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1 Introduction

Thermal conductivity and specific heat capacity of metallic solids have been

experimentally observed to be strongly dependent on temperature during

processes such as metal quenching. Thus, the development of numerical

techniques for nonlinear heat conduction in solids with temperature depen-

dent material properties has attracted the attention of many researchers in

computational heat transfer. Earlier works on boundary element methods,

such as Kikuta, Togoh and Tanaka [12] and Goto and Suzuki [9], assume

that the solids are thermally isotropic and have density, specific heat ca-

pacity and thermal conductivity which are functions of temperature alone.

Clements and Budhi [8], Azis and Clements [5] and, more recently, Ang

and Clements [2] have proposed boundary element procedures for thermally

anisotropic solids with material properties that vary with temperature and

spatial coordinates.

The works in [2] and [5] are also applicable to linear heat conduction in

nonhomogeneous media such as functionally graded materials. The analysis

of functionally graded materials is a topic of special interest in boundary

element methods. Some papers on boundary element methods for solving

linear problems involving nonhomogeneous media with properties that vary

continuously in space include Ang, Kusuma and Clements [3], Clements [7],

Kassab and Divo [11], Park and Ang [16], Rangogni [17], Tanaka, Matsumoto

and Suda [18] and other relevant references therein.

The present paper considers a nonlinear time-dependent axisymmetric

heat conduction problem involving a nonhomogeneous thermally isotropic

solid with temperature dependent properties. Such a problem is of practical

interest as axisymmetric structures can be found in many engineering ap-

plications (such as pressure vessels and piping components). The analyses

in Ang and Clements [2], Azis and Clements [5] and Brebbia, Telles and

Wrobel [6] are used as a guide to convert the nonlinear partial differential

equation governing the axisymmetric heat conduction into a suitable integro-

differential equation. In addition to a boundary integral over a curve on an

appropriate coordinate plane, the integro-differential equation also contains

a domain integral. The dual-reciprocity approach is used here to express the

domain integral approximately in terms of line integrals. The time derivative
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of the temperature in the integro-differential formulation is approximated us-

ing a finite difference formula. At any given time level, if the temperature

is assumed known at earlier time levels, the problem under consideration is

formulated in terms of a system of nonlinear algebraic equations to be solved

using a predictor-corrector (iterative) procedure.

The numerical procedure presented here is applied to solve some spe-

cific problems including one which involves the laser heating of a cylindrical

solid. For problems which have known exact solutions, the accuracy of the

numerical solutions obtained is assessed.

2 The problem

Consider a thermally isotropic solid occupying the three-dimensional region

R. If T is the temperature inside the solid, then the conservation of energy

and the classical Fourier’s law of heat conduction require the temperature to

satisfy the partial differential equation

∇ • (κ∇T ) +Q = ρc
∂T

∂t
in R for t ≥ 0, (1)

where∇ is the gradient (nabla) operator, • denotes the dot product, t is time,
ρ, c and κ are respectively the density, specific heat capacity and thermal

conductivity of the solid and Q is the internal heat source generation rate.

With reference to a Cartesian coordinate system denoted by Oxyz, the

geometry of the region R is symmetrical about the z-axis, that is, the bound-

ary of R can be obtained by rotating a curve on the Oxz plane by an angle of

360o about the z-axis. Furthermore, if r and θ denote the polar coodinates

defined by x = r cos θ and y = r sin θ, the temperature and the internal heat

source generation rate are assumed to be independent of θ, given by T (r, z, t)

and Q(r, z, t) respectively. The thermal conductivity is functionally graded

in the radial and axial directions of the solid of revolution and is taken to be

temperature dependent, such that

κ = g(r, z)h(T ), (2)

where g is a suitably given function which is positive in R and h(T ) is a

function which is integrable with respect to T. The density ρ and the specific

heat capacity c are also dependent on r, z and T.

3



Mathematically, the problem of interest here is to solve (1) together with

(2) subject to the initial-boundary conditions

T (r, z, 0) = f0(r, z) in R,

T (r, z, t) = f1(r, z, t) on S1 for t > 0,

g(r, z)h(T )
∂T

∂n
= f2(r, z, t) on S2 for t > 0, (3)

where S1 and S2 are non-intersecting surfaces such that S1 ∪ S2 = S, S is

the (surface) boundary of the region R, ∂T/∂n denotes the outward normal

derivative of T on S and f0(r, z), f1(r, z, t) and f2(r, z, t) are suitably given

functions.

3 Transformed equations

Through the use of the Kirchhoff’s transformation, that is,

Θ(r, z, t) =

Z
h(T )dT ≡ K(T ) (4)

the nonlinear governing partial differential equation defined by (1) and (2)

can be rewritten as

g∇2Θ = −Q−∇g • (∇Θ) + S(r, z,Θ)∂Θ
∂t
, (5)

where

S(r, z,Θ) =
ρ(r, z,M(Θ))c(r, z,M(Θ))

h(M(Θ))
, (6)

if one assumes that (4) can be inverted to give the temperature as T =

K−1(Θ) =M(Θ).

Furthermore, with the substitution

Θ =
1√
g
ψ, (7)

(5) becomes

∇2ψ = − Q√
g
+B(r, z)ψ +D(r, z,ψ)

∂ψ

∂t
, (8)
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where ∇2 is the Laplacian differential operator and

B(r, z) =
1p
g(r, z)

∇2(
p
g(r, z)), D(r, z,ψ) =

1

g
S(r, z,

1√
g
ψ). (9)

The function g is assumed to be such that ∇2(√g) exists in the solution
domain R.

As ψ is a function of r, z and t, equation (8) can be written out more

explicitly as

∂2ψ

∂r2
+
1

r

∂ψ

∂r
+

∂2ψ

∂z2
= −Q(r, z, t)p

g(r, z)
+B(r, z)ψ +D(r, z,ψ)

∂ψ

∂t
. (10)

Figure 1. A sketch of Ω and Γ.

For the problem under consideration here, as pointed out earlier on in

Section 2, the solution domain R and its boundary S can be obtained by

rotating respectively a two-dimensional region and a curve by an angle of

360o about the z-axis. On the rz plane, the two-dimensional region and the

curve are denoted by Ω and Γ respectively. Figure 1 gives a sketch of Ω

(shaded region) and Γ. In Figure 1, Γ is an open curve having endpoints

A and B on the z-axis. In general, Γ may also be a closed curve, as in,
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for example, the case in which R is the hollow cylindrical region defined by

u < r < v, 0 < z < w, where u, v and w are positive constants.

