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Abstract

A boundary element method based on the Cauchy integral formu-
lae, i.e. a complex variable boundary element method (CVBEM), is
proposed for the numerical solution of an antiplane crack problem in-
volving an elastic body with shear modulus that varies continuously in
space. The shear modulus assumes a certain form which is quite gen-
eral to allow for multiparameter fitting of its variation. The method
reduces the problem to a system of linear algebraic equations and can
be readily implemented on the computer. For clarity, the CVBEM
formulation is firstly carried out for a straight crack and then its ex-
tension to include an arbitrary curved crack is indicated.
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1 Introduction

The boundary element method (BEM) is a useful and efficient numerical
technique for stress analysis in solids. Its application to problems involving
cracks is, however, not a straightforward task, as it is not easy to model the
opposite crack faces that are distinct yet lie on one and the same surface.
Furthermore, the displacement field changes rapidly near the edge of a crack.
For further details on the difficulties involved in the numerical solution of
crack problems, refer to Aliabadi and Rooke [1].
During the last two decades or so, significant progress has been made

in the use of the BEM as a numerical tool for crack problems. There are
now several BEM strategies for solving crack problems accurately. The ap-
proach which avoids integration over the crack faces through the derivation
of suitable Green’s functions was pioneered by Snyder and Cruse [18] in the
1970s and extended to more complicated problems by other investigators,
e.g. Clements and Haselgrove [11], Ang and Clements [4], Ang [2] and Telles,
Barra and Guimaraes [19]. Another approach by Ang [3] and Chen and
Chen [9] which employs the usual boundary integral equations to deal with
the conditions on the exterior boundary of the solid but uses a differenti-
ated form of the integral equations to express the conditions on the crack
faces leads to hypersingular-boundary integral equations that are numeri-
cally tractable. For two-dimensional elastostatic crack problems, a complex
variable approach to the BEM is possible. Denda and Dong [12] introduced
one such approach for solving problems involving straight cracks in homo-
geneous isotropic bodies. More recently, Ang, Clements and Dehghan [7]
proposed a different version of the complex variable BEM (CVBEM) for the
numerical solution of a curved crack in a homogeneous anisotropic body.
The CVBEM is based on the Cauchy integral formulae. Apparently, it

was first introduced in the 1980s by Hromadka II and Lai [13] for solving
boundary value problems governed by the two-dimensional Laplace’s equa-
tion. More recently, introducing the theory of complex hypersingular inte-
grals, Linkov and Mogilevskaya [15], [16], [17] described a CVBEM formu-
lation for certain boundary value problems in plane isotropic elastostatics.
Ang and Park [8] extended the approach to a generalized system of second-
order elliptic partial differential equations. Application of the CVBEM for
the numerical solution of an anisotropic thermoelastic problem was carried
out by Ang, Clements and Cooke [6].
In the present paper, we propose a CVBEM (which follows quite closely
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that of Ang, Clements and Dehghan [7]) to solve the problem of a straight
crack in a nonhomogeneous isotropic elastic body under antiplane deforma-
tion. The shear modulus µ of the body varies with the Cartesian spatial
coordinates x1and x2 and takes the form given by (6) (refer to Section 2).
Examples of multiparameter forms which µ can assume include

µ = (a0 + a1x1 + a2x2)
2

µ = (Re{a0 + a1(x1 + ix2) + a2(x1 + ix2)2 + · · ·+ aN(x1 + ix2)N})2 (1)

where i =
√−1 and ak are constants which may be chosen to fit the variation

of the shear modulus. The CVBEM reduces the crack problem to a system of
linear algebraic equations. For some specific problems, the system of linear
algebraic equations is set up and solved using a computer. Once the system
is solved, the relevant stress intensity factors at the crack tips are computed.
An extension of the proposed CVBEM to include arbitrary curved cracks is
also discussed.

