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Abstract

The problem of calculating the steady-state two-dimensional tem-
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neously imperfect interface is considered. There is a temperature jump
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isfying the appropriate interface condition is derived. A specific test
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1 Introduction

Many studies on layered media, such as those in Ang [1], Berger [2], Berger

and Karageorghis [3] and Clements [4], assume that the dissimilar materials

are perfectly bonded at their interfaces. From a microscopic standpoint, such

perfect or ideal interfaces do not exist, however.

In recent years, there is a growing interest among researchers in the analy-

ses of microscopically imperfect interfaces in layered and composite materials

(see e.g. Benveniste [5], Fan and Sze [6], Fan and Wang [7] and other refer-

ences therein). In the context of a heat conduction problem, a macroscopic

model for studying such an imperfect interface allows for a temperature jump

which is proportional in magnitude to the thermal heat flux at the interface.

For the perfect interface, the temperature jump across the interface is taken

to be zero.

In the present paper, we consider the two-dimensional problem of de-

termining the steady-state temperature distribution in a thermally isotropic

bimaterial with a homogeneously imperfect planar interface. The bimaterial

is of a finite extent. Either the temperature or the heat flux (not both) is

known at each and every point on the exterior boundary of the bimaterial.

A Green’s function which satisfies the appropriate interface condition is

derived. Using the Green’s function, we obtain a solution for the governing

partial differential equation, expressed in terms of an integral taken over only

the exterior boundary of the bimaterial. The integral solution enables us to

devise a boundary element method, which does not require the discretization

of the imperfect interface, for the numerical solution of the problem under

consideration.

To check the validity of the method, it is applied to solve a specific test

problem with a known solution. From the numerical results obtained, it
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appears that, with the use of the special Green’s function, the temperature

may be computed accurately at points very close to the interface, even if the

discretization of the exterior boundary is relatively coarse. The advantages of

using special Green’s functions in boundary element formulations, such as an

improved accuracy in the numerical results and a smaller number of boundary

elements (hence unknowns) involved, are well known (see e.g. Berger [2],

Clements [8], Clements and Haselgrove [9] and Cruse et al. [10]).

Figure 1. A sketch of the geometry of the problem.

2 The problem

With reference to an 0x1x2x3 Cartesian co-ordinate system, consider a finite

body which is made up of two homogeneous materials having possibly differ-

ent thermal properties. The geometry of the body does not vary along the
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x3-direction. On the 0x1x2 plane, the materials are joined together along the

straight line segment Γ which lies on part of the x1-axis between the points

(a, 0) and (b, 0) (where a and b are given real numbers such that a < b) and

the exterior boundary of the body is the simple closed curve C. The curve C

consists of two parts, namely C+ which lies above the x1-axis and C
− below

the axis. A sketch of the geometry is given in Figure 1. The regions enclosed

by C+ ∪ Γ and C− ∪ Γ are denoted by R+ and R− respectively.
If the steady-state temperature field in the body is independent of x3

and given by T (x1, x2), then together with the classical Fourier’s law of heat

conduction the energy equation gives rise to the two-dimensional Laplace’s

equation

∂2T

∂x21
+

∂2T

∂x22
= 0 in R± ∪ C± ∪ Γ. (1)

The bond between the materials in R+ and R− at the interface Γ is mi-

croscopically damaged. A macroscopic model for the heat conduction across

the imperfect interface is given by

k+
∂T

∂x2

¯̄̄̄
x2=0+

= k−
∂T

∂x2

¯̄̄̄
x2=0−

= λ∆T (x1) for x1 ∈ [a, b], (2)

where k+ and k− are the (constant) thermal conductivities of the materials

in R+ and R− respectively, λ is a given positive coefficient and ∆T (x1) =

T (x1, 0
+) − T (x1, 0−). (Notice that according to (2) the x2-component of

the heat flux at the interface is given by −λ∆T. Thus, if ∆T < 0, i.e. if

T (x1, 0
+) < T (x1, 0

−), one should find that −λ∆T > 0, since the direction
of heat flow is always from high to low temperature. This implies that λ > 0.

Similarly, one also finds that λ > 0 if ∆T > 0.)

In the present paper, we assume that the coefficient λ is a constant, i.e.

the microscopic imperfection or damage is uniformly distributed over the

interface.
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If we let λ→∞, the temperature jump given in (2) reduces to

∆T (x1) = 0 for x1 ∈ [a, b], (3)

that is, the condition for the perfect interface is recovered.