In view of (4) and (7), the initial-boundary conditions in (3) can be

rewritten on the rz plane as

ψ(r, z, 0) =
p
g(r, z)K(f0(r, z)) in Ω,

ψ(r, z, t) =
p
g(r, z)K(f1(r, z, t)) on Γ1 for t > 0,

∂

∂n
[ψ(r, z, t)] =

ψ(r, z, t)

2g(r, z)

∂

∂n
[g(r, z)] +

1p
g(r, z)

f2(r, z, t) on Γ2 for t > 0,

(11)

where Γ1 and Γ2 denote the curves that can be rotated by an angle of 360
o

about the z-axis to generate the surfaces S1 and S2 respectively, and

∂

∂n
[ψ(r, z, t)] = nr(r, z)

∂

∂r
[ψ(r, z, t)] + nz(r, z)

∂

∂z
[ψ(r, z, t)],

∂

∂n
[g(r, z)] = nr(r, z)

∂

∂r
[g(r, z)] + nz(r, z)

∂

∂z
[g(r, z)], (12)

where nr(r, z) and nz(r, z) are the components of the outward unit normal

vector on Γ at the point (r, z) in the r and z direction respectively.

Once ψ(r, z, t) (hence Θ(r, z, t)) is obtained by solving (10) in Ω subject

to the initial-boundary conditions in (11), the temperature T (r, z, t) may be

obtained by inverting the Kirchhoff’s transformation in (4).

4 Integro-differential formulation

An integro-differential equation in terms of integrals over Γ and Ω can be

derived from (10), that is,

γ(r0, z0)ψ(r0, z0, t)

=

ZZ
Ω

G0(r, z; r0, z0){−Q(r, z, t)p
g(r, z)

+B(r, z)ψ +D(r, z,ψ)
∂

∂t
[ψ(r, z, t)]}rdrdz

+

Z
Γ

(ψ(r, z, t)G1(r, z; r0, z0)−G0(r, z; r0, z0) ∂
∂n
[ψ(r, z, t)])rds(r, z)

for (r0, z0) ∈ Ω ∪ Γ, (13)
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where γ(r0, z0) = 1 if (r0, z0) lies in the interior of Ω, γ(r0, z0) = 1/2 if (r0, z0)

lies on a smooth part of Γ, ds(r, z) denotes the length of an infinitesimal part

of the curve Γ, and

G0(r, z; r0, z0) = − K(m(r, z; r0, z0))

π
p
a(r, z; r0, z0) + b(r; r0)

,

G1(r, z; r0, z0) = − 1

π
p
a(r, z; r0, z0) + b(r; r0)

× {nr(r, z)
2r

[
r20 − r2 + (z0 − z)2
a(r, z; r0, z0)− b(r; r0)E(m(r, z; r0, z0))

−K(m(r, z; r0, z0))]
+ nz(r, z)

z0 − z
a(r, z; r0, z0)− b(r; r0)E(m(r, z; r0, z0))},

m(r, z; r0, z0) =
2b(r; r0)

a(r, z; r0, z0) + b(r; r0)
,

a(r, z; r0, z0) = r
2
0 + r

2 + (z0 − z)2, b(r; r0) = 2rr0, (14)

where K and E denote the complete elliptic integral of the first and second

kind respectively. Note that 0 ≤ m(r, z; r0, z0) ≤ 1 and K and E are as

defined in Abramowitz and Stegun [1], that is,

K(m) =

π/2Z
0

dθp
1−m sin2 θ

, E(m) =

π/2Z
0

p
1−m sin2 θdθ. (15)

Some details on the derivation of (13) may be found in Brebbia, Telles

and Wrobel [6].

Note that the integro-differential equation (13) does not involve any par-

tial derivative of the unknown function with respect to the spatial coordinates

r and z in its domain integral. If the integro-differential equation is derived

directly by using (5) (instead of (10)) with Θ as an unknown function, the

integrand of the domain integral will contain first order partial derivatives

of Θ with respect to the spatial coordinates. The presence of those partial

derivatives may be regarded as a disadvantage in the numerical solution of

the integro-differential equation, as they have to be approximated in some

way. Thus, the integro-differential equation in (13) is preferred over the one

derived directly from (5) with unknown Θ.
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5 Dual-reciprocity boundary element method

A dual-reciprocity boundary element method based on the integro-differential

equation in (13) is described here for the approximate solution of the initial-

boundary value problem defined by (10) and (11).

5.1 Boundary approximations

The curve Γ in Figure 1 is discretized into N straight line elements denoted

by Γ(1), Γ(2), · · · , Γ(N−1) and Γ(N). The starting and ending points of a

typical element Γ(k) are given by (r(k), z(k)) and (r(k+1), z(k+1)) respectively.

Two points on the element Γ(k), denoted by (r
(k)
0 , z

(k)
0 ) and (r

(N+k)
0 , z

(N+k)
0 ),

are chosen as

(r
(k)
0 , z

(k)
0 ) = (r

(k), z(k)) + τ (r(k+1) − r(k), z(k+1) − z(k)),
(r
(N+k)
0 , z

(N+k)
0 ) = (r(k), z(k)) + (1− τ )(r(k+1) − r(k), z(k+1) − z(k)), (16)

where τ is a chosen number such that 0 < τ < 1/2.

If the function ψ at (r
(k)
0 , z

(k)
0 ) and (r

(N+k)
0 , z

(N+k)
0 ) is denoted by ψ(k)(t)

and ψ(N+k)(t) respectively, then the boundary temperature is approximated

using

ψ(r, z, t) ' [s(k)(r, z)− (1− τ )`(k)]ψ(k)(t)− [s(k)(r, z)− τ`(k)]ψ(N+k)(t)

(2τ − 1)`(k)
for (r, z) ∈ Γ(k), (17)

where `(k) = s(k)(r(k+1), z(k+1)) and s(k)(r, z) is the arc length along the ele-

ment Γ(k) as defined by

s(k)(r, z) =
q
(r − r(k))2 + (z − z(k))2. (18)

Similarly, q(r, z, t) = ∂ψ/∂n is approximated using

q(r, z, t) ' [s(k)(r, z)− (1− τ )`(k)]q(k)(t)− [s(k)(r, z)− τ`(k)]q(N+k)(t)

(2τ − 1)`(k)
for (r, z) ∈ Γ(k), (19)
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if q(k)(t) = q(r
(k)
0 , z

(k)
0 , t) and q

(N+k)(t) = q(r
(N+k)
0 , z

(N+k)
0 , t).

