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1 Introduction

Thin film structures are nowadays widely used in many engineering applica-

tions, such as in microelectronics. They may be formed by coating a layer

of material on a substrate of dissimilar material at a very high temperature.

During the manufacturing process, the elastic or thermal mismatch between

the thin film and the substrate may induce severe residual stresses, giving

rise to the formation of interfacial micro-defects.

A microscopically damaged interface may be modeled as containing a

distribution of micro-cracks. At the macro level, the micro-cracked inter-

face may be regarded as a spring-like imperfect interface characterized by a

set of stiffness coefficients. In the macroscopic spring interface model, the

displacement field is discontinuous across the interface and the tractions on

the interface are linear combinations of the displacement jumps across the

interface, as in Hashin [11], Jones and Whittier [13], Martin [15] and Sudak

and Wang [20].

A micromechanical problem of interest is the estimation of the effective

stiffness coefficients of the spring-like interface. The finite element method

based three-phase model in Fan and Sze [8], which simplifies the micro-

cracked interface to a single (typical) micro-crack interacting with spring-

like (effective) regions having a priori unknown interfacial properties, may be

employed to estimate the effective stiffness. Although the three-phase model

provides some useful insights into the properties of the spring-like interface,

it has a limited applicability, as it does not take into account microscopic

details such as the lengths and the positions of the individual interfacial

micro-cracks.

In Wang et al [21], a microscopically damaged interface subject to an

antiplane deformation is modeled using a randomly generated array of inter-
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facial micro-cracks that are periodically distributed on the interface. Specif-

ically, a period interval of the interface contains an arbitrary number of ran-

domly positioned micro-cracks with lengths that follow a normal distribution.

To estimate the effective stiffness of the antiplane spring-like interface, the

micromechanical-statistical model is formulated and solved in terms of a sys-

tem of hypersingular integral equations. The analysis in [21] is used in Wang

et al [22] to study the effective stiffness of the interface for more realistic

cases where the lengths of the micro-cracks are generated using a chi-square

(2) distribution of a low degree of freedom.

The micromechanical-statistical model is employed here to investigate a

microscopically damaged interface between an orthotropic thin elastic layer

and a dissimilar orthotropic elastic half-space under static inplane deforma-

tions. A three-phase model of the interface is also proposed here, mainly for

the purpose of verifying the micromechanical-statistical model. The mathe-

matical formulations of both models for inplane deformations are much more

involved than those for the corresponding antiplane models in [21] and [22],

giving rise to hypersingular integral and integro-differential equations, where

the displacement jumps over the imperfect parts of the interface are unknown

functions to be determined. Numerical procedures for solving the hypersin-

gular integral and integro-differential equations and estimating the effective

stiffness coefficients of the interface are outlined. Specific case studies on the

effective stiffness coefficients of the interface are conducted using the mod-

els with particular elastic materials in the layer and the half-space. For the

case where both materials are isotropic, the coefficients of the hypersingular

integral and integro-differential equations in the micromechanical-statistical

model are reduced to the Dundurs’ parameters of the isotropic bimaterial.

The micromechanical models here are formulated using the differentiated
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form of the direct boundary integral equations for elasticity. An advantage

of such formulation is that the unknown functions are physically meaning-

ful. For details of the direct boundary integral equations and hypersingular

integral equations in elasticity, one may refer to Ang [1], Chen and Hong [4],

Clements [6], Hong and Chen [12] and Rizzo [16].

2 The micromechanical interface problem

Consider an infinitely long elastic layer bonded to an elastic half-space. With

reference to a Cartesian coordinate frame 123, the layer occupies the

region 0  2   (where  is a given positive constant) and the elastic half-

space 2  0 The materials in the layer and the half-space are orthotropic,

having possibly dissimilar properties. At the microscopic level, the interface

between the layer and the half space is damaged containing interfacial micro-

cracks with geometries that do not vary along the 3 direction.

The bimaterial undergoes a plane elastostatic deformation such that the

only non-zero components of the Cartesian displacement are 1 and 2 and

are functions of only 1 and 2 The relevant non-zero components of the

Cartesian stress  are given by

11 = 11(2)
1

1
+ 12(2)

2

2


22 = 12(2)
1

1
+ 22(2)

2

2


12 = 21 = 66(2)(
1

2
+

2

1
) (1)

where 11(2) 22(2) 12(2) and 66(2) are elastic moduli of orthotropic
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materials defined by

(11(2) 22(2) 12(2) 66(2))

=

(
(

(1)
11  

(1)
22  

(1)
12  

(1)
66 ) for 0  2  

(
(2)
11  

(2)
22  

(2)
12  

(2)
66 ) for 2  0

(2)

with 
()
11  

()
22  

()
12 and 

()
66 being positive constants such that


()
11 

2
1 + 

()
22 

2
2 + 2

()
12 12 + 

()
66 

2
3  0

for all real numbers 1 2 and 3 such that 
2
1 + 22 + 23 6= 0 (3)

Note that (3) implies that the strain energy density of the elastic system is

strictly positive (see Clements [6] and Eshelby et al [7]).

From (1) and the equilibrium equations of plane elastostatics, 1 and 2

are required to satisfy the elliptic system of partial differential equations

11
21

21
+ (12 + 66)

22

12
+ 66

21

22
= 0

66
22

21
+ (12 + 66)

21

12
+ 22

22

22
= 0 (4)

Details on the elliptic system in (4) may be found in Clements [6].

The displacements  and the stresses  along a macroscopic portion of

the microscopically damaged interface 2 = 0 may be homogenized by using

the averaging procedure

b(b1 0±) =
1

2

Z 1+
1− (1 0

±)1

b(b1 0±) =
1

2

Z 1+
1− (1 0

±)1 (5)

where b1 and  are the midpoint and the half-length of the macroscopic

portion.
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The interfacial conditions in the macro-level spring model for the micro-

scopically damaged interface are given by

b1∆b1(b1) = b12(b1 0+) = b12(b1 0−)b2∆b2(b1) = b22(b1 0+) = b22(b1 0−) (6)

where ∆b(b1) = b(b1 0+)− b(b1 0−) and b1 and b2 are the effective stiff-
ness coefficients of the interface (see, for example, Hashin [11], Jones and

Whittier [13], Martin [15] and Sudak and Wang [20]).

For the macro-level spring model defined by (6) to be valid, the external

tensile load acting on the bimaterial along the 2 direction is assumed to be

sufficiently large (dominant) to ensure that ∆b2  0 on the interface.