2 Statement of the problem

With reference to a Cartesian coordinate frame 0x1x2x3, consider an isotropic
elastic body whose geometry does not vary in the x3-direction. The interior
of the body contains a crack. For clarity in presentation, let us first consider
the case where the crack is straight and lying in the region −a < x1 < a,
x2 = 0, −∞ < x3 <∞, where a is a given positive number. (An extension of
the problem to include an arbitrary curved crack is discussed in Section 6.)
On the x3 = 0 plane, the exterior boundary of the body is the simple closed
curve C, the crack is a straight cut of finite length 2a with endpoints (−a, 0)
and (a, 0) and the region enclosed by C with the cut is R. We assume that
the crack does not intersect the exterior boundary C.
At each and every point on the exterior boundary of the body, either the

Cartesian displacement uk or traction Tk is prescribed in such a way that the
crack becomes traction-free. The specified displacement or traction on the
exterior boundary is assumed to be independent of time and the coordinate
x3 and such that u1 = u2 = 0 or T1 = T2 = 0, i.e. the body is assumed
to undergo an antiplane deformation. The problem is then to determine the
displacement u3(x1, x2) or the stress σk3(x1, x2) throughout the body. Of
particular interest is the calculation of the stress intensity factors at the tips
of the crack.
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Mathematically, the problem is to solve

∂

∂x1

µ
µ
∂u3
∂x1

¶
+

∂

∂x2

µ
µ
∂u3
∂x2

¶
= 0 in R, (2)

subject to

u3 = w(x1, x2) on C1, (3)

µ[n1
∂u3
∂x1

+ n2
∂u3
∂x2

] = p(x1, x2) on C2, (4)

lim
x2→0

µ
∂u3
∂x2

= 0 for − a < x1 < a, (5)

where µ > 0 is the shear modulus of the material occupying the body, w and
p are suitably prescribed functions of x1 and x2, [n1, n2] is the unit normal
vector to C pointing away from R, and C1 and C2 are non-intersecting curves
such that C = C1 ∪ C2.
For homogeneous materials, the shear modulus µ is a constant and the

equilibrium equation (2) reduces to the two-dimensional Laplace’s equation.
In the present work, we take the shear modulus to be a spatial function of
the form

µ(x1, x2) = (Re {g(x1 + ix2)})2 , (6)

where i =
√−1 and g is an arbitrary holomorphic function of the complex

variable z = x1+ix2 in R∪C such that g 6= 0 for any (x1, x2) ∈ R∪C. Notice
that (6) implies that µ1/2 satisfies the two-dimensional Laplace’s equation in
R∪C. Although this places some restriction on the choice of µ, it does allow
for rather general multiparameter forms like the one in (1). In some other
work on cracks in nonhomogeneous bodies, investigators assume even more
restrictive form on the shear modulus, e.g. linear or exponential variations.
As we shall see, the choice of (6) is to allow (2) to be transformed to the
two-dimensional Laplace’s equation.
With (6), if we make the substitution

u3(x1, x2) = µ
−1/2φ(x1, x2), (7)

we find that (2) transforms to become

∂2φ

∂x21
+

∂2φ

∂x22
= 0 in R, (8)
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and (3), (4) and (5) become

φ = µ1/2w(x1, x2) on C1, (9)

µ[n1
∂φ

∂x1
+ n2

∂φ

∂x2
]− 1

2
φ[n1

∂µ

∂x1
+ n2

∂µ

∂x2
]

= µ1/2p(x1, x2) on C2, (10)

lim
x2→0

[µ
∂φ

∂x2
− 1
2

∂µ

∂x2
φ]

= 0 for − a < x1 < a. (11)

The Laplace’s equation (8) admits solution of the general form

φ(x1, x2) = Re {f(x1 + ix2)} , (12)

where f is a holomorphic function of z = x1 + ix2 in R ∪ C.
In view of (12), the crack problem under consideration may be formulated

as a mathematical problem which requires the construction of a complex
function f which is holomorphic in R ∪C and which satisfies the conditions

Re{f(x1 + ix2)} = µ1/2w(x1, x2) on C1, (13)

Re

½
(n1 + in2)µf

0(x1 + ix2)− 1
2
[n1

∂µ

∂x1
+ n2

∂µ

∂x2
]f(x1 + ix2)

¾
= µ1/2p(x1, x2) on C2, (14)

lim
x2→0

Re

½
iµf 0(x1 + ix2)− 1

2

∂µ

∂x2
f(x1 + ix2)

