)2[

()
( )−

()
]  (24)

and Ω
()
(  ) and Θ

()
 (  ) are respectively defined by

Ω
()
(  ) = −

∞Z
0


()
( ) cos(

()[ − ])

−2()
[Shi(

()| − |) sinh(()| − |)
−1
2
cosh(()| − |)(Ei(()| − |)− 1(

()| − |))
+ cosh(()| − |) ln(()| − |)] (25)
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and

Θ()
 (  ) = −Re{

5X
=1

∞Z
0


()
 [(

()
2 ( ))

×()( )
()
 ( ) exp(

()
 ( )

()
2 ( ))

+(− ()
2 ( ))

()

( )
()

 ( )

× exp( () ( )
()
2 ( ))]

× ()( ) exp(
()
1 ( ))}

if it is assumed that 
()
2 ( ) 6= 0 (26)

with 
()
 ( ) = 

()
 (

()
 ()− 

()
 )− ()1, 

()
( ) given by


()
( ) = 

()
( )−

()
 −

2
()


2 + 2
(  0) (27)

and Shi() Ei() and 1() being special functions defined by

Shi() =

Z
0

sinh()


 Ei() = − −

∞Z
−

exp(−)


 1() =

∞Z


exp(−)




(28)

The expressions for Θ
()
 (  )as given in (26) are valid for 

()
2 ( ) 6=

0 If 
()
2 ( ) = 0 then (26) has to be modified accordingly, that is,

Θ
()
 (  ) = Re{

e()


[
()
1 ( )]2

−
∞Z
0

f ()
 ( ) exp(

()
1 ( ))

−2 e()
 [Shi(| ()

1 ( )|) sinh(| ()
1 ( )|)

−1
2
cosh(| ()

1 ( )|)
×(Ei(| ()

1 ( )|)− 1(| ()
1 ( )|))

+


2
sgn(

()
1 ( ))

×(cosh(| ()
1 ( )|)− sinh(| ()

1 ( )|))] }
if 

()
2 ( ) = 0 (29)
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where sgn() denotes the sign of  and

e()
 = lim

()→∞
e () ( )

e () ( ) =
4X

=1


()
 

()
( )

()
 ( )

()
 ( )

e()
 = lim

()→∞
(



)2[e () ( )− e()

 ]

f ()
 ( ) = e () ( )− e()

 −
2 e()



2 + 2
(  0) (30)

If all the cracks are electrically permeable then (5) implies that 
()
4 () = 0

and the hypersingular integral equation in (23) given by  = 4 may be dis-

carded. Similarly, if all the cracks are magnetically permeable, we may take


()
5 = 0 and disregard the hypersingular integral equation in (23) given by

 = 5 Thus, if all the cracks are both electrically and magnetically perme-

able, we only have to determine 
()
1 () 

()
2 () and 

()
3 () by solving (23) for

 given by 1 2 and 3 only.

The collocation technique in Kaya and Erdogan [7] may be used to solve

approximately the hypersingular integral equations in (23) by making the

approximations


()
 (

() ) ' 1



√
1− 2

X
=1


()
 () (−1)() for − 1    1 (31)

where  ()() = sin([ + 1] arccos()) sin(arccos()) is the  order Cheby-

shev polynomial of the second kind and 
()
 () are unknown coefficients.

Substitution of (31) into (23) yields a system of linear algebraic equations

which can be used to determine 
()
 () for any fixed value of . Details on

how the linear algebraic equations may be set up may be found in Athanasius,

Ang and Sridhar [3].
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4 Generalized stress intensity factors

The dynamic stress, electric displacement, magnetic induction intensity fac-

tors at the tips (
()
1 (±1) ()

2 (±1)) of the -th crack Γ() are defined by

(
()
1 (±1) ()

2 (±1) )
= lim

→±1±

q
±2()(∓ 1)(1(()

1 () ()
2 () )()

1

+2(
()
1 () 

()
2 () )

()
2 )

()
 

(
()
1 (±1) ()

2 (±1) )
= lim

→±1±

q
±2()(∓ 1)(1(()

1 () 
()
2 () )

()
2

−2(()
1 ()

()
2 () )

()
1 )

()
 

(
()
1 (±1) ()

2 (±1) )
= lim

→±1±

q
±2()(∓ 1)3(()

1 ()
()
2 () )

()
 

 (
()
1 (±1)()

2 (±1) )
= lim

→1±

q
±2()(∓ 1)4(()