At each and every point on the exterior boundary C = C+ ∪ C−, either
the temperature T or its normal flux −k∂T/∂n (but not both) is specified.
(Note that k denotes the thermal conductivity and ∂T/∂n = n ·∇T, where n
is the unit normal vector to C pointing out of the region R enclosed by C and

∇T = [∂T/∂x1, ∂T/∂x2].) The problem is then to determine the temperature
in the body by solving (1) subject to the boundary condition on C and the

interface condition as given by (2).

3 Boundary integral formulation

A solution of (1), expressed in terms of a line integral over only the exterior

boundary C = C+ ∪ C−, can be obtained as follows.
For a general point (ξ1, ξ2) such that ξ2 6= 0, following the analysis in

Clements [11], one can use (1) to derive the integral equations

γ+(ξ1, ξ2)T (ξ1, ξ2) =

Z
C+

[T (x1, x2)k
+ ∂

∂n
Φ(x1, x2, ξ1, ξ2)

− Φ(x1, x2, ξ1, ξ2)k
+ ∂

∂n
T (x1, x2)]ds(x1, x2)

+

bZ
a

[−T (x1, 0+)k+ ∂

∂x2
Φ(x1, x2, ξ1, ξ2)

¯̄̄̄
x2=0+

+ Φ(x1, 0
+, ξ1, ξ2)k

+ ∂

∂x2
T (x1, x2)

¯̄̄̄
x2=0+

]dx1 (4)

5



and

γ−(ξ1, ξ2)T (ξ1, ξ2) =
Z
C−

[T (x1, x2)k
− ∂

∂n
Φ(x1, x2, ξ1, ξ2)

− Φ(x1, x2, ξ1, ξ2)k
− ∂

∂n
T (x1, x2)]ds(x1, x2)

+

bZ
a

[T (x1, 0
−)k−

∂

∂x2
Φ(x1, x2, ξ1, ξ2)

¯̄̄̄
x2=0−

− Φ(x1, 0
−, ξ1, ξ2)k−

∂

∂x2
T (x1, x2)

¯̄̄̄
x2=0−

]dx1, (5)

where γ+(ξ1, ξ2) = 0 if (ξ1, ξ2) /∈ R+ ∪ C+, γ+(ξ1, ξ2) = 1 if (ξ1, ξ2) ∈ R+,
0 < γ+(ξ1, ξ2) < 1 if (ξ1, ξ2) ∈ C+, γ−(ξ1, ξ2) = 0 if (ξ1, ξ2) /∈ R− ∪ C−,
γ−(ξ1, ξ2) = 1 if (ξ1, ξ2) ∈ R−, 0 < γ−(ξ1, ξ2) < 1 if (ξ1, ξ2) ∈ C− and

Φ(x1, x2, ξ1, ξ2) =
1

2πk±
Re{ln(z − c)}+ Φ±(x1, x2, ξ1, ξ2) for ± x2 > 0,

(6)

with z = x1 + ix2, c = ξ1 + iξ2, i =
√−1 and Φ±(x1, x2, ξ1, ξ2) being any

arbitrary functions satisfying

∂2Φ±

∂x21
+

∂2Φ±

∂x22
= 0 for (x1, x2) ∈ R± ∪ C± ∪ Γ. (7)

With the interface condition (2), if we choose the functionsΦ+(x1, x2, ξ1, ξ2)

and Φ−(x1, x2, ξ1, ξ2) in such a way that (7) is satisfied and

k+
∂

∂x2
Φ(x1, x2, ξ1, ξ2)

¯̄̄̄
x2=0+

=k−
∂

∂x2
Φ(x1, x2, ξ1, ξ2)

¯̄̄̄
x2=0−

=λ[Φ(x1, 0
+, ξ1, ξ2)− Φ(x1, 0

−, ξ1, ξ2)] for −∞ < x1 <∞, (8)
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then the use of (4) and (5) yields

γ(ξ1, ξ2)T (ξ1, ξ2) =

I
C

[T (x1, x2)k
∂

∂n
Φ(x1, x2, ξ1, ξ2)

− Φ(x1, x2, ξ1, ξ2)k
∂

∂n
T (x1, x2)]ds(x1, x2), (9)

where γ(ξ1, ξ2) = γ+(ξ1, ξ2)+ γ−(ξ1, ξ2), i.e. γ(ξ1, ξ2) = 1 if (ξ1, ξ2) lies inside

R+ or R− and 0 < γ(ξ1, ξ2) < 1 if (ξ1, ξ2) lies on C
+ or C− [γ(ξ1, ξ2) = 1/2

if (ξ1, ξ2) lies on a smooth part of C
+ or C−].

Equation (9) can be employed to obtain a boundary element method

for solving the problem described in Section 2. With (9), only the exterior

boundary C of the body has to be discretized into boundary elements. The

interface condition (2) is automatically built into (9) through the use of a

special Green’s function Φ(x1, x2, ξ1, ξ2) satisfying (8). Thus, in using (9) for

the numerical solution of the problem under consideration, no discretization

of the imperfect interface is needed.