¾
= 0 for − a < x1 < a. (15)

3 CVBEM

Visualizing the straight crack as an elliptical hole x21/a
2+x22/²

2 < 1 with ²→
0 and applying the Cauchy integral formulae for the holomorphic function f
in R ∪ C, for (ξ1, ξ2) ∈ R, we obtain

2πif(ξ1 + iξ2) =

I
C

f(z)dz

z − (ξ1 + iξ2) +
Z a

−a

F (x)dx

x− (ξ1 + iξ2) , (16)

2πif 0(ξ1 + iξ2) =
I
C

f(z)dz

[z − (ξ1 + iξ2)]2
+

Z a

−a

F (x)dx

[x− (ξ1 + iξ2)]2
, (17)
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where C is assigned a counterclockwise direction and

F (x) = lim
y→0

[f(x+ i|y|)− f(x− i|y|)] for − a < x < a. (18)

From either (17) or (18), it can be shown that

F 0(x) = lim
y→0

[f 0(x+ i|y|)− f 0(x− i|y|)] for − a < x < a, (19)

where F 0(x) = dF/dx.
Thus, from (18) and (19), to ensure the existence of the limit on the left

hand side of (15), we impose the condition

−µ(x, 0)B0(x)− 1
2

∂µ

∂x2

¯̄̄̄
(x1,x2)=(x,0)

A(x) = 0 for − a < x < a, (20)

if we write F (x) in the form F (x) = A(x) + iB(x) where A and B are real
functions of the real variable x.
We shall apply (16) and (17) together with (13)-(15) and (20) to construct

the required holomorphic function f. We proceed as follows.
PutM well spaced out points (x

(1)
1 , x

(1)
2 ), (x

(2)
1 , x

(2)
2 ), · · · , (x(M−1)1 , x

(M−1)
2 )

and (x
(M)
1 , x

(M)
2 ) on C in a counterclockwise order. For k = 1, 2, · · · ,M,

define C(k) to be the straight line segment from (x
(k)
1 , x

(k)
2 ) to (x

(k+1)
1 , x

(k+1)
2 )

where (x
(M+1)
1 , x

(M+1)
2 ) = (x

(1)
1 , x

(1)
2 ). We make the approximation

C ≈ C(1) ∪ C(2) ∪ · · · ∪ C(M−1) ∪ C(M). (21)

For (ξ1, ξ2) ∈ R, we rewrite (16) (approximately) as:

2πif(ξ1 + iξ2) =
MX
m=1

Z
C(m)

f(z)dz

z − (ξ1 + iξ2) +
Z a

−a

F (x)dx

x− (ξ1 + iξ2) , (22)

To evaluate the integral over C(m), we expand f(z) as a Taylor-Maclaurin

series about z = bz(m) where bz(m) = (z(m)+ z(m+1))/2 and z(m) = x(m)1 + ix
(m)
2 ,

i.e.

f(z) = f(bz(m)) + (z − bz(m))f 0(bz(m)) + 1
2
(z − bz(m))2f 00(bz(m)) + · · · . (23)
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It follows thatZ
C(m)

f(z)dz

z − (ξ1 + iξ2) = f(bz(m))
Z
C(m)

dz

z − (ξ1 + iξ2)
+ f 0(bz(m))Z

C(m)

(z − bz(m))dz
z − (ξ1 + iξ2)

+
1

2
f 00(bz(m))Z

C(m)

(z − bz(m))2dz
z − (ξ1 + iξ2) + · · · . (24)

If we ignore all terms whose magnitudes are O(|z(m+1) − z(m)|2) in (24),
we obtain the approximationZ

C(m)

f(z)dz

z − (ξ1 + iξ2) ≈ f(bz(m))
Z
C(m)

dz

z − (ξ1 + iξ2) for (ξ1, ξ2) ∈ R. (25)

If we write

f(bz(m)) = φ(m) + iψ(m), (26)

where φ(k) and ψ(k) are constants (yet to determined), with (25), we find that
(22) can be approximately replaced by

2πif(ξ1 + iξ2)