Note that the approximations in (17) and (19) which are also used in Ang

and Ooi [4] do not guarantee the continuity of ψ(r, z, t) and q(r, z, t) from

one element to the next. They give rise to what are known as discontinuous

linear elements in the literature (Paŕis and Cañas [15]).

With (17) and (19), the integro-differential equation (13) can be approx-

imately written as

γ(r0, z0)ψ(r0, z0, t)

=

ZZ
Ω

G0(r, z; r0, z0){−Q(r, z, t)p
g(r, z)

+B(r, z)ψ +D(r, z,ψ)
∂

∂t
[ψ(r, z, t)]}rdrdz

+
NX
k=1

1

(2τ − 1)`(k){[−(1− τ)`(k)F (k)2 (r0, z0) + F (k)
4 (r0, z0)]ψ

(k)(t)

+ [τ`(k)F (k)2 (r0, z0)−F (k)
4 (r0, z0)]ψ

(N+k)(t)

− [−(1− τ)`(k)F (k)1 (r0, z0) + F (k)3 (r0, z0)]q
(k)(t)

− [τ`(k)F (k)
1 (r0, z0)− F (k)3 (r0, z0)]q

(N+k)(t)}, (20)

where

F (k)1 (r0, z0) =

Z
Γ(k)

G0(r, z; r0, z0)rds(r, z),

F (k)2 (r0, z0) =

Z
Γ(k)

G1(r, z; r0, z0)rds(r, z),

F (k)3 (r0, z0) =

Z
Γ(k)

s(r, z)G0(r, z; r0, z0)rds(r, z), (21)

F (k)4 (r0, z0) =

Z
Γ(k)

s(r, z)G1(r, z; r0, z0)rds(r, z).

The integrals over Γ(k) in (21) can be evaluated using numerically such as a

highly accurate Gaussian quadrature.
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5.2 Treatment of the domain integral

To treat the integral over the domain Ω in (20) using the dual-reciprocity

method, L well-spaced out collocation points are chosen in the interior of the

domain Ω. These points are denoted by (r
(2N+1)
0 , z

(2N+1)
0 ), (r

(2N+2)
0 , z

(2N+2)
0 ),

· · · , (r(2N+L−1)0 , z
(2N+L−1)
0 ) and (r

(2N+L)
0 , z

(2N+L)
0 ). The points (r

(k)
0 , z

(k)
0 ) and

(r
(N+k)
0 , z

(N+k)
0 ) on the element Γ(k) (k = 1, 2, · · · , N), as defined in (16),

are also used as collocation points.

According to Wang, Mattheij and ter Morsche [19], if one makes the

approximation

−Q(r, z, t)p
g(r, z)

+B(r, z)ψ +D(r, z,ψ)
∂

∂t
[ψ(r, z, t)]

'
2N+LX
j=1

φ(j)(r, z)

2N+LX
k=1

W (kj){−Q(r
(k)
0 , z

(k)
0 , t)q

g(r
(k)
0 , z

(k)
0 )

+B(r
(k)
0 , z

(k)
0 )ψ

(k)(t)

+D(r
(k)
0 , z

(k)
0 ,ψ

(k)(t))
d

dt
[ψ(k)(t)]}, (22)

the domain integral may be approximately given byZZ
Ω

G0(r, z; r0, z0){−Q(r, z, t)p
g(r, z)

+B(r, z)ψ +D(r, z,ψ)
∂

∂t
[ψ(r, z, t)]}rdrdz

'
2N+LX
k=1

{−Q(r
(k)
0 , z

(k)
0 , t)q

g(r
(k)
0 , z

(k)
0 )

+B(r
(k)
0 , z

(k)
0 )ψ

(k)(t)

+D(r
(k)
0 , z

(k)
0 ,ψ

(k)(t))
d

dt
[ψ(k)(t)]}

2N+LX
j=1

W (kj)Ψ(j)(r0, z0), (23)

where ψ(k)(t) = ψ(r
(k)
0 , z

(k)
0 , t) for k = 1, 2, · · · , 2N+L, the coefficientsW (kj)

are defined implicitly by

2N+LX
j=1

W (kj)φ(p)(r
(j)
0 , z

(j)
0 ) =

½
0 if p 6= k
1 if p = k

for p, k = 1, 2, · · · , 2N + L,

(24)
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the functions Ψ(j)(r0, z0) are expressed in terms of line integrals over Γ as

Ψ(j)(r0, z0) = γ(r0, z0)χ
(j)(r0, z0) +

Z
Γ

rG0(r, z; r0, z0)
∂

∂n
[χ(j)(r, z)]ds(r, z)

−
Z
Γ

rχ(j)(r, z)G1(r, z; r0, z0)ds(r, z)

for j = 1, 2, · · · , 2N + L, (25)

the functions φ(p) and χ(p) may be constructed using

φ(p)(r, z) =

2πZ
0

ν(σ(r, θ, z; r
(p)
0 , z

(p)
0 ))dθ, χ(p)(r, z) =

2πZ
0

ω(σ(r, θ, z; r
(p)
0 , z

(p)
0 ))dθ,

(26)

the function σ(r, θ, z; r
(p)
0 , z

(p)
0 ) is defined by

σ(r, θ, z; r
(p)
0 , z

(p)
0 ) =

q
(r cos θ − r(p)0 )2 + r2 sin2 θ + (z − z(p)0 )2, (27)

and ν(σ(r, θ, z; r
(p)
0 , z

(p)
0 )) and ω(σ(r, θ, z; r

(p)
0 , z

(p)
0 )) are related to each other

by

∇2ω(σ(r, θ, z; r(p)0 , z(p)0 )) = ν(σ(r, θ, z; r(p)0 , z
(p)
0 )). (28)

InWang, Mattheij and ter Morsche [19], the functions ν(σ(r, θ, z; r
(p)
0 , z

(p)
0 ))

and ω(σ(r, θ, z; r
(p)
0 , z

(p)
0 )) are chosen to be

ν(σ(r, θ, z; r
(p)
0 , z

(p)
0 )) = σ(r, θ, z; r

(p)
0 , z

(p)
0 ),

ω(σ(r, θ, z; r
(p)
0 , z

(p)
0 )) =

1

12
[σ(r, θ, z; r

(p)
0 , z

(p)
0 )]

