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1 Introduction

In recent years, many nonlinear problems in physical and engineering science

have been solved numerically using various boundary element approaches

(see, for example, Katsikadelis and Nerantzaki [1], Ang [2], Selvadurai [3],

Chen, Hsiao, Chiu et al [4] and Dehghan and Mirzaei [5]). One such problem

which is of considerable interest to many researchers deals with heat conduc-

tion in solids with temperature dependent thermal conductivity. In earlier

works on boundary element techniques for solving the nonlinear heat conduc-

tion problem, such as Kikuta, Togoh and Tanaka [6] and Goto and Suzuki

[7], the solids are assumed to be thermally isotropic with material properties

(density, specific heat capacity and thermal conductivity) which are func-

tions of temperature alone. Extensions to thermally anisotropic solids with

material properties that vary with temperature and spatial coordinates are

given by Clements and Budhi [8] and Azis and Clements [9].

In the present paper, we present a dual-reciprocity boundary element

method for the problem of calculating the temperature in a nonhomogeneous

anisotropic solid with density, specific heat capacity and thermal conductiv-

ity which are functions of temperature and spatial coordinates. Specifically,

the thermal conductivity coefficients are taken to be of the form considered

in Azis and Clements [9] (that is, as given in equation (2) in Section 2 below),

but here (unlike in [9]) we do not require the function describing the spatial

variation of the thermal conductivity (that is, g(x1, x2)) to satisfy a par-

ticular partial differential equation. In [9], the boundary element approach

in Goto and Suzuki [7], which approximates the domain integral arising in

the formulation by discretizing the solution domain into many small cells, is

exended to solve the governing nonlinear heat equation.

The boundary element approach presented here follows closely the works

in Ang, Clements and Vahdati [10] and Ang [11]. Firstly, guided by the anal-

yses in Azis and Clements [9] and Ang, Clements and Vahdati [10], we con-
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vert the governing nonlinear heat equation into a suitable integro-differential

equation. The integro-differential equation involves an unknown function

ψ(x1, x2, t) and its first order partial derivative with respect to time t. It

does not contain any partial derivative of ψ with respect to the spatial coor-

dinate xi and can be accurately solved for numerical values of ψ by modifying

the time-stepping dual-reciprocity boundary element procedure in Ang [11].

As in [11], ∂ψ/∂t is approximated in terms of a central difference formula,

the integral over the boundary of the solution domain is discretized using

discontinuous linear elements and the domain integral is approximated using

the dual-reciprocity method. No meshing of the solution domain is required.

The nonlinear term in the integrand of the integro-differential equation (that

is, the term containing ∂ψ/∂t multiplied to a given function of x1, x2 and

ψ) is treated using a predictor-corrector (iterative) approach similar to that

described in Ang and Ang [12].

The task of finding numerical values of ψ at chosen points at consecutive

time levels is eventually reduced to solving systems of linear algebraic equa-

tions. Once ψ is determined, the temperature can be recovered by solving

an algebraic equation which expresses ψ as a function of the temperature

and the spatial coordinates x1 and x2. To check its validity and to assess its

accuracy, the numerical procedure presented here is applied to solve some

specific problems with known solutions.

2 The problem

With reference to a Cartesian coordinate system Ox1x2x3, consider a ther-

mally nonhomogeneous anisotropic solid whose geometry does not vary along

the x3 axis. On the Ox1x2 plane, the body occupies the region R bounded

by a simple closed curve C.

The temperature in the body is assumed to be independent of x3. Ac-

cording to the classical theory of heat conduction, if there is no internal
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heat generation, the thermal behavior of the body is governed by the partial

differential equation

∂

∂xi
(kij

∂T

∂xj
) = ρc

∂T

∂t
, (1)

where kij are the thermal conductivity coefficients satisfying the symmetry

relation kij = kji and the strict inequality k
2
12 − k11k22 < 0, T (x1, x2, t)

is the temperature at the point (x1, x2) at time t ≥ 0 and ρ and c are

respectively the density and the specific heat capacity of the body. The

usual Einstenian convention of summing over a repeated index is assumed

here for Latin subscripts running from 1 to 2.