=
MX
m=1

¡
φ(m) + iψ(m)

¢ £
γ
¡
z(m), z(m+1), ξ1 + iξ2

¢
+ iθ

¡
z(m), z(m+1), ξ1 + iξ2

¢¤
+

Z a

−a

F (x)dx

x− (ξ1 + iξ2) for (ξ1, ξ2) in R, (27)

where

θ(z, w, c) =

 Φ(z, w, c) if Φ(z, w, c) ∈ [−π, π]
Φ(z, w, c) + 2π if Φ(z,w, c) ∈ [−2π,−π)
Φ(z, w, c)− 2π if Φ(z, w, c) ∈ (π, 2π]

Φ(z, w, c) = Arg(w − c)− Arg(z − c),
γ(z, w, c) = ln |w − c|− ln |z − c|, (28)

where Arg(z) denotes the principal value of the argument of the complex
number z.
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If the simple closed curve C is such that the region it encloses is convex,
then for c ∈ R and z and w lying on C, θ(z, w, c) can be computed directly
from

θ(z, w, c) = cos−1
µ |w − c|2 + |z − c|2 − |w − z|2

2|w − c||z − c|
¶
. (29)

If we push the point (ξ1, ξ2) in (27) to approach (from within R) the
midpoint of C(p) then the real part of (27) gives (for p = 1, 2, · · · ,M)

−2πψ(p) =
MX
m=1

©
φ(m)γ

¡
z(m), z(m+1), bz(p)¢− ψ(m)θ

¡
z(m), z(m+1), bz(p)¢ª

+Re

½Z a

−a

[A(x) + iB(x)]dx

x− bz(p)
¾
. (30)

Notice that in (30) θ
¡
z(p), z(p+1), bz(p)¢ = π and γ

¡
z(p), z(p+1), bz(p)¢ = 0.

The system (30) consists of M equations but there are 2M unknown
constants φ(m) and ψ(m) (m = 1, 2, · · · ,M) and two unknown real functions
A(x) and B(x) (−a < x < a). More equations are obviously needed to
complete the system. They come from (13)-(15) and (20).
Condition (13) gives

φ(p) = µ1/2(bx(p)1 , bx(p)2 )w(bx(p)1 , bx(p)2 ) if u3 is specified on C(p), (31)

where (bx(p)1 , bx(p)2 ) is the midpoint of C(p).
To deal with (14), for (ξ1, ξ2) ∈ R, we rewrite (17) as

2πif 0(ξ1 + iξ2) =
MX
m=1

Z
C(m)

f(z)dz

[z − (ξ1 + iξ2)]2
+

Z a

−a

F (x)dx

[x− (ξ1 + iξ2)]2
. (32)

Proceeding in similar way as before in calculating the integral over C(m)

and omitting terms having magnitude O(|z(m+1) − z(m)|2), we obtainZ
C(m)

f(z)dz

[z − (ξ1 + iξ2)]2
≈ f(bz(m)) Z

C(m)

dz

[z − (ξ1 + iξ2)]2
for (ξ1, ξ2) ∈ R.

(33)
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Furthermore, if we repeat the task of calculating the integral over C(m) but
with (ξ1, ξ2) approaching (bx(m)1 , bx(m)2 ) (from within R), we find thatZ

C(m)

f(z)dz

[z − bz(m)]2 ≈ f(bz(m))
Z
C(m)

dz

[z − bz(m)]2 + πif 0(bz(m)), (34)

after neglecting terms having magnitude O(|z(m+1) − z(m)|).
Together with (32) and (34), condition (14) gives

1

π
µ(bx(p)1 , bx(p)2 ) MX

m=1

nh
n
(p)
1 r

¡
z(m), z(m+1), bz(p)¢+ n(p)2 q ¡z(m), z(m+1), bz(p)¢iφ(m)

+
h
n
(p)
1 q

¡
z(m), z(m+1), bz(p)¢− n(p)2 r ¡z(m), z(m+1), bz(p)¢iψ(m)o

+
1

π
µ(bx(p)1 , bx(p)2 ) Re

(
(n
(p)
2 − in(p)1 )