3. (29)

From (26) together with (15) and

2πZ
0

(1−m sin2(t))3/2dt = 1

3

⎧⎨⎩ 4(−1 +m)K(m) + 8(2−m)E(m)
if 0 ≤ m < 1,

8 if m = 1,
(30)
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the choice of ν(σ(r, θ, z; r
(p)
0 , z

(p)
0 )) and ω(σ(r, θ, z; r

(p)
0 , z

(p)
0 )) in (29) gives rise

to

φ(p)(r, z) = 4

q
a(r, z; r

(p)
0 , z

(p)
0 ) + b(r; r

(p)
0 )E(m(r, z; r

(p)
0 , z

(p)
0 )),

χ(p)(r, z) =
1

9
[a(r, z; r

(p)
0 , z

(p)
0 ) + b(r; r

(p)
0 )]

3/2

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(m(r, z; r

(p)
0 , z

(p)
0 )− 1)K(m(r, z; r(p)0 , z(p)0 )

+[4− 2m(r, z; r(p)0 , z(p)0 )]E(m(r, z; r(p)0 , z(p)0 ))
if 0 ≤ m(r, z; r

(p)
0 , z

(p)
0 ) < 1,

2 if m(r, z; r
(p)
0 , z

(p)
0 ) = 1.

(31)

The first order partial derivatives of the function χ(p)(r, z) in (31), as

required in the evaluation of the first line integral on the right hand side of

(25), can be obtained from (31) together with the results (see, for example,

Whittaker and Watson [20])

d

dm
(K(m)) =

1

2m
(
E(m)

1−m −K(m)),
d

dm
(E(m)) =

1

2m
(E(m)−K(m)).

(32)

The functions φ(p)(r, z) and χ(p)(r, z) are chosen to satisfy the partial

differential equation

∂2χ(p)

∂r2
+
1

r

∂χ(p)

∂r
+

∂2χ(p)

∂z2
= φ(p). (33)

The choice of φ(p)(r, z) and χ(p)(r, z) is not unique. As constructed by using

(26) and (28) together with (29), they are quite complicated in form, being

expressed in terms of special functions, such as given in (31) where elliptic

integrals are involved.

In earlier works on the axisymmetric dual-reciprocity boundary element

method, such as Patridge, Brebbia and Wrobel [14], the approach is to choose

χ(p)(r, z) as a simple function of the distance between the field point (r, z)

and the collocation point (r
(p)
0 , z

(p)
0 ) and determine the function φ

(p)(r, z) from

(33). For example, if χ(p)(r, z) is chosen as

χ(p)(r, z) =
1

9
[σ(r, 0, z; r

(p)
0 , z

(p)
0 )]

3, (34)
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where σ(r, 0, z; r
(p)
0 , z

(p)
0 ) is the distance between the points (r, z) and (r

(p)
0 , z

(p)
0 )

on the rz plane, that is,

σ(r, 0, z; r
(p)
0 , z

(p)
0 ) =

q
(r − r(p)0 )2 + (z − z(p)0 )2, (35)

then φ(p)(r, z) is given by

φ(p)(r, z) = [
4

3
− r

(p)
0

3r
]σ(r, 0, z; r

(p)
0 , z

(p)
0 ), (36)

Although the interpolating function φ(p)(r, z) constructed in this manner is

simple in form (compared to (31)), its magnitude tends to infinity as r →
0. Thus, if a certain part of the boundary of the domain Ω lies on the z

axis (where r = 0), the use of (36) may compromise the accuracy of the

approximation in (22).

Now if the function χ(p)(r, z) can be chosen in such a way that the second

term on the left hand side of (33) (that is, r−1∂χ(p)/∂r) tends to a finite
number as r tends to zero then φ(p)(r, z) which is bounded in Ω can be

constructed. To do this, a method which takes into consideration the virtual

mirror image of the collocation point (r
(p)
0 , z

(p)
0 ) about the z axis (that is, the

point (−r(p)0 , z(p)0 )) is proposed here. Specifically, we propose here to modify
χ(p)(r, z) in (34) to take the form

χ(p)(r, z) =
1

9
{[σ(r, 0, z; r(p)0 , z(p)0 )]3 + [σ(r, 0, z;−r(p)0 , z(p)0 )]3}. (37)

The function φ(p)(r, z) corresponding to χ(p)(r, z) in (37) is then given by

φ(p)(r, z) = [
4

3
− r

(p)
0

3r
]σ(r, 0, z; r

(p)
0 , z

(p)
0 ) + [

4

3
+
r
(p)
0

3r
]σ(r, 0, z;−r(p)0 , z(p)0 ).

(38)

One may easily check that the function φ(p)(r, z) in (38) tends to a finite

number as r→ 0.

Like (31), (38) gives φ(p)(r, z) which is not partially differentiable with

respect to r or z at (r
(p)
0 , z

(p)
0 ). The use of φ

(p)(r, z) given by either (31)

or (38) however does not pose any difficulty for the problem here. This is

because the left hand side of (22) does not contain any partial derivative of

13



the unknown function ψ with respect to r or z (hence the approximation of

the domain integral as outlined in (23) does not involve any partial derivative

of φ(p)(r, z)). If spatial derivatives of the unknown function are present in the

domain integral then interpolating functions which are partially differentiable

in Ω are needed in the dual-reciprocity method. It should be obvious now why

it is advantageous to use the substitution in (7) in formulating the problem.