The thermal conductivity coefficients kij for the thermally nonhomoge-

neous anisotropic solid are taken to be of the form

kij = λijg(x1, x2)h(T ), (2)

where λij are given positive constants such that λij = λji and λ
2
12−λ11λ22 < 0,

g(x1, x2) is a given function such that g(x1, x2) is positive and is at least twice

partially differentiable with respect to x1 and/or x2 in R ∪ C and h(T ) is a
given function which is integrable with respect to T. In general, the density

ρ and the specific heat capacity c are suitably given functions which depend

on x1, x2 and T.

The problem of interest here is to find the temperature T (x1, x2, t) by

solving (1) together with (2) in R subject to to the initial-boundary condi-

tions

T (x1, x2, 0) = p(x1, x2) for (x1, x2) ∈ R,
T (x1, x2, t) = u(x1, x2, t) for (x1, x2) ∈ C1 and t > 0,

kijni
∂T

∂xj
= v(x1, x2, t) for (x1, x2) ∈ C2 and t > 0, (3)

where p, u and v are suitably prescribed functions, C1 and C2 are non-

intersecting curves such that C1 ∪ C2 = C and [n1(x1, x2), n2(x1, x2)] is the

unit normal outward vector to R at the point (x1, x2) on C.

4



3 Transformed equations

If we apply the Kirchhoff’s transformation

Θ(x1, x2, t) =

Z
h(T )dT ≡ K(T (x1, x2, t)) (4)

and assume that it can be inverted to give the temperature as T = M(Θ),

then equation (1) together with (2) can be rewritten as

λij
∂

∂xi
(g(x1, x2)

∂Θ

∂xj
) = S(x1, x2,Θ)

∂Θ

∂t
, (5)

where

S(x1, x2,Θ) =
ρ(x1, x2,M(Θ))c(x1, x2,M(Θ))

h(M(Θ))
. (6)

Furthermore, if we let

Θ(x1, x2, t) =
1p

g(x1, x2)
ψ(x1, x2, t), (7)

we find that (5) can be re-written as

λij
∂2ψ

∂xi∂xj
= B(x1, x2)ψ +D(x1, x2,ψ)

∂ψ

∂t
, (8)

where

B(x1, x2) =
1p

g(x1, x2)
λij

∂2

∂xi∂xj
[
p
g(x1, x2)],

D(x1, x2,ψ) =
1

g(x1, x2)
S(x1, x2,

1p
g(x1, x2)

ψ). (9)

The initial-boundary conditions in (3) can be rewritten as

ψ(x1, x2, 0) =
p
g(x1, x2)K(p(x1, x2)) for (x1, x2) ∈ R,

ψ(x1, x2, t) =
p
g(x1, x2)K(u(x1, x2, t))

for (x1, x2) ∈ C1 and t > 0,

q(x1, x2, t) = f(x1, x2, t)ψ(x1, x2, t) +
1p

g(x1, x2)
v(x1, x2, t)

for (x1, x2) ∈ C2 and t > 0, (10)
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where

f(x1, x2) =
1

2

1

g(x1, x2)
niλij

∂g

∂xj

q(x1, x2, t) = niλij
∂ψ

∂xj
. (11)

Following closely the approach in Ang, Clements and Vahdati [10] and

Ang [11], we recast (8) into an integro-differential equation given by

γ(ξ1, ξ2)ψ(ξ1, ξ2, t)

=

ZZ
R

Φ(x1, x2, ξ1, ξ2)[B(x1, x2)ψ(x1, x2, t)

+D(x1, x2,ψ(x1, x2, t))
∂

∂t
{ψ(x1, x2, t)}]dx1dx2

+

I
C

[Γ(x1, x2, ξ1, ξ2)ψ(x1, x2, t)−Φ(x1, x2, ξ1, ξ2)q(x1, x2, t)]ds(x1, x2),

(12)

where γ(ξ1, ξ2) = 0 if (ξ1, ξ2) /∈ R ∪ C, γ(ξ1, ξ2) = 1 if (ξ1, ξ2) ∈ R, 0 <
γ(ξ1, ξ2) < 1 if (ξ1, ξ2) ∈ C [γ(ξ1, ξ2) = 1/2 if (ξ1, ξ2) lies on a smooth part
of C and

Φ(x1, x2, ξ1, ξ2) =
1

2π
p

λ11λ22 − λ212
Re{ln(x1 − ξ1 + τ [x2 − ξ2])},

Γ(x1, x2, ξ1, ξ2) =
1

2π
p

λ11λ22 − λ212
Re

½
L(x1, x2)

(x1 − ξ1 + τ [x2 − ξ2])

¾
,

L(x1, x2) = (λ11 + τλ12)n1(x1, x2) + (λ21 + τλ22)n2(x1, x2),

τ =
−λ12 + i

p
λ11λ22 − λ212
λ22

(i =
√
−1). (13)

Note that Re denotes the real part of a complex number.