Figure 1. A sketch of the micro-cracked interface containing three

micro-cracks over a period interval of the interface. The length of a period

interval of the interface is .
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The interface is assumed to be homogeneously damaged at the macro

level so that b1 and b2 are constants. At the micro level, such an interface
is modeled as containing periodic arrays of micro-cracks. More precisely, 

arbitrarily located interfacial micro-cracks of possibly different lengths lie on

0  1   2 = 0 The tips of a typical -th micro-crack on 0  1  

2 = 0 are given by (
() 0) and (() 0) where () and () are constants

such that 0  (1)  (1)  (2)  (2)  · · ·  ()  ()   The

remaining parts of the interface contain micro-cracks defined by ()+ 

1  () +  for  = 1 2 · · ·   and  = ±1 ±2 · · ·  that is, the
remaining micro-cracks are periodically distributed exact replicas of the 

micro-cracks on the interval 0  1   2 = 0 A sketch of the micro-

cracked interface is given in Figure 1 for  = 3

The problem of interest here is to estimate the effective stiffness coeffi-

cients b1 and b2 by taking into consideration some microscopic details of the
interface. Two micromechanical models of the interface − the three-phase
model and the micromechanical-statistical model − are proposed here for

estimating b1 and b2
3 Three-phase model

3.1 Boundary value problem

The three-phase model here simplifies the period interval 0  1   of the

micro-cracked interface in Figure 1 to three distinct parts:

(a) a single representative micro-crack in the region (1)  1  (1) 2 = 0

(b) perfectly bonded portions in the regions 0  1  (1) and (1)  1 

(2) on 2 = 0 and
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(c) an effective region (2)  1  (2) 2 = 0 where the behaviors of the

interface are described by the macro-level spring model with yet to be

determined stiffness coefficients b1 and b2.
Note that (1) (2), (1) and (2) are constants such that 0  (1)  (1) 

(2)  (2) =  and (1) = (2) − (1) and (2) is small compared to  The

geometry of the entire interface in the three-phase model is periodic with

period  For a sketch of the three-phase model, refer to Figure 2.

The damage ratio  defined by

 =
(1) − (1)

(2)
(7)

gives the fraction of the interface in Figure 1 that are damaged by micro-

cracks.

Figure 2. A sketch of the three-phase model.
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The three-phase model above is based on the generalized self-consistent

scheme proposed by Christensen and Lo [5]. In such a scheme, it is necessary

to incorporate the interaction between a simplified microstructure and an

effective region with an unknown property. The simplified microstructure

here is the micro-cracked region 0  1  (2) 2 = 0

The interfacial conditions for the three-phase model are

2(1 0
±) = 0 for (1 0) ∈ cracked

∆(1) = 0
2(1 0

+) = 2(1 0
−)

¾
for (1 0) ∈ perfect

b1∆1(1) = 12(1 0
+) = 12(1 0

−)b2∆2(1) = 22(1 0
+) = 22(1 0

−)

)
for (1 0) ∈ effective(8)

where ∆(1) = (1 0
+)− (1 0

−) and

cracked =
∞[

=−∞
((1) +  (1) + )

perfect =
∞[

=−∞
( (1) + ) ∪ ((1) +  (2) + )

effective =
∞[

=−∞
((2) +  (2) + ) (9)

The plane boundary 2 =  is acted upon by a suitably prescribed load

as given by

2(1 ) = (1) for −∞  1 ∞ (10)

where (1) are periodic functions of 1 with period . The component

2(1) is assumed to be positive and providing a sufficiently large external

tensile load on the interface (compared to the magnitude of 1(1)) so that

the assumption ∆2  0 is valid on cracked and effective
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If the displacements  and the stresses  are written as

 = (ext) + (imp) 

 = 
(ext)
 + 

(imp)
  (11)

where 
(ext)
 and 

(ext)
 are respectively the displacements and stresses satisfy-

ing


(ext)
2 (1 ) = (1)


(ext)
 (1 0

+) = 
(ext)
 (1 0

−)

(ext)
2 (1 0

+) = 
(ext)
2 (1 0

−)

⎫⎪⎬⎪⎭ for −∞  1 ∞ (12)

then (8) and (10) give


(imp)
2 (1 0

±) = −(ext)2 (1 0
±) for (1 0) ∈ cracked

∆
(imp)
 (1) = 0


(imp)
2 (1 0

+) = 
(imp)
2 (1 0

−)

)
for (1 0) ∈ perfect

b1∆
(imp)
1 (1) = 

(ext)
12 (1 0

±) + 
(imp)
12 (1 0

±)b2∆
(imp)
2 (1) = 

(ext)
22 (1 0

±) + 
(imp)
22 (1 0

±)

)
for (1 0) ∈ effective

(13)

and


(imp)
2 (1 ) = 0 for −∞  1 ∞ (14)

where ∆
(imp)
 (1) = 

(imp)
 (1 0

+)−(imp) (1 0
−) Note that (imp) and 

(imp)


are respectively the displacements and stresses induced by the micro-cracks

and the effective regions.

As the effective stiffness coefficients b1 and b2 are unknown constants to
be determined, two more equations are required to complete the formulation

of the interfacial conditions for the three-phase model. These equations are
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given by

b1
(2)

Z (1)

(1)
∆

(imp)
1 (1)1 =

1

(2)

Z (2)

0


(ext)
12 (1 0)1b2

(2)

Z (1)

(1)
∆

(imp)
2 (1)1 =

1

(2)

Z (2)

0


(ext)
22 (1 0)1 (15)

Note that the equations in (15) are derived from

b × (average value of ∆(imp) (1) over 0  1  (2))

= (average value of 
(ext)
2 (1 0) over 0  1  (2)).

(16)

Equation (16) provides a link between the micro-cracked and the effective

(macroscopic) parts of the three-phase model. For more details on the role of

(16) in the numerical procedure for the three-phase model, refer to Subsection

3.3 below.

For the analysis of the three-phase model, the partial differential equa-

tions in (4) together with (2) are to be solved for 
(imp)
 in the bimaterial

in Figure 2 and for the the unknown effective stiffness coefficients b1 and b2
subject to (13), (14) and (15). Note that the stresses −(ext)2 (1 0

±) may

be regarded as prescribed internal loads on the interface and are treated as

known functions. For the analysis here, we take 
(ext)
2 (1 0

±) = 1 + 2

where  and  are positive constants.