For details on how one may discretize the boundary C into boundary ele-

ments and then apply (9) to set up a system of linear algebraic equations for

determining either the temperature or the heat flux (whichever is not known)

on the boundary, one may refer to Clements [11]. Once the temperature and

the heat flux are completely known on the boundary C, the temperature and

its first order partial derivatives with respect to the spatial variables, at any

point (ξ1, ξ2) in the interior of R
+ ∪R−, can be computed approximately by

evaluating approximately the line integral on the right hand side of (9).
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4 A special Green’s function

To find Φ±(x1, x2, ξ1, ξ2) such that Φ(x1, x2, ξ1, ξ2) in (6) satisfies (8), let us

write

Φ±(x1, x2, ξ1, ξ2) = Φ±per(x1, x2, ξ1, ξ2) + Φ±imp(x1, x2, ξ1, ξ2), (10)

where Φ±per(x1, x2, ξ1, ξ2) and Φ±imp(x1, x2, ξ1, ξ2) satisfy (7).

The functions Φ±per(x1, x2, ξ1, ξ2) are required to satisfy the conditions:

[Φ+per(x1, 0
+, ξ1, ξ2)− Φ−per(x1, 0

−, ξ1, ξ2)]

= − 1
2π
(
1

k+
− 1

k−
) Re{ln(x1 − ξ1 − iξ2)} for −∞ < x1 <∞. (11)

and

k+
∂

∂x2
Φ+per(x1, x2, ξ1, ξ2)

¯̄̄̄
x2=0+

= k−
∂

∂x2
Φ−per(x1, x2, ξ1, ξ2)

¯̄̄̄
x2=0−

for −∞ < x1 <∞. (12)

It is easy to verify by direct substitution that for ξ2 6= 0 a possible choice
of functions Φ+per(x1, x2, ξ1, ξ2) and Φ−per(x1, x2, ξ1, ξ2) satisfying (7), (11) and

(12) is given by

Φ+per(x1, x2, ξ1, ξ2)

= − k− − k+
2πk+(k− + k+)

Re{H(−ξ2) ln(z − c) +H(ξ2) ln(z − c)}, (13)

and

Φ−per(x1, x2, ξ1, ξ2)

=
k− − k+

2πk−(k− + k+)
Re{H(−ξ2) ln(z − c) +H(ξ2) ln(z − c)}, (14)

where H(x) is the Heaviside unit-step function and the bar denotes the com-

plex conjugate of a complex number.
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Notice that

Φ(x1, x2, ξ1, ξ2) =
1

2πk±
Re{ln(z − c)}+ Φ±per(x1, x2, ξ1, ξ2) for± x2 > 0

(15)

is a Green’s function for the perfect interface. It is a special case of the more

general Green’s function, given in Berger and Karageorghis [3], for the perfect

interface between two thermally homogeneous anisotropic half-spaces.

With Φ±per(x1, x2, ξ1, ξ2) as given above, we require Φ
±
imp(x1, x2, ξ1, ξ2) sat-

isfying (7) to be chosen in such a way that (8) holds. To findΦ±imp(x1, x2, ξ1, ξ2),

let us write

Φ±imp(x1, x2, ξ1, ξ2) =
1

2π
Re{

∞Z
0

G±(t, ξ1, ξ2) exp(±itz)dt}, (16)

where G±(t, ξ1, ξ2) are arbitrary functions to be determined.

To ensure that (8) is true, we require that

−k+G+(t, ξ1, ξ2) = k−G−(t, ξ1, ξ2), (17)

and

Re{
∞Z
0

(λ[1 +
k+

k−
] + k+t)G+(t, ξ1, ξ2) exp(itx1)dt}

= Re{[1− k
− − k+
k− + k+

H(−ξ2)] i

(x1 − c)
− k

− − k+
k− + k+

H(ξ2)
i

(x1 − c)} for −∞ < x1 <∞. (18)

Equation (18) can be inverted to obtain

(λ[1 +
k+

k−
] + k+t)G+(t, ξ1, ξ2)

= H(−ξ2)[1− k
− − k+
k− + k+

] exp(−itc)−H(ξ2)[1 + k
− − k+
k− + k+

] exp(−itc). (19)
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In deriving (19), we make use of the result (which may be obtained from

the table of exponential Fourier transforms compiled by Erdélyi et al. [12]):

∞Z
−∞

exp(−itx)dx
(ξ + iη − x) = H(−η)2πi exp(−it[ξ + iη]). (20)

For ξ2 6= 0, the functions G+(t, ξ1, ξ2) and G
−(t, ξ1, ξ2) as given by (17)

and (19) decay exponentially to zero as t increases. Thus, Φ±imp(x1, x2, ξ1, ξ2)

and its partial derivatives with respect to x1 or x2 can be easily computed

numerically from the integrals in (16) by using a suitable integration formula

in Abramowitz and Stegun [13].