Section 4 describes a dual-reciprocity boundary element approach for find-

ing ψ(x1, x2, t) numerically from (12) together with (10). Once ψ(x1, x2, t) is

determined, the temperature T (x1, x2, t) may be obtained by inverting the

Kirchhoff’s transformation in (4).
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4 Dual-reciprocity boundary element method

For the dual-reciprocity boundary element method, we discretize the curve C1

into N1 straight line elements denoted by C
(1), C(2), · · · , C(N1−1) and C(N1)

and C2 into C
(N1+1), C(N1+2), · · · , C(N1+N2−1) and C(N1+N2). Note that C1

and C2 are parts of the boundary C (refer to the boundary conditions in (3) or

(10)). Thus, the total number of boundary elements is given by N = N1+N2.

The element C(m) (m = 1, 2, · · · , N) has length `(m) and its starting and
ending points are given by (a

(m)
1 , a

(m)
2 ) and (b

(m)
1 , b

(m)
2 ) respectively.

For an accurate approximation, ψ and q in (12) on the boundary are

approximated using discontinuous linear boundary elements as outlined in

Paŕis and Cañas [13]. For the discontinuous linear boundary elements, two

points (η
(m)
1 , η

(m)
2 ) and (η

(N+m)
1 , η

(N+m)
2 ) on C(m) are chosen as given by

η
(m)
i = a

(m)
i + r(b

(m)
i − a(m)i )

η
(N+m)
i = b

(m)
i − r(b(m)i − a(m)i )

)
for a given r ∈ (0, 1

2
). (14)

Note that r is a selected constant between 0 and 1/2. It may typically be

chosen to be 1/4.

If ψ is given by ψ(m)(t) and ψ(N+m)(t) at (η
(m)
1 , η

(m)
2 ) and (η

(N+m)
1 , η

(N+m)
2 )

respectively then we make the approximation:

ψ(x1, x2, t) '[1− d(m)(x1, x2)]ψ(m)(t)
+ d(m)(x1, x2)ψ

(N+m)(t) for (x1, x2) ∈ C(m), (15)

where

d(m)(x1, x2) =

q
(x1 − a(m)1 )2 + (x2 − a(m)2 )2 − r`(m)

(1− 2r)`(m) . (16)

Similarly, for q, if it is given by q(m)(t) and q(N+m)(t) at (η
(m)
1 , η

(m)
2 ) and

(η
(N+m)
1 , η

(N+m)
2 ) respectively, then

q(x1, x2, t) ' [1− d(m)(x1, x2)]q(m)(t)
+ d(m)(x1, x2)q

(N+m)(t) for (x1, x2) ∈ C(m). (17)
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With (15) and (17), the integro-differential equation in (12) can be ap-

proximately written as

γ(ξ1, ξ2)ψ(ξ1, ξ2, t)

=

ZZ
R

Φ(x1, x2, ξ1, ξ2)[B(x1, x2)ψ(x1, x2, t)

+D(x1, x2,ψ(x1, x2, t))
∂

∂t
{ψ(x1, x2, t)}]dx1dx2

+
NX
m=1

n
ψ(m)(t)Ω

(m)
1 (ξ1, ξ2) + ψ(N+m)(t)Ω

(m)
2 (ξ1, ξ2)

o
−

NX
m=1

n
q(m)(t)Ω

(m)
3 (ξ1, ξ2) + q

(N+m)(t)Ω
(m)
4 (ξ1, ξ2)

o
, (18)

where

Ω
(m)
1 (ξ1, ξ2) =

Z
C(m)