3.2 Hypersingular integral and integro-differential equa-

tions

To solve the boundary value problem in Section 3.1, the boundary integral

equations in Clements [6] are used together with the perfect interface Green’s
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function in Berger and Tewary [2] to derive the integral solution


(imp)
 (1 2) =

1

2

∞X
=−∞

Z (+1)



(imp) (1 )

×Re{
2X

=1


(1)
2[


(1)


1 − 1 + 
(1)
 (− 2)

+
2X

=1


(1)


1

1 − 1 + 
(1)
 − 

(1)
 2

]}(1)
 1

− 1
2

∞X
=−∞

2X
=1

Z ()+

()+

∆(imp) (1)

×Re{
2X

=1


(1)
2[


(1)


1 − 1 − 
(1)
 2

+
2X

=1


(1)


1

1 − 1 − 
(1)
 2

]}(1)
 1

for 0  2   (17)

where Re denotes the real part of a complex number, the overhead bar de-

notes the complex conjugate of a complex number, the constants 
(1)
 are

implicitly defined by (see Chen and Ang [3])

2X
=1

(
(1)


(2)
 − 

(1)

2
(2)
 )

(1)

 = (
(1)
2

(2)
 − 

(1)


(2)
 )

(1)
  (18)

the constants 
()
 are chosen to be given by

[()] =

⎡⎢⎣ − 
()
1 [

()
12 + 

()
66 ]


()
11 + 

()
66 (

()
1 )

2
− 

()
2 [

()
12 + 

()
66 ]


()
11 + 

()
66 (

()
2 )

2

 

⎤⎥⎦  (19)

 =
√−1 ()2 are given by


()
12 = 

()
66 (

()
 

()
1 +

()
2 )


()
22 = 

()
12 

()
1 +  () 

()
22 

()
2  (20)
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the constants 
()
1 and 

()
2 are two distinct complex numbers with positive

imaginary parts and are solutions of the quartic equation in  given by


()
22 

()
66 

4 − ([()12 ]2 + 2()
12 

()
66 − 

()
22 

()
11 )

2 + 
()
11 

()
66 = 0 (21)

the matrices [
()
 ] and [

()
 ] are the inverses of [

()
 ] and [

()
2] respectively,

and the constants 
()
 are defined implicitly by

Im{
2X

=1


()
2

()
 }()

 =  (22)

where  is Kronecker-delta and Im denotes the imaginary part of a complex

number.

Note that lowercase Greek and Latin subscripts have values 1 and 2 and

the Einsteinian convention of summing over a repeated index is applicable

here only for lowercase Latin subscripts.

According to the generalised Hooke’s law, (17) gives rise to the stress

formula


(imp)
2 (1 2) =

1

2
Re{

∞X
=−∞

Z (+1)



(imp) (1 )

×[
2X

=1



(1 − 1 + 
(1)
 (− 2))

2

+
2X

=1

2X
=1



(1 − 1 + 
(1)
 − 

(1)
 2)

2
]1}

− 1
2
Re{

∞X
=−∞

2X
=1

Z ()+

()+

∆(imp) (1)

×[
2X

=1



(1 − 1 − 
(1)
 2)

2

+
2X

=1

2X
=1



(1 − 1 − 
(1)
 2)

2
]1}

for 0  2   (23)
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where

1 = 
(1)
2

(1)
 

(1)
66 (

(1)
 

(1)
1 +

(1)
2 )

2 = 
(1)
2

(1)
 (

(1)
12 

(1)
1 +  (1) 

(1)
22 

(1)
2 )

1 = 
(1)
2

(1)


(1)
66 (

(1)
 

(1)
1 +

(1)
2 )

2 = 
(1)
2

(1)
(

(1)
12 

(1)
1 + 

(1)
 

(1)
22 

(1)
2 ) (24)

From (23) and the summation formula (Wang et al [21])

∞X
=1

1

(± )2
=
1

2
Ψ1(1± 


) for Re{1± 


}  0 (25)

where Ψ1 is the trigamma function, the conditions in (13) and (14) may be

expressed in terms of the hypersingular integral equations

1

2
=

Z (2)

0

(imp) (1 )Re{
2X

=1

}[ 1

(1 − 1)
2
+Θ(1 1)]1

+
1

2

Z (2)

0

(imp) (1 )Re{
2X

=1

2X
=1

Ω(1 1 
(1)
 − 

(1)
 )}1

− 1
2

2X
=1

Z ()

()
∆(imp) (1)Re{

2X
=1

Ω(1 1− (1) )}1

− 1
2

2X
=1

Z ()

()
∆(imp) (1)Re{

2X
=1

2X
=1

Ω(1 1− (1) )}1

= 0 for 0  1  (2) (26)
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and the hypersingular integro-differential equations

− 1
2

Z (2)

0

(imp) (1 )Re{
2X

=1

Ω(1 1 
(1)
 )( +

2X
=1

)}1

+
1

2
[=

Z ()

()

∆
(imp)
 (1) Re{}
(1 − 1)

2
1

+
2X

=1
6=

Z ()

()

∆
(imp)
 (1) Re{}
(1 − 1)

2
1

+
2X

=1

Z ()

()
∆(imp) (1) Re{}Θ(1 1)1 −

∆
(im p)

 (1)

1
Im{}]

= 1 + 2 − (2)∆
(imp)
 (1) (27)

for ()  1  () ( = 1 2)

where =
R
denotes that the integral is to be interpreted in the Hadamard

finite-part sense, 11 = b1 12 = 21 = 0 and 22 = b2 (2) is such that
(12) = 0 and (22) = 1 Θ(1 1) and Ω(1 1 ) are defined by

Θ(1 1) =
1

2
Ψ1(

+ 1 − 1


) +
1

2
Ψ1(

+ 1 − 1


)

Ω(1 1 ) =
1

(1 − 1 + )2
+
1

2
Ψ1(

+ 1 − 1 + 


)

+
1

2
Ψ1(

− 1 + 1 − 


) (28)

and the constants  and  are given by

 =
2X

=1

 +
2X

=1

2X
=1



 =
2X

=1

2X
=1

 −
2X

=1

 (29)
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3.3 Numerical procedure

A numerical procedure for solving the hypersingular integral and integro-

differential equations in (26) and (27) together with (15) is outlined here.