1 () 
()
2 () )

()
 

 (
()
1 (±1)()

2 (±1) )
= lim

→±1±

q
±2()(∓ 1)5(()

1 ()()
2 () )()

  (32)

Once the coefficients 
()
 () in (31) are determined, the above intensity

factors may be approximately calculated in the Laplace transform domain

by using

b(
()
1 (±1) ()

2 (±1) ) ' 1√
()

(
()
1 

()
1 +

()
2 

()
2 )

×
X

=1


()
 () (−1)(±1)

13



b(
()
1 (±1) ()

2 (±1) ) ' 1√
()

(
()
1 

()
2 −

()
2 

()
1 )

×
X
=1


()
 () (−1)(±1)

b(
()
1 (±1) ()

2 (±1) ) ' − 1√
()


()
3

X
=1


()
 () (−1)(±1)

b (
()
1 (±1)()

2 (±1) ) ' − 1√
()


()
4

X
=1


()
 () (−1)(±1)

b (
()
1 (±1) ()

2 (±1) ) ' − 1√
()


()
5

X
=1


()
 () (−1)(±1) (33)

As in Ang [1], the intensity factors at any time   0 may be recovered

by using the numerical Laplace transform algorithm in Stehfest [11], that is,

by using the formula

 () ' ln(2)



2X
=1

 b ( ln(2)


) (34)

where b () denotes the Laplace transform of  ()  is a positive integer

and

 = (−1)+
min()X

=[(+1)2]

(2)!

( −)!!(− 1)!(−)!(2− )!
 (35)

with [] denoting the integer part of the real number 

5 Specific problems

In this section, the dynamic generalized stress intensity factors are computed

for specific cases of the magnetoelectroelastic crack problem in Section 2. For

the cases of a single planar crack and a pair of coplanar cracks, the stress
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intensity factors computed here are compared with those published in the

literature.

For all the specific problems considered below, the constitutive equations

for the magnetoelectroelastic space are given by

⎛⎜⎜⎜⎜⎜⎜⎝
11
22
33
32
31
12

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
   0 0 0
   0 0 0
   0 0 0
0 0 0  0 0
0 0 0 0 1

2
(−) 0

0 0 0 0 0 

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
11
22
33
232
231
212

⎞⎟⎟⎟⎟⎟⎟⎠

−

⎛⎜⎜⎜⎜⎜⎜⎝
0 2 0
0 3 0
0 2 0
0 0 1
0 0 0
1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎝ 1

2
3

⎞⎠−
⎛⎜⎜⎜⎜⎜⎜⎝

0 2 0
0 3 0
0 2 0
0 0 1
0 0 0
1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎝ 1

2

3

⎞⎠ 

⎛⎝ 1

2

3

⎞⎠ =

⎛⎝ 0 0 0 0 0 1
2 3 2 0 0 0
0 0 0 1 0 0

⎞⎠
⎛⎜⎜⎜⎜⎜⎜⎝

11
22
33
232
231
212

⎞⎟⎟⎟⎟⎟⎟⎠
+

⎛⎝ 1 0 0
0 2 0
0 0 1

⎞⎠⎛⎝ 1
2
3

⎞⎠+
⎛⎝ 1 0 0

0 2 0
0 0 1

⎞⎠⎛⎝ 1

2

3

⎞⎠ 
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⎛⎝ 1
2
3

⎞⎠ =

⎛⎝ 0 0 0 0 0 1
2 3 2 0 0 0
0 0 0 1 0 0

⎞⎠
⎛⎜⎜⎜⎜⎜⎜⎝

11
22
33
232
231
212

⎞⎟⎟⎟⎟⎟⎟⎠
+

⎛⎝ 1 0 0
0 2 0
0 0 1

⎞⎠⎛⎝ 1
2
3

⎞⎠+
⎛⎝ 1 0 0

0 2 0
0 0 1

⎞⎠⎛⎝ 1

2

3

⎞⎠ 

where 2 =  +   = − and  = − Note
that 33 = 0, 3 = 0 and 3 = 0 here since   and  are independent of

3

The constitutive equations above are for magnetoelectroelastic materials

with particular symmetries and may be recovered as special cases from the

more general equations in (12) by taking non-zero coefficients  to be

given by

1111 = 3333 = , 1133 = 3311 =  2222 = 

1122 = 2211 = 2233 = 3322 =  ,

1212 = 2112 = 2121 = 1221 = 2323 = 3223 = 3232 = 2332 = 

1313 = 3113 = 3131 = 1331 =
1

2
(−)