[1− d(m)(x1, x2)]Γ(x1, x2, ξ1, ξ2)ds(x1, x2),

Ω
(m)
2 (ξ1, ξ2) =

Z
C(m)

d(m)(x1, x2)Γ(x1, x2, ξ1, ξ2)ds(x1, x2),

Ω
(m)
3 (ξ1, ξ2) =

Z
C(m)

[1− d(m)(x1, x2)]Φ(x1, x2, ξ1, ξ2)ds(x1, x2),

Ω
(m)
4 (ξ1, ξ2) =

Z
C(m)

d(m)(x1, x2)Φ(x1, x2, ξ1, ξ2)ds(x1, x2). (19)

Exact formulae for calculating the line integrals over C(m) in (19) are given

in Ang [11].

To treat the domain integral in (18) using the dual-reciprocity method, we

select P well spaced out points in the interior of the domain R. These interior

points are denoted by (η
(2N+1)
1 , η

(2N+1)
2 ), (η

(2N+2)
1 , η

(2N+2)
2 ), · · · , (η(2N+P−1)1 ,

η
(2N+P−1)
2 ) and (η

(2N+P )
1 , η

(2N+P )
2 ).We define ψ(2N+j)(t) = ψ(η

(2N+1)
1 , η

(2N+1)
2 , t)

for j = 1, 2, · · · , P. Following the procedure detailed in Ang, Clements and
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Vahdati [10] and Ang [11], we then approximate the domain integral usingZZ
R

Φ(x1, x2, ξ1, ξ2)[B(x1, x2)ψ(x1, x2, t)

+D(x1, x2,ψ(x1, x2, t))
∂

∂t
{ψ(x1, x2, t)}]dx1dx2

'
2N+PX
k=1

[B(η
(k)
1 , η

(k)
2 )ψ

(k)(t)

+D(η
(k)
1 , η

(k)
2 ,ψ

(k)(t))
d

dt
{ψ(k)(t)}]

2N+PX
j=1

χ(kj)Ψ(j)(ξ1, ξ2), (20)

where

2N+PX
k=1

σ(j)(η
(k)
1 , η

(k)
2 )χ

(km) =

½
1 if j = m
0 if j 6= m

for j,m = 1, 2, · · · , 2N + P,

σ(j)(x1, x2) = 1 +
³
[x1 − η

(j)
1 +Re{τ}{x2 − η

(j)
2 }]2 + [Im{τ}{x2 − η

(j)
2 }]2

´
+
³
[x1 − η

(j)
1 +Re{τ}{x2 − η

(j)
2 }]2 + [Im{τ}{x2 − η

(j)
2 }]2

´3/2
for j = 1, 2, · · · , 2N + P,

Ψ(j)(ξ1, ξ2)

= γ(ξ1, ξ2)θ
(j)(ξ1, ξ2)−

Z
C

Φ(x1, x2, ξ1, ξ2)β
(j)(x1, x2)ds(x1, x2)

−
Z
C

θ(j)(x1, x2)Γ(x1, x2, ξ1, ξ2)ds(x1, x2)

for j = 1, 2, · · · , 2N + P,
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µ
λ11λ22 − λ212

λ22

¶
θ(j)(x1, x2)

=
1

4

³
[x1 − η

(j)
1 +Re{τ}{x2 − η

(j)
2 }]2 + [Im{τ}{x2 − η

(j)
2 }]2

´
+
1

16

³
[x1 − η

(j)
1 +Re{τ}{x2 − η

(j)
2 }]2 + [Im{τ}{x2 − η

(j)
2 }]2

´2
+
1

25

³
[x1 − η

(j)
1 +Re{τ}{x2 − η

(j)
2 }]2 + [Im{τ}{x2 − η

(j)
2 }]2

´5/2
,

β(j)(x1, x2) = −
2X
i=1

2X
k=1

λikni(x1, x2)
∂θ(j)

∂xk
. (21)

Note that σ(j)(x1, x2) are the radial basis functions used in Ang, Clements

and Vahdati [10] for anisotropic media. For λij = δij (Kronecker-delta),

we find that τ = i and σ(j)(x1, x2) given above reduces to give the local

interpolating functions suggested by Zhang and Zhu [14].