The part of the edge of the thin layer, where 0 ≤ 1 ≤ (2) 2 =  is

discretized into t subintervals (elements) given by


()
t ≤ 1 ≤ 

(+1)
t  2 =  ( = 1 2 · · ·  t) (30)

The unknown functions 
(imp)
 (1 ) for 0 ≤ 1 ≤ (2) are approximated as

linear functions of 1 over the -th element, that is,

(imp) (1 ) ' 1
()
 + () for 

()
t ≤ 1 ≤ 

(+1)
t  (31)

where () and () are 4t unknown constants to be determined. Two

collocation points are chosen on the -th element, namely

(e()t  ) = (
3

4

()
t +

1

4

(+1)
t  )

(e(+t )t  ) = (
1

4

()
t +

3

4

(+1)
t  )

⎫⎪⎬⎪⎭ for  = 1 2  t (32)

in order to collocate (26) at 2t points in the interval 0  1  (2)

The crack opening displacements ∆
(imp)
 (1) for 

(1)  1  (1) (over

the representative micro-crack in the three-phase model) are approximated

as in Kaya and Erdogan [14] by

∆(imp) (1) '
q
(1 − (1))((1) − 1)

cX
=1

()  (−1)(
21 − (1) − (1)

(1) − (1)
)

for (1)  1  (1) (33)

where 
()
 are 2c unknown constants to be determined and 

()(1) is the

-th order Chebyshev polynomial of the second kind. For collocating (27) at
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 points on the representative micro-crack, the following collocation points

are defined:

(e()c  0) = (
(1) + (1)

2
+

(1) − (1)

2
cos(

[2− 1]
2c

) 0)

for  = 1 2 · · ·  c (34)

Details on the numerical treatment involved in approximation in (33) may

also be found in Ang [1].

The effective region (2)  1  (2) 2 = 0 is discretized into e

subintervals (elements) given by

()e ≤ 1 ≤ (+1)e  2 =  ( = 1 2 · · ·  e) (35)

where

()e =
(2) + (2)

2
− (2) − (2)

2
cos(

[− 1]
e

)

for  = 1 2  e + 1 (36)

The displacement jumps ∆
(imp)
 (1) over the -th element on the effective

region are approximated by

∆(imp) (1) ' 1
()
 + () for ()e ≤ 1 ≤ (+1)e  (37)

where () and 
()
 are 4e unknown constants yet to be determined. To

ensure that ∆
(imp)
 (1) = 0 at the endpoints 1 = 

(1)
e and 1 = 

(e+1)
e we

require that

(1)e (1) + (1) = 0 and (e+1)e (e+1) + (e+1) = 0 (38)

In view of (38), the hypersingular integro-differential equations in (27) have

to be collocated at only 2e − 2 points on the effective region. The 2e − 2
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collocation points on the effective region are given by

(e(1)e  0) = (
1

2
(1)e +

1

2
(2)e  0)

(e(2e−2)e  0) = (
1

2
(e )e +

1

2
(e+1)e  0) (39)

and

(e(+1)e  0) = (
3

4

(+1)
e +

1

4

(+2)
e  0)

(e(+e−1)e  0) = (
1

4

(+1)
e +

3

4

(+2)
e  0)

⎫⎪⎬⎪⎭ for  = 1  e − 2 (40)

If the effective stiffness coefficients b are assumed known, we may substi-
tute (31), (33), (37) and (38) into (26) and (27) and collocate the resulting

equations appropriately at the selected collocation points to obtain a system

of linear algebraic equations. The linear algebraic equations are solved for the

unknown constants in (31), (33), (37) and (38). Once the unknown constants

are determined, the values of b are updated using (15). The linear algebraic
equations are then solved again using the updated values of b The iteration
between solving the linear algebraic equations and updating the values of b
is repeated until the values of b converge to within a prescribed number of
significant figures.
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4 Micromechanical-statistical model

4.1 Statistical simulation of the interface

In the micromechanical-statistical model, the  micro-cracks in the region

0  1   2 = 0 in Figure 1 are generated randomly. Specifically, the

lengths of  micro-cracks are randomly generated to follow a chi-square

distribution of degree of freedom  which is denoted here by 2() and are

randomly positioned in the region 0  1   2 = 0 As explained in

Wang et al [22], the 2 distribution with a lower degree of freedom has a

more skewed probability density function, giving a greater number of shorter

micro-cracks. The randomly selected and positioned micro-cracks form a

randomly generated interface.

For fixed values of the material constants in the layer and the elastic

half-space, the average length of the micro-cracks, the thickness of the layer,

the period length  of the interface and the number of micro-cracks on a

period length of the interface,  interfaces are randomly generated to form

a statistical sample for examining the effective stiffness coefficients of the

interface. The effective stiffness coefficients b1 and b2 of the -th interface
may be computed by solving a system of hypersingular integral and integro-

differential equations as explained in Subsection 4.2 and 4.3 below. If the

appropriately non-dimensionalized values of the effective stiffness coefficientsb of the  interfaces are given by 
(1)
  

(2)
   

(−1)
 and 

()
 , then the

mean value  and standard deviation  of the non-dimensionalized effective

stiffness coefficients are respectively given by

 =
1



X
=1


()
 and  =

vuut 1

 − 1
X
=1

(
()
 − )

2 (41)
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4.2 Boundary value problem

As in the three-phase model, the displacements  and the stresses  are

written in the form (11), where 
(ext)
 and 

(ext)
 are required to satisfy (12)

and 
(imp)
 and 

(imp)
 are respectively the displacements and stresses induced

by the interface micro-cracks. As in Section 3.1, the stresses 
(ext)
 are such

that 
(ext)
2 (1 0

±) = 1 + 2 where  and  are positive constants.

The interfacial conditions on 
(imp)
 and 

(imp)
 are given by


(imp)
2 (1 0

±) = −1 − 2 for 
() +   1  () + 

( = 1 2 · · ·  ;  = 0±1±2 · · · ), (42)

and

∆(imp) (1) = 0 and 
(imp)
2 (1 0

+) = 
(imp)
2 (1 0

−)

on the uncracked parts of the interface. (43)

The partial differential equations (4) together with (2) are solved in the

bimaterial subject to the conditions in (14), (42) and (43). Once the dis-

placement jumps ∆
(imp)
 (1) are known on the micro-cracks, the effective

stiffness coefficients may be evaluated by usingb1


X
=1

Z ()

()
∆

(imp)
1 (1)1 = 

b2


X
=1

Z ()

()
∆

(imp)
2 (1)1 =  (44)

For the micromechanical-statistical model, the damage ratio  of the in-

terface, which corresponds to (7) for the three-phase model, is given by

 =
1



X
=1

(() − ()). (45)
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4.3 Hypersingular integral and integro-differential equa-

tions

As in the analysis for the three-phase model, the use of the boundary integral

equations and the perfect interface Green’s function in Berger and Tewary

[2] with the micro-cracked interface in Figure 1 gives


(imp)
 (1 2) =

1

2

∞X
=−∞

Z (+1)



(imp) (1 )

×Re{
2X

=1


(1)
2[


(1)


1 − 1 + 
(1)
 (− 2)