2141 = 1241 = 3243 = 2343 = 4121 = 4112 = 4332 = 4323 = 1

1142 = 3342 = 4211 = 4233 = 2

2242 = 4222 = 3 4141 = 4343 = −1 4242 = −2
2151 = 1251 = 3253 = 2353 = 5121 = 5112 = 5332 = 5323 = 1

1152 = 3352 = 5211 = 5233 = 2

2252 = 5222 = 3 4151 = 4353 = 5141 = 5343 = −1
4252 = 5242 = −2 5151 = 5353 = −1 5252 = −2
For the purpose of obtaining numerical values of the generalized stress in-

tensity factors, we use the magnetoelectroelastic coefficients for the material
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BaTiO3−CoFe2O4, given in SI units by

 = 226× 1010  = 117× 1010,  = 125× 1010  = 216× 1010,  = 44× 1010
1 = 58 2 = −22 3 = 93 1 = 275 2 = 2902 3 = 350
1 = 564× 10−10 2 = 635× 10−10 1 = 5367× 10−12 2 = 27375× 10−12
1 = 297× 10−6 2 = 835× 10−6

Problem 1. Take a single horizontal crack with crack tips (− 0) and
( 0). The crack is electrically and magnetically impermeable. The only

non-zero load on the crack faces are given by 22 = −()0 where 0 is a
given positive constant.

In Figures 2, 3 and 4, the non-dimensionalized intensity factors(0
√
)

3 (20
√
) and 3 (20

√
), calculated by using = 4 in (34) and

 = 10 in (31), are plotted against the non-dimensionalized time 
p
(2)

and compared with the values given in Rojas-Díaz et al [10]. Although there

is a discernible difference between the plots for the generalized stress inten-

sity factors computed here and those in [10], they exhibit the same general

trends and reach the peak values at about the same time.
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Figure 2: Plots of (0
√
) against the non-dimensionalized time


p
(2) .

Figure 3: Plots of 3 (20
√
) against the non-dimensionalized time


p
(2) .
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Figure 4: Plots of 3 (20
√
) against the non-dimensionalized time


p
(2) .

Problem 2. Consider a pair of electrically and magnetically permeable

coplanar cracks, each of length 2 as shown in Figure 5. The distance

between the inner tips of the cracks is 2 The uniform tractions acting on

the crack faces are given by 22 = −()0where 0 is a given positive

constant.
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Figure 5: A pair of coplanar cracks.

For  = 02, the non-dimensionalized stress intensity factor (0
√
)

at the inner and outer tips of the cracks calculated here are plotted against


p
(2) and compared with the results in Zhong et al [17] in Figure 6.

Over a significantly large interval of time, there is a close agreement between

the values computed here and the ones given in [17].
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Figure 6: Plots of (0
√
) against the non-dimensionalized time


p
(2) .

Figure 7: Plots of (0
√
) against the non-dimensionalized time


p
(2)at inner and outer crack tips for selected values of 
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Figure 8: Plots of 3 (20
√
) against the non-dimensionalized time


p
(2)at inner and outer crack tips for selected values of 

To examine how the distance separating the inner crack tips may affect the

behaviors of the cracks, plots of the non-dimensionalized generalized stress

intensity factors (0
√
) 3 (20

√
) and 3 (20

√
) at the

inner and outer crack tips against the non-dimensionalized time 
p
(2)

are given for  = 02 050 and 10 in Figures 7, 8 and 9. In each of the

plots, the generalized stress intensity factor increases rapidly to a peak value

before settling down to the corresponding static value. The peak value of the

intensity factor at the inner crack tip is larger than that at the outer tip. It

appears that decreasing  has the effect of increasing the intensity factors.
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Figure 9: Plots of 3 (20
√
) against the non-dimensionalized time


p
(2)at inner and outer crack tips for selected values of 

Figure 10: Two parallel cracks of equal length.
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Problem 3. Consider two parallel equal length planar cracks as sketched

in Figure 10. The half length of each crack is given by . The centers of the

cracks lie on a vertical line and are separated by a distance denoted by  The

cracks are electrically and magnetically impermeable. The non-zero constant

loads acting on the crack faces are given by 22 = −()0 42 = −()0

and 52 = −()0, with 0 0 and 0 being positive constants such that

00 = 10
10 NC−1 and 00 = 10

8 Am−1

For  = 30 50 and 100, plots of the non-dimensionalized gener-

alized stress intensity factors (0
√
), (0

√
)  (0

√
) and

 (0
√
) against the non-dimensionalized time 

p
(2) are given in

Figures 11, 12, 13 and 14 respectively

Figure 11: Plots of (0
√
) against the non- dimensionalized time for

selected values of .
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Figure 12: Plots of (0
√
) against the non-dimensionalized time for

selected values of .