The functions Ψ(j)(ξ1, ξ2) in (21) are expressed in terms of line integrals

over the boundary C and can easily be computed approximately using

Ψ(j)(ξ1, ξ2) ' γ(ξ1, ξ2)θ
(j)(ξ1, ξ2)

−
NX
m=1

{β(j)(η(m)1 , η(m)2 )Ω(m)3 (ξ1, ξ2)

− β(j)(η
(N+m)
1 , η

(N+m)
2 )Ω

(m)
4 (ξ1, ξ2)

− θ(j)(η
(m)
1 , η

(m)
2 )Ω

(m)
1 (ξ1, ξ2)

− θ(j)(η
(N+m)
1 , η

(N+m)
2 )Ω

(m)
2 (ξ1, ξ2)}. (22)

No discretization of the solution domain into elements is therefore needed in

computing the domain integral in (18).

If we make the approximation

ψ(k)(t) ' 1

2
[ψ(k)(t+

1

2
∆t) + ψ(k)(t− 1

2
∆t)],

d

dt
[ψ(k)(t)] '

ψ(k)(t+ 1
2
∆t)− ψ(k)(t− 1

2
∆t)

∆t
, (23)
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let (ξ1, ξ2) in (18) be given in turn by (η
(p)
1 , η

(p)
2 ) for p = 1, 2, · · · , 2N + P,

and use the boundary conditions in (10), we obtain

(
1

2
α(p)[ψ(p)(t+

1

2
∆t) + ψ(p)(t− 1

2
∆t)] + (1− α(p))R(η

(p)
1 , η

(p)
2 , t))γ(η

(p)
1 , η

(p)
2 )

=
2N+PX
k=1

[
1

2
B(η(k)1 , η

(k)
2 ){ψ(k)(t+

1

2
∆t) + ψ(k)(t− 1

2
∆t)}

+
1

∆t
E(k)(t){ψ(k)(t+ 1

2
∆t)− ψ(k)(t− 1

2
∆t)}]α(k)μ(kp)

+
2NX
k=1

(1− α(k))μ(kp)(B(η
(k)
1 , η

(k)
2 )R(η

(k)
1 , η

(k)
2 , t) + E

(k)(t)
d

dt
{R(η(k)1 , η

(k)
2 , t)})

+
N1X
m=1

{Ω(m)1 (η
(p)
1 , η

(p)
2 )R(η

(m)
1 , η

(m)
2 , t) + Ω

(m)
2 (η

(p)
1 , η

(p)
2 )R(η

(N+m)
1 , η

(N+m)
2 , t)}

+
NX

m=N1+1

{1
2
(Ω

(m)
1 (η

(p)
1 , η

(p)
2 )− Ω

(m)
3 (η

(p)
1 , η

(p)
2 )f(η

(m)
1 , η

(m)
2 ))

× [ψ(m)(t+ 1
2
∆t) + ψ(m)(t− 1

2
∆t)]

+
1

2
(Ω

(m)
2 (η

(p)
1 , η

(p)
2 )− Ω

(m)
4 (η

(p)
1 , η

(p)
2 )f(η

(N+m)
1 , η

(N+m)
2 ))

× [ψ(N+m)(t+ 1
2
∆t) + ψ(N+m)(t− 1

2
∆t)]}

−
N1X
m=1

{q(m)(t)Ω(m)3 (η
(p)
1 , η

(p)
2 ) + q

(N+m)(t)Ω
(m)
4 (η

(p)
1 , η

(p)
2 )}

−
NX

m=N1+1

{Ω(m)3 (η
(p)
1 , η

(p)
2 )

1q
g(η

(m)
1 , η

(m)
2 )

v(η
(m)
1 , η

(m)
2 , t)]

+ Ω
(m)
4 (η(p)1 , η

(p)
2 )

1q
g(η

(N+m)
1 , η

(N+m)
2 )

v(η
(N+m)
1 , η(N+m)2 , t)}

for p = 1, 2, · · · , 2N + P, (24)

11



where

E(k)(t) = D(η
(k)
1 , η

(k)
2 ,ψ

(k)(t)),

μ(kp) =
2N+PX
j=1

χ(kj)Ψ(j)(η
(p)
1 , η

(p)
2 ),

α(k) =

½
0 for 1 ≤ k ≤ N1 or N + 1 ≤ k ≤ N +N1,
1 otherwise,

R(η1, η2, t) =
p
g(η1, η2)K(u(η1, η2, t)). (25)