+
2X

=1


(1)


1

1 − 1 + 
(1)
 − 

(1)
 2

]}(1)
 1

− 1
2

∞X
=−∞

X
=1

Z ()+

()+

∆(imp) (1)

×Re{
2X

=1


(1)
2[


(1)


1 − 1 − 
(1)
 2

+
2X

=1


(1)


1

1 − 1 − 
(1)
 2

]}(1)
 1

for 0  2   (46)
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and


(imp)
2 (1 2) =

1

2
Re{

∞X
=−∞

Z (+1)



(imp) (1 )

×[
2X

=1



(1 − 1 + 
(1)
 (− 2))

2

+
2X

=1

2X
=1



(1 − 1 + 
(1)
 − 

(1)
 2)

2
]1}

− 1
2
Re{

∞X
=−∞

X
=1

Z ()+

()+

∆(imp) (1)

×[
2X

=1



(1 − 1 − 
(1)
 2)

2

+
2X

=1

2X
=1



(1 − 1 − 
(1)
 2)

2
]1}

for 0  2   (47)

From (25) and (47), the conditions (14) and (42) on a given interface may

be expressed in terms of the hypersingular integral equations

1

2
=

Z 

0

(imp) (1 ) Re{
2X

=1

}[ 1

(1 − 1)
2
+Θ(1 1)]1

+
1

2

Z 

0

(imp) (1 ) Re{
2X

=1

2X
=1

Ω(1 1 
(1)
 − 

(1)
 )}1

− 1
2

X
=1

Z ()

()
∆(imp) (1) Re{

2X
=1

Ω(1 1− (1) )}1

− 1
2

X
=1

Z ()

()
∆(imp) (1) Re{

2X
=1

2X
=1

Ω(1 1− (1) )}1

= 0 for 0  1   (48)
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and the hypersingular integro-differential equations

− 1
2

Z 

0

(imp) (1 ) Re{
2X

=1

Ω(1 1 
(1)
 )( +

2X
=1

)}1

+
1

2
[=

Z ()

()

∆
(imp)
 (1) Re{}
(1 − 1)

2
1

+
X
=1
6=

Z ()

()

∆
(imp)
 (1)Re{}
(1 − 1)

2
1

+
X
=1

Z ()

()
∆(imp) (1)Re{}Θ(1 1)1 −

∆
(imp)
 (1)

1
Im{}]

= 1 + 2 for 
()  1  () ( = 1 2 ) (49)

Once the unknown functions ∆
(imp)
 (1) over the micro-cracks are ob-

tained by solving (48) and (49), the effective stiffness coefficients b1 and b2
of the given interface may be calculated by using (44).

4.4 Numerical procedure

For the micromechanical-statistical model, the hypersingular integral and

integro-differential equations (48) and (49) for a given interface may be solved

by using the numerical procedure outlined below.

As in Subsection 3.3, the region 0 ≤ 1 ≤  2 =  on the edge of the

layer is discretized into t elements as given in (30), the unknown functions


(imp)
 (1 ) for 0 ≤ 1 ≤  are approximated as linear functions of 1 as

given in (31), and the 2t collocation points for collocating the hypersingular

integral equations (48) are given by (32).

The crack opening displacements ∆
(imp)
 (1) over the  micro-cracks
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are approximated using

∆(imp) (1) '
q
(1 − ())(() − 1)

×

()
X

=1

()  (−1)(
21 − () − ()

() − ()
)

for ()  1  () ( = 1 2 ) (50)

where 
()
 ( = 1 2;  = 1 2   ()

c ;  = 1 2 ) are unknowns to be

determined and 
()
c are positive integers. For a fixed  the hypersingular

integro-differential equations in (49) are collocated at 
()
c selected points on

the -th micro-crack. The 
()
c collocation points are given by

(e()c  0) = (
() + ()

2
+

() − ()

2
cos(

[2− 1]
2

()
c

) 0)

for  = 1 2 · · ·   ()
c ( = 1 2 ) (51)

If we substitute the approximations (31) and (50) into (48) and (49)

and collocate the resulting equations at the selected collocation points, the

hypersingular integral and integro-differential equations (48) and (49) may

be eventually reduced into a system of linear algebraic equations containing

4t+2
(1)
c +2

(2)
c ++2

()
c unknowns. Once the crack opening displace-

ments ∆
(imp)
 (1) are obtained by solving the linear algebraic equations, the

effective stiffness coefficients b1 and b2 of the given interface may then be
calculated approximately by using (44).

5 A numerical verification of the models

The effective stiffness coefficients b1 and b2 obtained using the micromechan-
ical model in Section 4 are expected to be close to the ones predicted using

the three-phase model (in Section 3), if all the micro-cracks in the microme-

chanical model are taken to be of equal length and are evenly distributed
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along the damaged interface. To check this for a particular combination of

materials, the elastic moduli (in GPa) for graphite-epoxy and E-glass-epoxy,

as given in Table 1 in Section 5 below, are used as the material constants

for the orthotropic thin layer and half-space respectively. The values of the

elastic moduli for the materials given in Table 1 are taken from Glodež et al.

[9], Guechaichia and Trendafilova [10] and Rubio-Gonzalez and Mason [17].

For the three-phase model, the length of the representative micro-crack

is given by 2 The constants (1) (1) (2) and (1) in Figure 2 are taken

as (1) =  −  (1) =  +  (2) = 2 and (2) =  where  is a positive

number much smaller than the period length  The damage ratio  is given

here by  For selected  ( is the thickness of the thin layer) and , the

non-dimensionalized effective stiffness coefficients b1(2)
66 and b2(2)

66 are

computed as outlined in Subsection 3.3.

For the micromechanical model in Section 4, 10 micro-cracks, each of

length 2, are evenly distributed over the region 0  1   of the interface.

For selected  and  the non-dimensionalized effective stiffness coefficients

b1(2)
66 and b2(2)

66 are computed using (44), once the hypersingular in-

tegral and integro-differential equations for the micromechanical model are

solved numerically as outlined in Subsection 4.4.

Figure 3 gives the plots of the non-dimensionalized effective stiffness co-

efficients b1(2)
66 and b2(2)

66 against  for damage ratio  = 03 05

and 07 As expected, the non-dimensionalized effective stiffness coefficients

calculated using the micromechanical model in Section 4 agree well with the

corresponding values predicted by the three-phase model. The percentage

difference of the non-dimensionalized effective stiffness coefficients between

the two models is found to range from 0.012% to 5.5% for 0   ≤ 5 and
01 ≤  ≤ 09 with the percentage difference becoming larger as the damage
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ratio  increases.