5.3 Time-stepping and iterative procedure

Approximating ψ(k)(t) and its first order derivative by

ψ(k)(t) ' 1

2
[ψ(k)(t+

1

2
∆t) + ψ(k)(t− 1

2
∆t)],

d

dt
[ψ(k)(t)] ' ψ(k)(t+ 1

2
∆t)− ψ(k)(t− 1

2
∆t)

∆t
, (39)

and letting (r0, z0) in (20) be given in turn by (r
(1)
0 , z

(1)
0 ), (r

(2)
0 , z

(2)
0 ), · · · ,

(r
(2N+L−1)
0 , z

(2N+L−1)
0 ) and (r

(2N+L)
0 , z

(2N+L)
0 ), one finds that (20) and (23)

give

1

2
γ(r

(m)
0 , z

(m)
0 )[ψ(m)(t+

1

2
∆t) + ψ(m)(t− 1

2
∆t)]

=
2N+LX
k=1

{−Q(r
(k)
0 , z

(k)
0 , t)q

g(r
(k)
0 , z

(k)
0 )

+B(r
(k)
0 , z

(k)
0 )ψ

(k)(t)

+ F (k)(t)
ψ(k)(t+ 1

2
∆t)− ψ(k)(t− 1

2
∆t)

∆t
}μ(km)

+
NX
k=1

1

(2τ − 1)`(k){[−(1− τ)`(k)F (k)2 (r
(m)
0 , z

(m)
0 )

+ F (k)4 (r
(m)
0 , z

(m)
0 )]ψ(k)(t)

+ [τ`(k)F (k)
2 (r

(m)
0 , z

(m)
0 )− F (k)

4 (r
(m)
0 , z

(m)
0 )]ψ(N+k)(t)

− [−(1− τ)`(k)F (k)1 (r
(m)
0 , z

(m)
0 ) + F (k)3 (r

(m)
0 , z

(m)
0 )]q(k)(t)

− [τ`(k)F (k)
1 (r

(m)
0 , z

(m)
0 )− F (k)3 (r

(m)
0 , z

(m)
0 )]q(N+k)(t)}

for m = 1, 2, · · · , 2N + L, (40)

14



where

F (k)(t) = D(r
(k)
0 , z

(k)
0 ,ψ

(k)(t)), μ(km) =
2N+LX
j=1

W (kj)Ψ(j)(r
(m)
0 , z

(m)
0 ). (41)

Application of the boundary conditions on the second and third lines of

(11) into (40) yields

γ(r
(m)
0 , z

(m)
0 ){α

(m)

2
[ψ(m)(t+

1

2
∆t) + ψ(m)(t− 1

2
∆t)] + β(m)R(m)(t)}

=

2N+LX
k=1

{B(r(k)0 , z(k)0 )(
α(k)

2
[ψ(k)(t+

1

2
∆t) + ψ(k)(t− 1

2
∆t)] + β(k)R(k)(t))

+ F (k)(t)(α(k)
ψ(k)(t+ 1

2
∆t)− ψ(k)(t− 1

2
∆t)

∆t

+ β(k)
d

dt
[R(k)(t)])− Q(r

(k)
0 , z

(k)
0 , t)q

g(r
(k)
0 , z

(k)
0 )

}μ(km)

+
NX
k=1

1

(2τ − 1)`(k){[−(1− τ)`(k)F (k)2 (r
(m)
0 , z

(m)
0 ) + F (k)4 (r

(m)
0 , z

(m)
0 )

− α(k)Z(k)(t)(−(1− τ )`(k)F (k)1 (r
(m)
0 , z

(m)
0 ) + F (k)

3 (r
(m)
0 , z

(m)
0 ))]

× (α
(k)

2
[ψ(k)(t+

1

2
∆t) + ψ(k)(t− 1

2
∆t)] + β(k)R(k)(t))

+ [τ`(k)F (k)2 (r
(m)
0 , z

(m)
0 )−F (k)

4 (r
(m)
0 , z

(m)
0 )

− α(N+k)Z(N+k)(t)(τ`(k)F (k)1 (r
(m)
0 , z

(m)
0 )− F (k)3 (r

(m)
0 , z

(m)
0 ))]

× (α
(N+k)

2
[ψ(N+k)(t+

1

2
∆t) + ψ(N+k)(t− 1

2
∆t)] + β(N+k)R(N+k)(t))

− [−(1− τ )`(k)F (k)
1 (r

(m)
0 , z

(m)
0 ) + F (k)

3 (r
(m)
0 , z

(m)
0 )]

× [α(k)Y (k)(t) + β(k)q(k)(t)]

− [τ`(k)F (k)
1 (r

(m)
0 , z

(m)
0 )− F (k)3 (r

(m)
0 , z

(m)
0 )]

× [α(N+k)Y (N+k)(t) + β(N+k)q(N+k)(t)]}
for m = 1, 2, · · · , 2N + L, (42)

where R(m)(t), α(m), β(m), Y (p)(t) and Z(p)(t) for m = 1, 2, · · · , 2N +L and

15



p = 1, 2, · · · , N, N + 1, · · · , 2N − 1, 2N are defined by

R(m)(t) =

q
g(r

(m)
0 , z

(m)
0 )K(f1(r(m)0 , z

(m)
0 , t)),

α(m) =

⎧⎨⎩ 0 if (r
(m)
0 , z

(m)
0 ) lies on a boundary element

where ψ is specified,
1 otherwise,

β(m) = 1− α(m),

Y (p)(t) =
1q

g(r
(p)
0 , z

(p)
0 )
f2(r

(p)
0 , z

(p)
0 , t),

Z(p)(t) =
1

2g(r
(p)
0 , z

(p)
0 )
(nr(r, z)

∂

∂r
[g(r, z)]

+nz(r, z)
∂

∂z
[g(r, z)])

¯̄̄̄
(r,z)=(r

(p)
0 ,z

(p)
0 )

. (43)

Note that [nr(r
(p)
0 , z

(p)
0 ), nz(r

(p)
0 , z

(p)
0 )] gives the outward unit normal vector

to the boundary element which contains the collocation point (r
(p)
0 , z

(p)
0 ) .

Thus, [nr(r
(k)
0 , z

(k)
0 ), nz(r

(k)
0 , z

(k)
0 )] and [nr(r

(N+k)
0 , z

(N+k)
0 ), nz(r

(N+k)
0 , z

(N+k)
0 )]

both refer to the outward unit normal vector to the boundary element de-

noted by Γ(k). Also, note that f2(r
(p)
0 , z

(p)
0 , t) (hence Y

(p)(t)) is defined only

if (r
(p)
0 , z

(p)
0 ) is a collocation point on a boundary element where ψ is not

specified. (In (42), Y (p)(t) is always multipled to α(p). Hence, the calculation

of Y (p)(t) is needed only if (r(p)0 , z
(p)
0 ) is a collocation point on a boundary

element where ψ is not specified.)