Z a

−a

[A(t) + iB(t)]dt

(t− bz(p))2
)

− 1
2
[n
(p)
1

∂µ

∂x1
+ n

(p)
2

∂µ

∂x2
]

¯̄̄̄
(x1,x2)=(bx(p)1 ,bx(p)2 )

φ(p)

= µ1/2(bx(p)1 , bx(p)2 )p(bx(p)1 , bx(p)2 ) if the traction T3 is specified on C(p), (35)

where

q(z, w, c) + ir(z, w, c) =
−1
w − c +

1

z − c. (36)

Condition (15) can be rewritten as

µ(x, 0)

(
MX
m=1

©
q
¡
z(m), z(m+1), x

¢
φ(m) − r ¡z(m), z(m+1), x¢ψ(m)ª+HZ a

−a

A(t)dt

(t− x)2
)

− 1
2

∂µ

∂x2

¯̄̄̄
x2=0

(
MX
m=1

©
θ
¡
z(m), z(m+1), x

¢
φ(m) + λ

¡
z(m), z(m+1), x

¢
ψ(m)

ª
+P

Z a

−a

B(t)dt

(t− x)
¾
= 0 for − a < x < a,

(37)

where P and H denote that the real integrals over (−a, a) are to be inter-
preted in the Cauchy principal and Hadamard finite-part sense respectively,
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i.e. more specifically (for −a < x < a)

P
Z a

−a

B(t)dt

[t− x]
def
= lim

ε→0+

Z a

−a

(t− x)B(t)dt
[(t− x)2 + ε2]

H
Z a

−a

A(t)dt

[t− x]2
def
= lim

ε→0+

½Z a

−a

(t− x)2A(t)dt
[(t− x)2 + ε2]2

− π

2ε
A(x)

¾
. (38)

The unknown function A(t) (−a < t < a) is directly related to the ‘crack-
opening displacement.’ To solve (20), (31), (35) and (37) for the unknown
constants φ(m) and ψ(m) and the unknown functions A(t)and B(t), there are
several approaches which can be used for the approximation of A(t).One such
approach is to approximate A(t) in the style of Kaya and Erdogan [14], i.e.

A(t) ≈ √a2 − t2
JX
j=1

cjUj−1(t/a) for − a < t < a, (39)

where ck are real coefficients yet to be determined and Uk(x) denotes the
k-th order Chebyshev polynomial of the second kind.
From (20), if we write

B(x) = −1
2

Z x

−a

1

µ(t, 0)

∂µ

∂x2

¯̄̄̄
(x1,x2)=(t,0)

A(t)dt for − a < x < a, (40)

then (30) together with (39) gives (for p = 1, 2, · · · ,M)

−2πψ(p) =
MX
m=1

©
φ(m)γ

¡
z(m), z(m+1), bz(p)¢− ψ(m)θ

¡
z(m), z(m+1), bz(p)¢ª

+
JX
j=1

cj [

Z a

−a

√
a2 − t2Uj−1(t/a)

µ
Re

½
1

t− bz(p)
¾

+
1

2

θ(t, a, bz(p))
µ(t, 0)

∂µ

∂x2

¯̄̄̄
(x1,x2)=(t,0)

!
dt], (41)
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and (35) becomes

1

π
µ(bx(p)1 , bx(p)2 ) MX

m=1

nh
n
(p)
1 r

¡
z(m), z(m+1), bz(p)¢+ n(p)2 q ¡z(m), z(m+1), bz(p)¢iφ(m)

+
h
n
(p)
1 q

¡
z(m), z(m+1), bz(p)¢− n(p)2 r ¡z(m), z(m+1), bz(p)¢iψ(m)o

+
1

π
µ(bx(p)1 , bx(p)2 ) JX

j=1

cj Re

(
(n
(p)
2 − in(p)1 )

Z a

−a

√
a2 − t2Uj−1(t/a)[ 1

(t− bz(p))2
− i
2

¡
q(t, a, bz(p)) + ir(t, a, bz(p))¢

µ(t, 0)

∂µ

∂x2

¯̄̄̄
(x1,x2)=(t,0)

]dt

)