From Figure 3, for a fixed value of  each of the non-dimensionalized

effective stiffness coefficients b1(2)
66 and b2(2)

66 is observed to decrease

in magnitude as the damage ratio  increases. This is because the coplanar

interfacial micro-cracks for larger value of  are closer to one another and

interact more strongly with one another in such a way that the magnitudes

of the displacement jumps increase. It is also observed that b1(2)
66 and

b2(2)
66 decrease as  increases. For a larger value of  the edge of

the thin layer is closer to the micro-cracks, giving rise to larger displacement

jumps across the micro-damaged parts of the interface. Note that → 0+

corresponds to the case where the bimaterial is made up of two elastic half-

spaces.

6 Micromechanical-statistical simulations

The micromechanical-statistical approach in Section 4 is used in this section

for estimating the effective stiffness coefficients of the micro-cracked inter-

face. As explained in Subsection 4.1, an interface is formed by choosing

the  micro-cracks over a period interval of the interface to have randomly

generated sizes. More specifically, the length of a micro-crack follows a 2

distribution of a fixed degree of freedom. The  micro-cracks are then

randomly positioned over a period length  of the interface. The average

half-length b of the  micro-cracks are related to the period length  and

the damage ratio  of the interface by

 = 2b (52)
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Figure 3. A graphic comparison of b1(2)
66 and b2(2)

66 calculated by

using the micromechanical model in Section 4 (with evenly distributed

equal length micro-cracks) and the three-phase model.
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For fixed values of  and b ( is the thickness of the elastic layer), 
interfaces are randomly generated to form a sample for generating statistical

data for the effective stiffness coefficients b1 and b2
6.1 Number of micro-cracks for homogenizing the in-

terface

The number of micro-cracks required per period interval of the interface

for homogenizing the effective stiffness coefficients is investigated here by

randomly generating 50 micro-cracked interfaces for fixed values of  andb The  micro-crack lengths follow a 2 distribution of a fixed degree

of freedom  that is, the 2() distribution. For each of the interfaces, the

non-dimensionalized effective stiffness coefficients bb1(2)
66 and bb2(2)

66 are

calculated as explained in Subsection 4.4. The mean values of bb1(2)
66 andbb2(2)

66 from the 50 interfaces should not vary much when  exceeds a

certain value 0, which is taken to be the number of micro-cracks required

for homogenizing the interface. The elastic moduli for graphite-epoxy and

E-glass-expoxy given in Table 1 in Section 5 are used here for the mate-

rial constants of the orthotropic thin layer and the orthotropic half-space

respectively.

For  = 05 and b = 1 Figure 4 gives the scatter plots of the data

for non-dimensionalized effective stiffness coefficients bb1(2)
66 and bb2(2)

66

of the 50 interfaces against various values of  The means of bb1(2)
66 andbb2(2)

66 are also indicated in Figure 4 for the different values of  It is

observed that both the mean values of bb1(2)
66 and bb2(2)

66 decrease dras-

tically as increases from 10 to 40. When exceeds 40, the mean values ofbb1(2)
66 and bb2(2)

66 do not change very much. Moreover, as  increases

from 40 to 60, the ranges over which the data of bb1(2)
66 and bb2(2)

66 scat-

28



ter are more or less the same and are narrower than the scattering ranges for

 between 10 and 40. It appears that 40 micro-cracks per period interval

of the interface may be sufficient for homogenizing the non-dimensionalized

effective stiffness coefficients. Similar observations apply for various other

values of  and b and for micro-cracks generated using a 2 distribution

of a different degree of freedom.

6.2 Influence of the micro-crack length distribution

The influence of the micro-crack length distribution on the mean value of

the non-dimensionalized effective stiffness coefficients bb1(2)
66 and bb2(2)

66

is investigated here. For fixed values of  and b a sample of 50 randomly
generated micro-cracked interfaces is used for the statistical simulation of

the interface. As suggested by the analysis in Subsection 6.1, the number of

micro-cracks over a period interval of the interface is taken to be 40 For each

interface, the micro-crack length follows the 2() distribution. To examine

how the mean values of bb1(2)
66 and bb2(2)

66 may be affected by different

values of  (that is, by different micro-crack length distributions), the micro-

cracks are positioned in such a way that the crack-tip gap  between two

adjacent micro-cracks is a constant given by  = 2b(1− ) As in the sim-

ulations in Subsection 6.1, the materials in the thin layer and the half-space

are selected to be graphite-epoxy and E-glass-expoxy respectively with the

elastic moduli given in Table 1.
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Figure 4. Scatter plots and mean values of the non-dimensionalized

effective stiffness bb1(2)
66 and bb1(2)

66 against 
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Figure 5. Plots of bb1(2)
66 and bb2(2)

66 against b for  = 05 and cases
where the micro-crack length follows the 2(5) 2(10) and 2(25)

distributions. Also given are plots of the corresponding non-dimensionalized

stiffness coefficients computed by using the three-phase model.
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For  = 05 the mean values of bb1(2)
66 and bb2(2)

66 against b are
plotted in Figure 5 for cases where the 2(5) 2(10) and 2(25) distribu-

tion are used for generating the lengths of the micro-cracks. Plots of the

corresponding non-dimensionalized effective stiffness coefficients predicted

by the three-phase model are also given in Figure 5. From Figure 5, it is

obvious that the mean values of the effective stiffness coefficients are influ-

enced by the random micro-crack length distribution. It is also observed thatbb1(2)
66 and bb2(2)

66 become closer to the corresponding values predicted

by the three-phase model, as the micro-crack length distribution becomes

more normal-like, that is, the degree of freedom  of the 2 distributions

increases. This observation is not surprising for the following reason. The

ratio of the standard deviation of the 2() distribution to the mean of the

distribution is given by
p
2 This ratio tends to zero as  increases, that is,

the variation in the micro-crack length (relative to the mean of the micro-

crack length) decreases as  increases. Thus, for a very large value of  the

micro-cracks may be regarded to be of equal length and evenly distributed on

the interface. As observed in Section 5, the three-phase model agrees more

closely with the micromechanical model when the micro-cracks are of equal

length and are evenly distributed.

6.3 Case studies using specific orthotropic materials

The micromechanical-statistical model is used here to simulate the micro-

cracked interface between a selected pair of dissimilar orthotropic materials.

As before, for selected values of  and b 50 micro-cracked interfaces
are randomly generated for the statistical simulations. For each interface,

40 micro-cracks are randomly chosen with their lengths following the 2(5)

32



distribution. The micro-cracks are positioned randomly over a period interval

of the interface.