If F (n)(t) and ψ(n)(t− 1
2
∆t) are assumed known for n = 1, 2, · · · , 2N +L

then (42) constitutes a system of 2N+L linear algebraic equations containing

2N + L unknowns. There are L unknowns at the interior collocation points

as given by ψ(p)(t+ 1
2
∆t) for p = 2N+1, 2N+2, · · · , 2N+L. The remaining

2N unknowns are given either by ψ(k)(t+ 1
2
∆t) and ψ(N+k)(t+ 1

2
∆t) (if ψ is

not specified on Γ(k)) or q(k)(t) and q(N+k)(t) (if ψ is specified on Γ(k)). The

unknowns can be determined numerically by repeating the steps below until

the numerical values of ψ at the selected points are obtained at the desired

time level.
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1. From the initial condition given in (11), compute the values of ψ(n)(0)

for n = 1, 2, · · · , 2N + L. Choose a small positive time-step ∆t. Set

the integer J = 0. Go to Step 2.

2. Estimate the values of F (n)((J + 1
2
)∆t) using the latest known values

of ψ(n)(J∆t), that is, F (n)((J + 1
2
)∆t) ' D(r(n)0 , z(n)0 ,ψ(n)(J∆t)). Go to

Step 3.

3. Using the latest known values of F (n)((J + 1
2
)∆t) and ψ(n)(J∆t), let

t = (J+ 1
2
)∆t in (42) to set up a system of linear algebraic equations and

solve for the unknowns. The unknowns are given by ψ(m)((J + 1)∆t)

for m = 2N+1, 2N+2, · · · , 2N+L, and either by ψ(k)((J+1)∆t) and
ψ(N+k)((J + 1)∆t) (if ψ is not specified on Γ(k)) or by q(k)((J + 1

2
)∆t)

and q(N+k)((J + 1
2
)∆t) (if ψ is specified on Γ(k)) for k = 1, 2, · · · ,N.

Go to Step 4.

4. Use the latest known values of ψ(n)((J+1)∆t) obtained in Step 3 above

to compute ψ(n)((J+ 1
2
)∆t) = 1

2
[ψ(n)((J+1)∆t)+ψ(n)(J∆t)] for n = 1,

2, · · · , 2N +L. Re-calculate F (n)((J + 1
2
)∆t) using F (n)((J + 1

2
)∆t) '

D(r
(n)
0 , z

(n)
0 ,ψ

(n)((J+ 1
2
)∆t)). Check whether the newly obtained values

of F (n)((J + 1
2
)∆t) agree with the previous values to within a speci-

fied number of significant figures. If the required convergence is not

achieved, go to Step 3. Otherwise, increase the current value of J by 1

and go to Step 2.

6 Specific problems

The dual-reciprocity boundary element procedure described in Section 5 is

applied here to solve some specific problems incuding one which involves the

laser heating of a cylindrical solid.

For treating the domain integral, the relatively simple interpolating func-

tion φ(p)(r, z) proposed in (38) is used in all the problems below. For Prob-

lems 1, 2 and 3 which have known exact solutions, we have also repeated all

the calculations using the more complicated interpolating function φ(p)(r, z)

in (31) and found that the two interpolating functions deliver numerical so-

lutions which are of comparable accuracy.
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Problem 1. Take the solution domain 1 < r < 2, 0 < z < 1 (a hollow

cylinder). The coefficients κ, ρ and c are given by κ = 1 + r2 and ρc = 1.

The function Q is given by

Q = −{21
2
r2 +

1

2
z2 + 6} exp(−1

2
t)− 4

r4
.

The initial-boundary conditions are taken to be

T (r, z, 0) =
1

r2
+ r2 + z2 for 1 < r < 2, 0 < z < 1,

T (r, 0, t) =
1

r2
+ r2 exp(−1

2
t) for 1 < r < 2 and t > 0,

T (r, 1, t) =
1

r2
+ (r2 + 1) exp(−1

2
t) for 1 < r < 2 and t > 0,

(1 + r2)
∂T

∂r

¯̄̄̄
r=1

= −4 + 4 exp(−1
2
t) for 0 < z < 1 and t > 0,

(1 + r2)
∂T

∂r

¯̄̄̄
r=2

= −5
4
+ 20 exp(−1

2
t) for 0 < z < 1 and t > 0.

For the problem here, the curve Γ in the integro-differential formulation

is a closed one which comprises the four sides of the square region 1 < r < 2,

0 < z < 1, on the rz plane. To apply the dual-reciprocity boundary element

method to solve the problem numerically, each of the sides is discretized

into N0 elements of equal length (so that N = 4N0) and the M
2 interior

collocation points are chosen to be given by (r, z) = (1+i/(M+1), j/(M+1))

for i = 1, 2, · · · , M and j = 1, 2, · · · , M.
The governing partial differential equation is linear and T is related to

ψ by ψ =
√
1 + r2T. Hence, for the problem here, at a given time level

t = (J + 1
2
)∆t, it is not necessary to iterate between Steps 3 and 4 (in the

procedure outlined in Section 5).

Two sets of numerical values are obtained for T. The first set (Set A) is

obtained by using N0 = 10, M = 3 and ∆t = 0.30, while the second set (Set

B) by N0 = 20, M = 15 and ∆t = 0.10. In both sets, the parameter τ in

the discontinuous linear elements is chosen to be 0.25. In Table 1, at selected

interior points and time t = 0.45, the numerical values of T in Sets A and B

are compared with the exact solution given by

T (r, z, t) =
1

r2
+ (r2 + z2) exp(−1

2
t).

18



Both sets of numerical values of T are reasonably accurate. The percentage

errors of the numerical values in Sets A and B are less than 0.25% and 0.09%

respectively. It is obvious that the numerical values of T converge to the

exact solution (that is, there is a significant improvement in the accuracy of

the numerical values) when the calculation is refined by reducing the sizes

of the boundary elements used, increasing the number of interior collocation

points and decreasing the time-step.

Table 1. Numerical and exact values of T at selected interior points and

time t = 0.45.

Point (r, z) Set A Set B Exact
(1.25, 0.25) 1.93380 1.93744 1.93759
(1.50, 0.25) 2.28949 2.29095 2.29101
(1.75, 0.25) 2.82081 2.82186 2.82189
(1.25, 0.50) 2.08189 2.08711 2.08731
(1.50, 0.50) 2.43835 2.44064 2.44073
(1.75, 0.50) 2.96997 2.97156 2.97162
(1.25, 0.75) 2.33285 2.33671 2.33685
(1.50, 0.75) 2.68863 2.69022 2.69027
(1.75, 0.75) 3.21999 3.22113 3.22115

Problem 2. The solution domain is taken to be 0 < r < 1, 0 < z < 1 (a

solid cylinder). The coefficients κ, ρ and c are given by κ = (1 + z)(1 + T )

and ρc = 1 and the function Q is given by

Q(r, z, t) =
(1 + z)2 − 2t− 4t2 − 2zt− 2zt2

(1 + z)3 (1 + t)2
.