Fiugure 13: Plots of  (0

√
) against the non- dimensionalized time for

selected values of .
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In Figure 11, for a given  the non-dimensionalized stress intensity

factor (0
√
) rises to a peak (maximum) value and then drops to a

trough (mininum) value before gradually settling down to approach its static

value. Both the trough and the peak values decrease in magnitude as 

decreases. A similar observation may be made of the non-dimensionalized

electric displacement and magnetic induction intensity factors in Figures 13

and 14.

Figure 14: Plots of  (0
√
) against the non- dimensionalized time for

selected values of .

As  tends to infinity, the non-dimensionalized stress intensity factor

(0
√
) vanishes. In Figure 12, the magnitude of (0

√
) for  =

100 is very small at all time. Nevertheless, as the distance  separating the

cracks becomes smaller, there is an increase in the magnitude (0
√
).

This observation may be explained by the well known phenomenon known
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as Poisson effect. Due to Poisson effect, compressive stresses generated on

opposite crack faces are unequal, thereby giving rise to shear stresses on each

of the cracks.

Problem 4. Take the only non-zero load acting on the pair of parallel

cracks in Figure 10 to be given by the stress 22 = −()0 where 0 is
a given positive constant. We are interested in examining how the electric

and magnetic conditions on the cracks affect the generalized stress intensity

factors. For  = 30 and  = 100 the non-dimensionalized general-

ized stress intensity factors (0
√
) (0

√
) 3 (20

√
) and

3 (20
√
) for electrically and magnetically impermeable cracks are

compared with the corresponding intensity factors for electrically and mag-

netically permeable cracks in Figures 15, 16, 17 and 18.

Figure 15: A comparison of (0
√
) for electrically and magnetically

permeable and impermeable cracks for selected values of 
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Figure 16: A comparison of (0
√
) for electrically and magnetically

permeable and impermeable cracks for selected values of 

Figure 17: A comparison of 3 (20
√
) for electrically and

magnetically permeable and impermeable cracks for selected values of 
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Figure 18: A comparison of 3 (20
√
) for electrically and

magnetically permeable and impermeable cracks for selected values of 

From Figures 15 and 16, the non-dimensionalized generalized stress in-

tensity factors (0
√
) and (0

√
) for the impermeable cracks do

not differ very much from the corresponding intensity factors for permeable

cracks. In Figures 17 and 18, the non-dimensionalized generalized stress

intensity factors 3 (20
√
) and 3 (20

√
) for the impermeable

cracks are obviously different from the corresponding intensity factors for the

permeable cracks. As may be expected, the magnitudes of 3 (20
√
)

and 3 (20
√
) are very much smaller for the impermeable cracks than

for the permeable cracks as 
p
(2) increases.

6 Summary and conclusion

An explicit solution is given in the Laplace transform domain for a magne-

toelectroelastodynamic problem involving an arbitrary number of arbitrarily

located planar cracks. The Laplace transform of the generalized displace-
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ment and stress fields are expressed in terms of the Laplace transform of the

generalized crack opening displacements to be determined by solving a sys-

tem of hypersingular integral equations. Once the generalized crack opening

displacements are determined, the generalized stress intensity factors may be

easily computed in the Laplace transform domain. A numerical technique for

the inversion of Laplace transforms may then be used to recover the intensity

factors in the physical domain.

The solution is applied to study several specific problems involving a

particular magnetoelectroelastic material. For a single crack and a pair of

coplanar cracks under impact loadings, the computed crack tip intensity

factors are found to be in reasonably good agreement with those published

in the literature.

The solution approach here does not require the difficult computation of

a complicated fundamental solution for magnetoelectroelastodynamics. It

may be extended to include cracks in magnetoelectroelastic solids having

other idealized geometries (such as half-spaces and infinitely-long strips) and

specific boundary conditions. Nevertheless, it may not be as versatile as

the boundary element approach in dealing with more general geometries and

boundary conditions.
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