The elastic moduli (in GPa) for boron-epoxy as given in Table 1 are

used as the material constants for the elastic half-space. Three different

orthotropic materials of differing strength, namely carbon-epoxy, graphite-

epoxy and martensite, with elastic moduli as given in Table 1, are selected

in turn to be the material in the thin layer.

Table 1. Elastic moduli (in GPa) for selected orthotropic materials.

11 22 12 66
Boron-epoxy 209.1 20.0 5.1 6.4

Carbon-epoxy 136.2 9.2 3.9 4.3

E-glass-epoxy 46.1 12.6 2.9 5.5

Graphite-epoxy 155.4 16.3 3.7 7.5

Martensite 233.0 233.0 135.0 118.0

For  = 05 the mean values of bb1(2)
66 and bb2(2)

66 against b are
plotted in Figure 6 for the cases where carbon-epoxy, graphite-epoxy and

martensite are used as the material in the thin layer. For a fixed b the
interface for the case where the thin layer is occupied by martensite has the

largest effective stiffness coefficients bb1(2)
66 and bb2(2)

66 , while the values

of bb1(2)
66 and bb2(2)

66 are the smallest for the case where the thin layer is

carbon-epoxy. Thus, the effective stiffness coefficients of the interface appear

to be larger in magnitude if the material of the thin layer has larger elastic

moduli. This observation is consistent with our intuition that coating a layer

of “stronger” material on the half-space may reduce the magnitudes of the

displacement jumps over the micro-cracks to give rise to larger effective stiff-

ness coefficients. Note that the effective stiffness coefficients are calculated

using the average displacement jumps over the micro-cracks.
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Each of the plots in Figure 6 shows that the mean values of bb1(2)
66

and bb2(2)
66 decrease as b increases. As explained in Section 5, as b

increases, that is, as the thickness of the layer becomes smaller compared to

the average length of the micro-cracks, the edge of the layer has the effect of

increasing the magnitudes of the displacement jumps across the micro-cracks,

thereby reducing the effective stiffness coefficients of the interface.

6.4 Isotropic elastic layer and half-space

The case where the elastic layer and the elastic half-space are both isotropic

is considered here. For isotropic materials, the elastic moduli are given by


()
11 = 

()
22 = () + 2() 

()
66 = () and 

()
12 = () (53)

where () and () are the Lamé constants of the isotropic materials.

The analysis given in the earlier sections for general orthotropic mate-

rials appears to break down for isotropic materials, as constants such as


()
 and 

()
 are ill-defined if the elastic moduli are given by (53). Nev-

ertheless, it may be recovered for isotropic materials by using a limiting

procedure given in Ang [1]. More specifically, the hypersingular integral and

integro-differential equations for the micromechanical-statistical model can

be recovered for isotropic materials by replacing 
()
12 = () in (53) with


()
12 = ()(1− ) and letting the real parameter  tend to zero.
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Figure 6. Plots of bb1(2)
66 and bb2(2)

66 against b for selected thin
layer materials
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For isotropic materials, the hypersingular integral and integro-differential

equations in (48) and (49) reduce to

1

2
=

Z 

0

1


(imp) (1 ) e[

1

(1 − 1)
2
+Θ(1 1)]1

+
1

2

Z 

0

1


(imp) (1 ) Re{ eΩ(1 1 2)}1

− 1
2

X
=1

Z ()

()

1


∆(imp) (1) Re{ eΩ(1 1−)}1

− 1
2

X
=1

Z ()

()

1


∆(imp) (1) Re{ eΩ(1 1 )}1

= 0 for 0  1   (54)

and

− 1
2

Z 

0

1


(imp) (1 ) Re{Ω(1 1 )( e + e)}1

+
1

2
[=

Z ()

()

∆
(imp)
 (1)f

(1 − 1)
2

1

+
X
=1
6=

Z ()

()

∆
(imp)
 (1)f

(1 − 1)
2

1

+
X
=1

Z ()

()

1


∆(imp) (1)fΘ(1 1)1 −

e


(∆
(imp)
 (1))

1
]

= 1 + 2 for 
()  1  () ( = 1 2 ) (55)
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where

[ e] =

⎡⎢⎣ − 4

1 + 
0

0 − 4

1 + 

⎤⎥⎦ 

[ e] =

⎡⎢⎢⎣ −
4

1− 2
+

4

1 + 

4

1− 2


− 4

1− 2
 − 4

1− 2
+

4

1 + 

⎤⎥⎥⎦ 

[f] =

⎡⎢⎣ −
4

1− 2
0

0 − 4

1− 2

⎤⎥⎦ 

[e] =
⎡⎢⎢⎣ 0

4

1− 2

− 4

1− 2
0

⎤⎥⎥⎦  (56)

and   and  are defined by

 =
1


(

(1) + 2(1)

(1)((1) + (1))
− (2) + 2(2)

(2)((2) + (2))
)

 =
1


(

1

(1) + (1)
− 1

(2) + (2)
)

 =
(1) + 2(1)

(1)((1) + (1))
+

(2) + 2(2)

(2)((2) + (2))
 (57)

In the literature, the non-dimensionalized constants  and  are known as

the Dundurs’ parameters (see, for example, Schmauder [18] and Schmauder

and Meyer [19]).
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For the special case where → 0+, (55) reduces to

1

2
[=

Z ()

()

∆
(imp)
 (1)f

(1 − 1)
2

1

+
X
=1
6=

Z ()

()

∆
(imp)
 (1)f

(1 − 1)
2

1

+
X
=1

Z ()

()

1


∆(imp) (1)fΘ(1 1)1 −

e


(∆
(imp)
 (1))

1
]

= 1 + 2 for 
()  1  () ( = 1 2 ) (58)

Thus, for the special case where the interface lies between two isotropic elas-

tic half-spaces, the effective stiffness coefficients of the interface may be com-

puted using (44) after solving the hypersingular integro-differential equations

in (58).

To perform micromechanical-statistical simulations to estimate the non-

dimensionalized effective stiffness coefficients bb1 and bb2 of the interface
for given values    and b, 50 micro-cracked interfaces are randomly
generated. For each interface, the 2(5) distribution is used to randomly

generate the 40 micro-cracks which are then randomly located over a period

interval of the interface. Note that b is the average half-length of the 40
micro-cracks.