The initial-boundary conditions are taken to be

T (r, z, 0) = 1 for 0 < r < 1, 0 < z < 1,

T (r, 0, t) =
1 + 2t

1 + t
for 0 < r < 1, t > 0,

T (r, 1, t) =
2 + 3t

2(1 + t)
for 0 < r < 1, t > 0,

(1 + z)(1 + T )
∂T

∂r

¯̄̄̄
r=1

= 0 for 0 < z < 1, t > 0.
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For the problem here, the curve Γ on the rz plane consists of three

straight line segments of unit length. To apply the dual-reciprocity bound-

ary element method to solve the problem numerically, each of these line

segments is discretized into N0 equal length boundary elements (so that

N = 3N0) and the M
2 interior collocation points are chosen to be given

by (r, z) = (i/(M +1), j/(M +1)) for i = 1, 2, · · · , M and j = 1, 2, · · · , M.
According to the Kirchoff’s transformation, the function ψ may be taken

to be related to T by ψ =
√
1 + z(T + 1

2
T 2). Here the governing partial

differential equation in ψ is nonlinear with the coefficient D(r, z,ψ) of ∂ψ/∂t

being given by

D(r, z,ψ) =
1

(1 + z)
q
1 + 2ψ/

√
1 + z

.

At a given time level t = (J+ 1
2
)∆t, Steps 3 and 4 (in the numerical procedure

outlined in Section 5) are iterated until the value of F (n)((J+ 1
2
)∆t) averaged

over all the collocation points does not change by more than 0.001% from

one iteration to the next. In the numerical results presented below, not more

than 10 iterations are required in the calculation.

Table 2. Numerical and exact values of T at (r, z) = (0.50, 0.50) and at

selected time levels.

Time t Set A Set B Exact
0.15 1.08398 1.08675 1.08696
0.45 1.20811 1.20683 1.20690
0.75 1.28491 1.28567 1.28571
1.05 1.34189 1.34145 1.34146
1.35 1.38269 1.38297 1.38298

As in Problem 1 above, two sets of numerical results are obtained for

T. Sets A and B are obtained by using (N0,M,∆t) = (10, 7, 0.30) and

(N0,M,∆t) = (20, 15, 0.10) respectively. In both sets, the parameter τ in

the discontinuous linear elements is set to 0.25. In Table 2, the numerical

20



values of T at the point (r, z) = (0.50, 0.50) are compared with the exact

solution of the problem at various time levels. The exact solution is given by

T (r, z, t) = 1 +
t

(1 + z)(1 + t)
.

As may be expected, the numerical values of T in Set B are found to be more

accurate than those in Set A. The percentage errors in the numerical values

in Sets A and B are less than 0.3% and 0.02% respectively.

Problem 3. Take the solution domain Ω on the rz plane to be the region

bounded by the lines r = z, r = 0 and z = 1. (Rotating Ω by an angle of 360o

about the z axis gives rise to R which is a conical region.) The coefficients

κ, ρ and c are given by κ = T and ρc = T. The function Q is given by

Q = (
1

2
− 2(r2 + z2)) exp(−(t+ r2 − z2)).

The initial-boundary conditions are taken to be

T (r, z, 0) = exp(−1
2
(r2 − z2)) for (r, z) in R,

T (r, z, t) = exp(− t
2
) on r = z for 0 < z < 1,

T
∂T

∂n
= T − exp(−1

2
(t+ r2 − 1)) + exp(−(t+ r2 − 1))

on z = 1 for 0 < r < 1 and t > 0.

For the problem under consideration here, with the transformation ψ =
1
2
T 2, the boundary condition involving the flux ∂T/∂n and temperature T

(that is, the so called Robin condition) can be rewritten as

∂ψ

∂n
=

p
2ψ − exp(−1

2
(t+ r2 − 1)) + exp(−(t+ r2 − 1))

on z = 1 for 0 < r < 1 and t > 0.

Unlike in (11), the above transformed boundary condition for the problem

here contains a nonlinear term. The nonlinear term in the boundary condi-

tion can be treated as explained below.
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Figure 2. A graphical comparison of numerical and exact temperature on

z = 1, 0 < r < 1, at time t = 0.95.

Figure 3. A graphical comparison of numerical and exact temperature at

point (r, z) = (0.40, 0.70) over the period 0 < t < 2.
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At a fixed time level t = (J+ 1
2
)∆t (J = 0, 1, 2, · · · ), the nonlinear term in

the transformed boundary condition is first approximated using the solution

ψ at t = J∆t. The solution ψ at t = (J + 1
2
)∆t can then be obtained approx-

imately by solving the linear algebraic equations in the boundary element

procedure as explained in Section 5. The approximation of the nonlinear

term in the boundary condition can be updated by using the just obtained

solution ψ at t = (J+ 1
2
)∆t and the boundary element procedure can be used

again to solve for ψ at t = (J + 1
2
)∆t. The process can be iterated until the

temperature at the collocation points converges to within a specified number

of significant figures.

To obtain some numerical results, the boundary Γ is discretized into 100

elements, the parameter τ in the discontinuous elements is taken to be 0.25,

36 well spaced points are selected as interior collocation points and the time-

step ∆t is chosen to be 0.10. Iteration on the nonlinear boundary condition is

stopped when the temperature does not change by more than 0.001% at all

the collocation points. Typically, not more than 10 iterations are required in

the calculation. As the temperature is not known a priori on the boundary

z = 1 (0 < r < 1), the numerical values of the boundary temperature there

at t = 0.95 are compared graphically with the exact temperature T (r, z, t) =

exp(−1
2
(t + r2 − z2)) in Figure 2. In Figure 3, the numerical and the exact

values of T at the point (r, z) = (0.40, 0.70) are plotted against time t for

0 < t < 2. The numerical and exact temperature agree well with each other.

The percentage errors of the numerical values in Figures 2 and 3 are less than

0.12% and 0.07% respectively.