− 1
2
[n
(p)
1

∂µ

∂x1
+ n

(p)
2

∂µ

∂x2
]

¯̄̄̄
(x1,x2)=(bx(p)1 ,bx(p)2 )

φ(p)

= µ1/2(bx(p)1 , bx(p)2 )p(bx(p)1 , bx(p)2 ) if the traction T3 is specified on C(p). (42)

If we collocate (37) by choosing x to be given (in turn) by

x = y(n) ≡ a cos
µ
[2n− 1]π
2J

¶
for n = 1, 2, · · · , J, (43)

then using (39) we obtain

µ(y(n), 0)
MX
m=1

©
q
¡
z(m), z(m+1), y(n)

¢
φ(m) − r ¡z(m), z(m+1), y(n)¢ψ(m)ª

− πµ(y(n), 0)
JX
j=1

jcjUj−1
¡
a−1y(n)

¢
− 1
2

∂µ

∂x2

¯̄̄̄
(x1,x2)=(y(n),0)

×
(

MX
m=1

©
θ
¡
z(m), z(m+1), y(n)

¢
φ(m) + λ

¡
z(m), z(m+1), y(n)

¢
ψ(m)

ª
−1
2

JX
j=1

cj

ÃZ a

−a

©
Dj(t)−Dj(y(n))

ª
dt

(t− y(n)) +Dj(y
(n)) ln

¯̄̄̄
a− y(n)
a+ y(n)

¯̄̄̄!)
= 0 for n = 1, 2, · · · , J, (44)
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where

Dj(t) =

Z t

−a

1

µ(ξ, 0)

∂µ

∂x2

¯̄̄̄
(x1,x2)=(ξ,0)

Uj−1(ξ/a)
p
a2 − ξ2dξ. (45)

Now (31), (41), (42) and (44) constitute a system of linear algebraic
equations in the unknowns φ(m)and ψ(m)(m = 1, 2, · · · ,M) and cj (j =
1, 2, · · · , J). Once these unknowns are determined, the function f (and hence
u3) can be computed at any point (ξ1, ξ2) in R.
A much easier-to-implement method of solving (20), (31), (35) and (37) is

to discretize the crack into smaller elements and approximate A(t) as either a
constant or a linear function over a crack element. In general, such a simple
approximation of A(t) that ignores the asymptotic behavior of the ’crack-
opening displacement’ near the crack tips cannot be expected to yield highly
accurate results if fewer crack elements are used in the computation. How-
ever, as demonstrated in Ang, Clements and Dehghan [7] and in Linkov and
Mogilevskaya [15] for a circular arc crack, reasonable results can be achieved
even with a simple constant approximation of A(t) over a crack element,
if a sufficiently large number of crack elements is employed. With highly
advanced modern computers and the ability to carry out parallel process-
ing with multiple processors, the need to use a large number of elements is
not necessarily a disadvantage. In fact, it appears that a simpler numerical
procedure often opens up a better way for implementing a speedier parallel
processing. Thus, simple approximation of the crack-opening displacement
should not be ruled out but is still an option which is worthwhile considering.

4 Stress intensity factors

The mode III stress intensity factors at the crack tips (−a, 0) and (a, 0) are
respectively defined by

K− = lim
ε→0+

√
2εσ32(−a− ε, 0) and K+ = lim

ε→0+
√
2εσ32(a+ ε, 0). (46)

From the analysis in Section 3, the stress intensity factors are approxi-
mately given by

K± ≈ µ
1/2(±a, 0)
2
√
a

JX
j=1

acjUj−1(±1), (47)

which can be easily computed once the constants cj are determined.
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5 Specific examples

We take the shear modulus to be given by µ = µ0[εx1/(2a) + 1]
2 and the

boundary C to be a rectangle with vertices A(`1, `2), B(−`1, `2), C(−`1,−`2)
and D(`1,−`2) [where µ0 is a positive constant, `1 and `2 positive constants
such that `1 > a and ε is a non-dimensionalized constant such that |ε| <
2a/`1].
For a test problem, we first consider the case where the sides AB and CD

are acted by the stress σk3 = s0 (s0 is a given constant) and the remaining
sides BC and AD are traction-free. For `1/a = `2/a = 8.0, we divide the
square boundary into elements of equal length 0.25 units and put 8 collocation
points on the crack to execute the CVBEM. The numerical values of the
non-dimensionalized stress intensity factors K±/(s0

√
2a) thus obtained for

selected values of ε are compared with those given by Ang, Clements and
Cooke [5] in Table 1. The two sets of results computed by different methods
are in good agreement with each other.