For a given interface between two isotropic half-spaces (that is, for the

case where b→ 0+), bb1 and bb2 vary with only the Dundurs’ parameter
. This is obvious from the hypersingular integro-differential equations (58),

if we note that f and e depend on  only. Also, note that b1 = b2
here. The mean values of bb1 computed from the sample of 50 randomly

generated micro-cracked interfaces are computed and plotted against  for

 ≥ 0 in Figure 7 for selected values of  For  ≥ 0, the mean value of bb1
increases as  increases. Note that bb1 here is an even function of  since
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the effective stiffness coefficients b1 and b2 remain the same if the materials
in the two half-spaces are interchanged.

Figure 7. Plots of bb1 against  for selected values of 
The Dundurs’ parameters  and  and the parameter  in (57) may

rewritten in terms of the Young’s moduli (1) and (2)and the Poisson’s

ratios (1) and (2) (of the thin elastic layer and the elastic half-space) as
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(Schmauder and Meyer [19])

 =

(2)

(1)
− (1− (2))(1 + (2))

(1− (1))(1 + (1))

(2)

(1)
+
(1− (2))(1 + (2))

(1− (1))(1 + (1))



 =
1

2

(2)

(1)
(1− 2(1))(1 + (1))− (1− 2(2))(1 + (2))

(2)

(1)
(1− (1))(1 + (1)) + (1− (2))(1 + (2))



 =
4

(2)
[
(2)

(1)
(1− (1))(1 + (1)) + (1− (2))(1 + (2))] (59)

For a particular case study, we take (1) = (2) =  and examine how

(1)(2) and  may affect the non-dimensionalized effective stiffness coeffi-

cients bb1(2) and bb2(2) For selected (1)(2),   and b a sample
of 50 interfaces are randomly generated. Each interface contains 40 micro-

cracks that are randomly positioned over a period interval of the interface.

The micro-crack length follows the 2(5) distribution.

For  = 05 and  = 025 plots of the non-dimensionalized effective stiff-

ness coefficients bb1(2) and bb2(2) against log10(
(1)(2)) for selected

values of b in Figure 8. For moderate values of (1)(2) within the range

−05  log10(
(1)(2))  2 the plots for various b are visually distin-

guishable and it is obvious that both bb1(2) and bb2(2) increases with

the increasing log10(
(1)(2)) for a fixed b For (1)(2) larger than 100,

all the plots of bb1(2) and bb2(2) in Figure 8 tend to the same constant,

approximately 081, as (1)(2) increases. It appears that the effect of the

edge of the thin layer becomes negligible if the thin layer can be made suffi-

ciently strong compared to the elastic half-space. Both bb1(2) and bb2(2)

tend to zero as (1)(2) tends to zero for the selected values of b.
For a selected value of log10(

(1)(2)) we observe that the mean values
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of bb1(2) increase less than values of bb2(2) as b decreases from 2 to

0. This seems to suggest that varying the thickness of the layer has a more

significant effect on the average value of 2 component of the crack opening

displacement compared to the average value of the 1 component.

Figure 8. Plots of the non-dimensionalized effective stiffness bb1(2) andbb2(2) against log10(
(1)(2)) for selected values of b
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Figure 9. Plots of bb1(2) and bb2(2) against  for selected values of

(1)(2)

For  = 05 and b = 1 plots of the non-dimensionalized effective
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stiffness coefficients bb1(2) and bb2(2) against  are given in Figure 9

for selected values of (1)(2) For a fixed (1)(2) both bb1(2) andbb2(2) increase as  increases from 0 to 05 It appears that the effective

stiffness coefficients of the interface increase as the isotropic materials in the

elastic layer and the elastic half-space becomes more incompressible.

7 Summary and conclusions

The present paper extends the work in Wang et al [21] to the micromechan-

ical analysis of a microscopically damaged interface between an orthotropic

thin elastic layer and a dissimilar orthotropic elastic half-space under inplane

deformations. Two micromechanical models based on the hypersingular inte-

gral and integro-differential equations are proposed to estimate the effective

stiffness coefficients of the damaged interface which is modeled as containing

periodic arrays of micro-cracks. The first model, known as the three-phase

model, simplifies each period of the micro-cracked interface into three parts

— a representative micro-crack, an effective region and perfectly bonded re-

gions. The second model− the micromechanical-statistical model− simulate
a period interval of the damaged interface as containing an arbitrary number

of randomly positioned micro-cracks with lengths that are randomly gener-

ated to follow a selected 2 distribution. Both models are formulated and

numerically solved in terms of hypersingular integral and integro-differential

equations.

As a check, the effective stiffness coefficients estimated by the three-phase

model for a particular pair of orthotropic materials are compared with those

calculated from the micromechanical model in Section 4 with all micro-cracks

having equal length and being evenly distributed along the interface. As ex-

pected, the values of the effective stiffness coefficients given by the two models
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are in close agreement, especially when the damage ratio of the interface is

not too close to unity. For 01 ≤  ≤ 09 and 0   ≤ 5 the maximum per-
centage difference between the effective stiffness coefficients computed using

the three-phase model and those by the micromechanical model is between

0.012% and 5.5%.

Statistical simulations conducted on the micro-cracked interface suggest

least 40 micro-cracks are required in the micromechanical-statistical model to

homogenize the effective stiffness coefficients of the interface. Furthermore,

the simulations show that the effective stiffness coefficients are significantly

influenced by the degree of freedom of the 2 distribution used to generate

the lengths of the micro-cracks. As the degree of freedom increases, that is, as

the variation of the micro-crack length compared to the average micro-crack

length becomes smaller, the effective stiffness coefficients are closer to those

predicted by the three-phase model. The three-phase model overestimates

the values of the effective stiffness coefficients.

Two specific case studies involving particular materials in the layer and

the half-space are conducted by using the micromechanical-statistical model.

In the first case study, the effective stiffness coefficients of the interface

are calculated for three different particular orthotropic materials in the layer.

As expected, the effective stiffness coefficients are larger when the orthotropic

material in the layer is “stronger”. For a given interface between a given pair

of materials, the effective stiffness coefficients increase as b decreases
In the second case study, the elastic materials in the thin layer and

the half-space are taken to be isotropic. For isotropic materials, the co-

efficients in the hypersingular integral and integro-differential equations for

the micromechanical-statistical model are expressed in terms of the Dundurs’

parameters  and . The coefficients are found to be independent of  if the
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isotropic elastic layer is replaced by an isotropic elastic half-space. Statistical

simulations conducted for the case where the materials in the layer and the

half-space have the same Poisson’s ratio show that the effect of the thin edge

of the layer on the effective stiffness coefficients of the interface may be made

negligible by increasing the Young’s modulus of the material in the layer.

Furthermore, the effective stiffness coefficients of the interface are observed

to increase as the materials in the layer and the half-space become more

incompressible.
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