Problem 4. Consider a cylindrical solid of radius a and height b. Specif-

ically, the cylindrical solid occupies the region 0 < r < a, 0 < z < b. It

is subject to laser heating on the surface z = 0. The laser heating may be

modeled by taking

Q(r, z, t) = φ(t)μ(1−R)I(r) exp(−μz),

where μ is the laser absorption coefficient, R is the Fresnel surface reflectance,

φ(t) is a given function controlling the laser heating and I(r) is the incident

irradiance at the center (0, 0) on the surface z = 0. Specifically, I(r) is chosen
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here to take the Gaussian form

I(r) = I0 exp(−2r
2

w2
),

where I0 is the peak irradiance and w is the radius of the laser beam. For some

details of problems involving laser heating of solids, refer to, for example,

Gutierrez and Jen [10] and Ooi, Ang and Ng [13].

The initial-boundary conditions are given by

T (r, z, 0) = T0 for (r, z) inside the solid,

κ
∂T

∂n
= 0 on r = a for t > 0,

κ
∂T

∂n
= hamb(Tamb − T ) on z = 0, 0 < r < a for t > 0,

κ
∂T

∂n
= 0 on z = b, 0 < r < a for t > 0,

where T0 is a given constant, hamb is the ambient convection coefficient and

Tamb is the ambient temperature.

As pointed out in [10], the high temperature gradient generated by the

laser heating may result in significant changes in the thermal properties of the

solid. The thermal conductivity κ and specific heat capacity c are modeled

to vary with temperature in accordance with

κ = κ0 + κ1(T − T0),
c = c0 + c1(T − T0) + c2(T − T0)2,

where κ0, κ1, c0, c1 and c2 are given constants.

For the purpose of obtaining some results, the material constants of poly-

methyl methacrylate (PMMA) are used here. They are given by ρ = 1180

kg/m3, κ0 = 0.19 W/(m K), κ1 = −0.19× 10−3 W/(m K2), c0 = 1500 J/(kg

K), c1 = 4.5 J/(kg K
2) and c2 = 0 J/(kg K

3) (Gutierrez and Jen [10]). The

laser absorption coefficient μ is 5.0 × 104 m−1. The other laser parameters
required in the heat generation term are taken to be (1 − R)I0 = 1.0 × 105
W/m2, w = 0.0003 m and φ(t) = 1 for t ≥ 0. The initial temperature T0, the
ambient temperature Tamb and the ambient convection coefficient hamb are

310 K, 300 K and 10 W/(m2 K) respectively. The dimensions of the PMMA
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cylinder are given by a = b = 1 mm. The calculation of the temperature is

carried using 60 elements on the curve Γ and 441 collocation points in the

interior of the solution domain. The time-step used is ∆t = 0.093 s.

Figure 4. Spatial temperature profiles for nonlinear and linear heat

conduction at selected time instants.
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The spatial temperature profiles over the solution domain 0 < r < 1 mm,

0 < z < 1 mm, at selected time instants t = 9.18 s, t = 27.81 s and t = 46.44

s are depicted by the plots in Figure 4 (under “nonlinear heat conduction”).

Figure 4 also shows the corresponding temperature profiles for linear heat

conduction (obtained by using κ1 = 0, c1 = 0 and c2 = 0). Due to continuous

laser heating, the temperature increases with time, as expected. According

to the linear theory of heat conduction, at time t = 46.44 s, the temperature

in the solid ranges from about 420 K (in most part) to a maximum of over

500 K (at the center of heating). At the same time instant, the temperature

given by the nonlinear theory is only around 440 K very close to the center of

heating and is below 400 K in most part of the solid. Thus, it appears that

linear theory predicts a quicker heating up of the solid than the nonlinear

one.

To investigate further the effects of the temperature-dependent terms

in the thermal conductivity and the specific heat capacity, we consider the

following cases:

Case I: c1 = 0, c2 = 0, κ1 = 0 (linear heat conduction).

Case II: c1 = 0, c2 = 0, κ1 = −0.19× 10−3 W/(m K2).

Case III: c1 = 4.5 J/(kg K
2), c2 = 0, κ1 = 0.

Case IV: c1 = 4.5 J/(kg K
2), c2 = 0, κ1 = −0.19× 10−3 W/(m K2).

All other parameters (such as ρ, c0, κ0. μ and T0) are as given before for

the PMMA solid. For all the four cases, the temperature at r = 0.045 mm

and selected time instants (t = 1.72 s, t = 9.17 s and t = 46.44 s) is plotted

against z (0 < z < 1 mm) in Figures 5, 6 and 7. At earlier time, such

as t = 1.72 s, the temperature in each of the cases is quite close to one

another. In Figures 5 and 6, the temperature in Case I is almost visually

indistinguishable from that in Case II. Similarly, at earlier time, there is only

a very small difference between the temperature in Case III and that in Case

IV. This is perhaps not surprising as the value of κ1 in Cases II and IV is

relatively small, close to zero. Nevertheless, as time evolves, the difference

in the temperature in each of the cases becomes more pronounced, as is

obvious in Figure 7 where the temperature plots for t = 46.44 s are given.

Each of the temperature-dependent terms in the thermal conductivity and
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the specific heat capacity in the PMMA cylindrical solid apparently has the

effect of slowing down the heating of the solid.

Figure 5. Plots of temperature at r = 0.045 mm and time t = 1.72 s

against z.

Figure 6. Plots of temperature at r = 0.045 mm and time t = 9.17 s

against z.
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Figure 7. Plots of temperature at r = 0.045 mm and time t = 46.44 s

against z.

7 Summary

The numerical solution of an axisymmetric heat conduction problem involv-

ing a nonhomogeneous solid with temperature-dependent properties is con-

sidered. Through the use of Kirchhoff’s transformation and an appropriate

substitution of variables, the problem is formulated in terms of a nonlinear

integro-differential equation. The integro-differential equation contains an

integral over a curve and a domain integral. The first order time derivative

of the temperature is present in the integrand of the domain integral. With

the time derivative of the temperature approximated by a finite-difference

formula, the line and domain integrals are treated using a dual-reciprocity

boundary element procedure. We have proposed a relatively simple interpo-

lating function for use in the dual-reciprocity approximation of the domain

integral. The integro-differential equation is eventually reduced to nonlinear

algebraic equations which are solved iteratively at consecutive time levels.

To assess the validity and accuracy of the proposed numerical procedure,

some problems which have known solutions are solved. The numerical results
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agree favorably with the known solutions, indicating that the dual-reciprocity

boundary element method together with the proposed interpolating function

can be used to provide reliable and accurate numerical solutions for the

nonlinear axisymmetric heat equation. Lastly, the method is applied to study

the effects of temperature-dependent material properties on the laser heating

of a cylindrical solid.
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