Table 1

ε
CVBEM

K−/(s0
√
2a)

Ref. [5]

K−/(s0
√
2a)

CVBEM

K+/(s0
√
2a)

Ref. [5]

K+/(s0
√
2a)

0.00 0.702 0.710 0.702 0.710
0.05 0.686 0.692 0.722 0.728
0.10 0.671 0.675 0.742 0.746
0.15 0.656 0.656 0.765 0.764
0.20 0.641 − 0.791 −

We now study the case where the sides AB and CD are acted by the
stress σk3 = s0 (s0 is a given constant) and BC and AD are fixed (with
u3 = 0) for ε = 0.20. For a fixed `1/a = 2.0,we compute the stress inten-
sity factors K±/(s0

√
2a) against various values of `2/a in Table 2. Similarly,

for a fixed `2/a = 2.0, the stress intensity factors K±/(s0
√
2a) are tabu-

lated against various values of `1/a in Table 3. It appears that for a fixed
`1/a the magnitudes of the stress intensity factors decrease as `2/a increases,
while for a fixed `2/a they increase with increasing `1/a. This observation is
qualitatively acceptable.
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Table 2

`2/a 1.00 1.50 2.00 2.50 3.00 3.50 4.00

K−/(s0
√
2a) 0.538 0.399 0.281 0.194 0.132 0.0895 0.0606

K+/(s0
√
2a) 0.615 0.467 0.334 0.232 0.159 0.108 0.0737

Table 3

`1/a 1.25 1.50 2.00 3.00 4.00 6.00 8.00

K−/(s0
√
2a) 0.0849 0.149 0.281 0.481 0.590 0.675 0.701

K+/(s0
√
2a) 0.103 0.179 0.334 0.557 0.670 0.750 0.770

The numerical results in Tables 2 and 3 are obtained by dividing the
rectangular boundary up into 160 elements and putting 10 collocation points
on the crack. When the number of elements is doubled, convergence of the
results to at least 2 significant figures is observed.

6 Extension to a curved crack

The CVBEM analysis in Section 3 can be extended to a crack whose shape
(on the 0x1x2 plane) is given by the curve Γ by following closely the work
in Ang, Clements and Dehghan [7] or by using using recent results on the
complex hypersingular integrals in Linkov and Mogilevskaya [15], [16], [17].
A practical indication of how the extension can possibly be carried out is
given below.
Let us discretize the crack by putting N closely-packed consecutive points

(y
(1)
1 , y

(1)
2 ), (y

(2)
1 , y

(2)
2 ), · · · , (y(N−1)1 , y

(N−1)
2 ) and (y

(N)
1 , y

(N)
2 ) on it, with (y

(1)
1 , y

(1)
2 )

and (y(N)1 , y(N)2 ) as crack tips. Let us denote the crack element (straight line

segment) from (y
(k)
1 , y

(k)
2 ) to (y

(k+1)
1 , y(k+1)2 ) by Γ(k).We make the approxima-

tion:

Γ ≈ Γ(1) ∪ Γ(2) ∪ · · · ∪ Γ(N−1). (48)

The exterior boundary C is discretized as before.
For any (ξ1, ξ2) ∈ R, the Cauchy integral formulae can now be (approxi-
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mately) written as:

2πif(ξ1 + iξ2)

=
MX
m=1

f(bz(m)) £γ ¡z(m), z(m+1), ξ1 + iξ2¢+ iθ ¡z(m), z(m+1), ξ1 + iξ2¢¤
+

N−1X
k=1

1

2

h
(y
(k+1)
1 − y(k)1 ) + i(y(k+1)2 − y(k)2 )

i Z 1

−1

F (k)(t)dt

w(k)(t)− (ξ1 + iξ2) , (49)