If E(n)(t) and ψ(n)(t− 1
2
∆t) are assumed known for n = 1, 2, · · · , 2N+P

then (24) constitutes a system of 2N+P linear algebraic equations containing

2N + P unknowns given by q(m)(t) and q(N+m)(t) for m = 1, 2, · · · , N1,
ψ(m)(t+ 1

2
∆t) and ψ(N+m)(t+ 1

2
∆t) for m = N1+1, N1+2, · · · , N1+N2, and

ψ(p)(t+ 1
2
∆t) for p = 2N+1, 2N+2, · · · , 2N+P. (Note that N1+N2 = N.)

The unknowns can be determined numerically by repeating the steps below

until the numerical values of ψ at the selected points are obtained at the

desired time level.

1. From the initial condition given in (10), compute the values of ψ(n)(0)

for n = 1, 2, · · · , 2N + P . Choose a small positive time-step ∆t. Set

the integer J = 0. Go to Step 2.

2. Estimate the values of E(n)(J∆t) using the latest known values of

ψ(n)(J∆t), that is, E(n)(J∆t) ' D(η
(n)
1 , η

(n)
2 ,ψ

(n)(J∆t)). Go to Step

3.

3. Using the latest known values of E(n)(J∆t) and ψ(n)(J∆t), let t =

(J + 1
2
)∆t in (24) to set up a system of linear algebraic equations

and solve for the unknowns q(m)((J + 1
2
)∆t) and q(N+m)((J + 1

2
)∆t) for

m = 1, 2, · · · , N1, ψ(j)((J+1)∆t) and ψ(N+j)((J+1)∆t) for j = N1+1,

12



N1+2, · · · , N1+N2, and ψ(p)((J +1)∆t) for p = 2N +1, 2N +2, · · · ,
2N + P. Go to Step 4.

4. Use the latest known values of ψ(n)((J + 1)∆t) obtained in Step 3

above to compute ψ(n)((J + 1
2
)∆t) = 1

2
[ψ(n)((J + 1)∆t) + ψ(n)(J∆t)]

for n = 1, 2, · · · , 2N + P . Re-calculate E(n)(J∆t) using E(n)(J∆t) '
D(η

(n)
1 , η

(n)
2 ,ψ

(n)((J+ 1
2
)∆t)). Check whether the newly obtained values

of E(n)(J∆t) agree with the previous values to within a specified num-

ber of significant figures. If the required convergence is not achieved,

go to Step 3. Otherwise, increase the current value of J by 1 and go to

Step 2.

5 Specific numerical examples

To assess the validity and accuracy of the dual-reciprocity boundary element

procedure outlined above, it is applied to solve some specific problems here.

Problem 1. The thermal conductivity, density and specific heat capacity

of the material are taken to be given by kij = δij(1+T ), ρ = 1 and c = 1+
1
2
T

respectively. Note that δij is the Kronecker-delta. The solution domain R is

taken to be rectangular in shape, defined by 0 < x1 < 1, 0 < x2 < 1/5. Refer

to Figure 1. The initial-boundary conditions are given by

T (x1, x2, 0) = 0 for (x1, x2) ∈ R,

T (0, x2, t) = 1 for 0 < x2 <
1

5
and t > 0,

T (1, x2, t) = 0 for 0 < x2 <
1

5
and t > 0,

kijni
∂T

∂xj

¯̄̄̄
x2=0

= 0 for 0 < x1 < 1 and t > 0,

kijni
∂T

∂xj

¯̄̄̄
x2=1/5

= 0 for 0 < x1 < 1 and t > 0.

13



Figure 1. A sketch of the solution domain for Problem 1.

For this specific problem, λij = δij, h(T ) = 1+T and g(x1, x2) = 1. Hence,

from (4) and (7), we may write ψ/
√
g = T + 1

2
T 2. Solving for T and taking

the positive square root of the determinant yields T = −1 +
p
2ψ/
√
g + 1.