2πif 0(ξ1 + iξ2)

=
MX
m=1

f(bz(m)) £q ¡z(m), z(m+1), ξ1 + iξ2¢+ ir ¡z(m), z(m+1), ξ1 + iξ2¢¤
+

N−1X
k=1

1

2

h
(y
(k+1)
1 − y(k)1 ) + i(y(k+1)2 − y(k)2 )

i Z 1

−1

F (k)(t)dt

[w(k)(t)− (ξ1 + iξ2)]2
, (50)

where

w(k)(t) = by(k)1 + iby(k)2 +
1

2
t
h³
y
(k+1)
1 − y(k)1

´
+ i
³
y
(k+1)
2 − y(k)2

´i
F (k)(t) = lim

ε→0+

h
f(w(k)(t)− ε[m

(k)
1 + im

(k)
2 ])

−f(w(k)(t) + ε[m
(k)
1 + im

(k)
2 ])

i
, (51)

where [m
(k)
1 ,m

(k)
2 ] = [(y

(k+1)
2 −y(k)2 )/L(k), (y(k)1 −y(k+1)1 )/L(k)] is a unit normal

vector to Γ(k), L(k) is the length of Γ(k) and (by(k)1 , by(k)2 ) is the midpoint of Γ(k).
As shown in Section 3, if (ξ1, ξ2) lies on the exterior boundary C, (49) still
holds but (50) is valid only if the factor 2πi is replaced by πi.
Now, for the curved crack, condition (15) should be modified (over each

crack element) to become:

lim
(x1,x2)→(X(k)

1 (t),X
(k)
2 (t))

Re{(m(k)
1 + im

(k)
2 )µf

0(x1 + ix2)

−1
2
[m

(k)
1

∂µ

∂x1
+m

(k)
2

∂µ

∂x2
]f(x1 + ix2)}

= 0 for − 1 < t < 1 (k = 1, 2, · · · , N − 1), (52)
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where X
(k)
1 (t) = Re{w(k)(t)} and X(k)

2 (t) = Im{w(k)(t)}.
To ensure that the limit in (52) exists, it is required that

Re

 2(m
(k)
1 + im

(k)
2 )µ(X

(k)
1 (t),X

(k)
2 (t))h³

y
(k+1)
1 − y(k)1

´
+ i
³
y
(k+1)
2 − y(k)2

´i · d
dt

£
A(k)(t) + iB(k)(t)

¤
− 1
2
[m

(k)
1

∂µ

∂x1
+m

(k)
2

∂µ

∂x2
]

¯̄̄̄
(x1,x2)=(X

(k)
1 (t),X

(k)
2 (t))

A(k)(t)

= 0 for − 1 < t < 1 (k = 1, 2, · · · , N − 1), (53)

if we write F (k)(t) = A(k)(t) + iB(k)(t) where A(k)(t) and B(k)(t) are real
unknown functions to be determined.
If we proceed in similar fashion as in Section 3, we can use (13), (14),

(49)-(50) (including the modified form of (50) for (ξ1, ξ2) ∈ C), (52) and
(53) to set up a system of equations from which the unknown constants
f(bz(m)) (m = 1, 2, · · · ,M) and functions F (k)(t) (k = 1, 2, · · · ,M − 1) can
be determined.

7 Summary

A CVBEM is described for the antiplane problem of a straight crack in a
nonhomogeneous elastic body with an arbitrary exterior boundary. The shear
modulus of the material assumes a form which allows for multiparameter
fittings of the shear variation. For a specific shear modulus, the method is
applied to compute the crack tip stress intensity factors of a straight crack in
a rectangular slab. For a particular constant shear loading on the boundary
of the slab, the results obtained are in reasonable agreement with those given
in Ang, Clements and Cooke [5]. A new set of numerical results for a different
loading condition is also obtained.
A discussion on how the method can be extended to include a curved

crack is given. Generalization to multiple cracks is a trivial matter.

Acknowledgement. The author would like to thank an anonymous re-
viewer for pointing out a missing term in (37) and (44) and suggesting an
extension of the work to curved cracks.
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