It follows that the partial differential equation to solve is given by

∂2ψ

∂xi∂xi
=
1 +

q¡
2ψ/
√
g + 1

¢
2
q¡
2ψ/
√
g + 1

¢ ∂ψ

∂t
,

and the initial-boundary conditions are

ψ(x1, x2, 0) = 0 for (x1, x2) ∈ R,

ψ(0, x2, t) =
3

2
for 0 < x2 <

1

5
and t > 0,

ψ(1, x2, t) = 0 for 0 < x2 <
1

5
and t > 0,

q(x1, 0, t) = 0 for 0 < x1 < 1 and t > 0,

q(x1,
1

5
, t) = 0 for 0 < x1 < 1 and t > 0.

The sides of the rectangular domain are discretized into N equal length

boundary elements. The interior collocation points are given by (m/(M1 +

1), n/[5(M2+1)]) form = 1, 2, · · · ,M1 and n = 1, 2, · · · ,M2. The parameter

r in (14) is chosen to be 1/4 and the time-step ∆t by 1/(J0 +
1
2
), where J0
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is a selected positive integer. The time-stepping dual-reciprocity boundary

element method (DRBEM) is applied to compute ψ(x1, x2, t) numerically.

Specifically, in following the steps outlined in Section 4, we take J = 0, 1,

2, · · · , J0 (consecutively) to compute numerically the values of ψ at the

chosen collocation points at consecutive time levels until we obtain ψ(n)(1) =
1
2
[ψ(n)((J0 + 1)/(J0 +

1
2
)) +ψ(n)(J0/(J0 +

1
2
))] for n = 1, 2, · · · , 2N +M1M2.

For each value of J , that is, at each time level, the final numerical values

of ψ(n)((J + 1
2
)/(J0 +

1
2
)) are obtained after iterating 3 times to and fro the

last two steps in Section 4. The numerical values of ψ(n)(1) obtained using

N = 96 (each element of length 0. 125 units), M1 = 9, M2 = 7 (63 interior

collocation points) and J0 = 10 (∆t = 2/21 ' 0.0952) are used to compute
the temperature at the collocation points (0.20, 0.10), (0.40, 0.10), (0.60, 0.10)

and (0.80, 0.10) at time t = 1. The numerical values of the temperature are

compared with those given in Azis and Clements [9] and Goto and Suzuki

[7] in Table 1. (In references [7] and [9], the temperature is calculated using

a different boundary element approach.) The three sets of numerical values

appear to be reasonably close to one another, but our results here seem to

be closer to those given by Goto and Suzuki [7] than Azis and Clements [9].

Table 1. Numerical values of T at time t = 1 at selected interior points.

(x1, x2) Azis and Clements Goto and Suzuki Present DRBEM
(0.20, 0.10) 0.8398 0.8439 0.8448
(0.40, 0.10) 0.6664 0.6733 0.6738
(0.60, 0.10) 0.4754 0.4832 0.4826
(0.80, 0.10) 0.2589 0.2649 0.2649

Problem 2. In a particular problem considered in Azis and Clements [9],

the thermal conductivity, density and specific heat capacity are taken to be

such that

[kij ] = (1 +
1

10
x1)

2

∙
3 1
1 4

¸
and ρc =

9

2T
(1 +

1

10
x1).

15



Here λ11 = 3, λ12 = λ21 = 1, λ22 = 4, g(x1, x2) = (1 +
1
10
x1)

2 and h(T ) = 1.

With kij and ρc as given above, it may be verified that a particular

solution of (1) is given by

T (x1, x2, t) =
1− 1

4
(x1 + x2)

2

(1 + t)(1 + 1
10
x1)
.

Proceeding as in Azis and Clements [9], we use the above particular solution

to generate boundary data for T and kijni∂T/∂xj respectively on the hori-

zontal and vertical sides of the square domain 0 < x1 < 1, 0 < x2 < 1. The

solution is also used to generate initial data for T at t = 0.

For this particular problem, ψ(x1, x2, t) = (1+
1
10
x1)T (x1, x2, t).We apply

the DRBEM to solve for ψ in the square domain subject to the generated

initial-boundary data. The boundary of the square domain is divided into

N elements of equal length and the interior collocation points are chosen as

(m/(M + 1), n/(M + 1)) for m = 1, 2, · · · ,M and n = 1, 2, · · · ,M. As in
the first problem above, we take the parameter r in (14) to be 1/4.

Two sets of numerical values of T at the point (0.50, 0.50) at selected

time instants are compared with the exact solution in Table 2. Set A is

obtained by using (N,M) = (60, 7) (49 interior collocation points) and ∆t =

0.20, while Set B by (N,M) = (160, 15) (225 interior collocation points)

and ∆t = 2/30 ' 0.06667. At a given time level, both sets of numerical

values are obtained after iterating 5 times to and fro the last two steps in

Section 4. Set B gives more accurate numerical values of T than Set A, that

is, the numerical solution shows convergence towards the exact one when

the DRBEM calculation is refined. Numerical values of T obtained by Azis

and Clements [9] by using a very small time-step of 0.001, discretizing the

boundary into 160 boundary elements and subdividing the solution domain

into 1600 cells (for treating the domain integral in their formulation) are also

shown in Table 2 for t = 0.10, 0.30 and 0.50. (No numerical value of T is

given in [9] for t = 0.70 and t = 0.90.) Even though a relatively large time-
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step is used here in Set A, the numerical values obtained appear to be quite

comparable in accuracy with those of [9].

Table 2. Numerical and exact values of T at (0.50, 0.50) at selected time instants

.

Time t Set A Set B
Azis and
Clements

Exact

0.10 0.65327 0.64973 0.64907 0.64935
0.30 0.54941 0.54946 0.54914 0.54945
0.50 0.47550 0.47614 0.47587 0.47619
0.70 0.41969 0.42010 − 0.42017
0.90 0.37542 0.37585 − 0.37594

Problem 3. In the two particular problems above, the spatial function g

in (2) is such that the coefficient B in the partial differential equation in (8)

is zero. For a problem in which B does not vanish in the solution domain,

here we take

[kij ] = T exp(x1)

∙
1 1
1 3

¸
and ρc = T exp(x1),

so that λ11 = 1, λ12 = λ21 = 1, λ22 = 3, g(x1, x2) = exp(x1) and h(T ) = T.

The solution domain is as in Problem 1 (Figure 1), that is, 0 < x1 < 1,

0 < x2 < 1/5. The initial-boundary conditions are taken to be

T (x1, x2, 0) = exp(−1
4
x1) for (x1, x2) ∈ R,

T (0, x2, t) = exp(−1
8
t) for 0 < x2 <

1

5
and t > 0,

T (1, x2, t) = exp(−1
8
t− 1

4
) for 0 < x2 <

1

5
and t > 0,

kijni
∂T

∂xj

¯̄̄̄
x2=0

= 0 for 0 < x1 < 1 and t > 0,

kijni
∂T

∂xj

¯̄̄̄
x2=1/5

= 0 for 0 < x1 < 1 and t > 0.

To apply the DRBEM to solve for ψ = 1
2
exp(1

2
x1)T

2, we discretize the

sides of the rectangular region into 180 equal length boundary elements,
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employ 105 evenly spaced out collocation points in the interior of the solution

domain and choose r in (14) and ∆t to be 1/4 and 2/41 respectively.

Figure 2. A graphical comparison of the numerical and exact T .

In Figure 2, over the time interval 0 ≤ t ≤ 3, we make a graphical com-
parison of the numerical values of T (0.50, 0.10, t) with the exact solution

given by T = exp(−1
8
t− 1

4
x1). The two graphs are in reasonably good agree-

ment with each other. The percentage errors for all the numerical values of

T (0.50, 0.10, t) over 0 ≤ t ≤ 3 are less than 0.8%.

6 Conclusion

The task of solving a class of two-dimensional initial-boundary value prob-

lems governed by a generalized nonlinear heat equation for nonhomogeneous

anisotropic media is considered. With the aid of the Kirchhoff’s transfor-

mation and an appropriate substitution of variables, the partial differential

equation is recast in a form that allows the initial-boundary value problem to
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be formulated in terms of an integro-differential equation suitable for the de-

velopment of a dual-reciprocity boundary element method. A time-stepping

dual-reciprocity boundary element method is presented for the numerical

solution of the initial-boundary value problem. To assess the validity and ac-

curacy of the dual-reciprocity boundary element method, it is applied to solve

a few specific problems with known solutions. The numerical results obtained

agree favorably with the known solutions indicating that the method can be

used to provide reliable and accurate numerical solutions for the nonlinear

heat equation.
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