As λ →∞ (for the perfect interface), both G+(t, ξ1, ξ2) and G
−
(t, ξ1, ξ2)

[hence Φ+imp(x1, x2, ξ1, ξ2) and Φ−imp(x1, x2, ξ1, ξ2)] tend to zero. This is as

expected, since the corresponding Green’s function for the perfect interface

is given by (15).

5 Numerical results

To test the proposed Green’s function and the associated boundary element

method, let us take R+ to be the region 0 < x1 < 1, 0 < x2 < 1/2, with

k+ = 1/2, and R− to be 0 < x1 < 1, −1/2 < x2 < 0, with k− = 1/3. On

the interface between R+ and R−, i.e 0 < x1 < 1, x2 = 0, we impose the

condition (2) with λ = 1/2.

A solution of (1) which satisfies the interface condition (2) with k+ = 1/2,

k− = 1/3 and λ = 1/2 is given by

T (x1, x2) =

½
[3 cos(x2) + 2 sin(x2)] exp(−x1) for (x1, x2) ∈ R+
[cos(x2) + 3 sin(x2)] exp(−x1) for (x1, x2) ∈ R−. (21)

To devise a test problem, let us use (21) to generate boundary values of

the temperature T on the sides x2 = ±1/2, 0 < x1 < 1, and boundary values
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of the normal derivative of T on x1 = 0, −1/2 < x2 < 1/2 and also on x1 = 1,
−1/2 < x2 < 1/2. The boundary element method is then applied to solve

(1) subject to the boundary data thus generated and the interface condition

(2). To implement the method, the sides of the bimaterial are divided into

N equal length boundary elements. The temperature and the normal heat

flux are assumed to be constant over the elements, i.e. constant elements are

used. (To avoid ambiguity, we require a boundary element to be in either

R+ or R− but not partly in both the regions. One of the endpoints of the

element is allowed to be on Γ.) If the boundary element method really works,

we should be able to recover the solution (21) approximately.

On the side x1 = 0, −1/2 < x2 < 1/2, the heat flux is specified. In Table
1, we compare the numerical values of the temperature at selected points on

that part of the boundary, as obtained using N = 24 and N = 72, with the

exact solution (21). Similarly, the numerical values of the outward normal

derivative of T at selected points on x2 = 1/2, 0 < x1 < 1 [i.e. ∂T/∂x2

on that part of the boundary] are compared with the exact ones in Table 2.

In both tables, it is obvious that the numerical values improve significantly

when the number of boundary elements is increased from 24 to 72.

Table 1. A comparison of the numerical and exact values of the tem-

perature at selected points on x1 = 0, −1/2 < x2 < 1/2.

(x1, x2) 24 elements 72 elements Exact
(0, 0.4167) 3.5286 3.5515 3.5528
(0, 0.250) 3.3983 3.4018 3.4015
(0, 0.08333) 3.1567 3.1565 3.1561
(0,−0.08333) 0.7361 0.7452 0.7468
(0,−0.250) 0.2178 0.2249 0.2267
(0,−0.4167) −0.3070 −0.3025 −0.2997
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Table 2. A comparison of the numerical and exact values of the

outward normal derivative of the temperature at selected points on

x2 = 1/2, 0 < x1 < 1.

(x1, x2) 24 elements 72 elements Exact
(0.9167, 0.50) 0.1134 0.1250 0.1267
(0.750, 0.50) 0.1451 0.1496 0.1497
(0.5833, 0.50) 0.1729 0.1762 0.1768
(0.4167, 0.50) 0.2040 0.2075 0.2089
(0.250, 0.50) 0.2363 0.2441 0.2468
(0.08333, 0.50) 0.3702 0.2828 0.2916

After using the boundary element method, the temperature and heat

flux are completely known on the sides of the square region 0 < x1 < 1,

−1/2 < x2 < 1/2. We can now apply (9) (with γ(ξ1, ξ2) = 1) to compute

the temperature at various points (ξ1, ξ2) in the interior of the square. In

Table 3, we compare the numerical values of T at selected points, as obtained

using N = 24 and N = 72, with the exact solution (21). On the whole, the

numerical values of T at the selected interior points are in good agreement

with the exact solution and improve in accuracy when a larger number of

boundary elements is used.

Table 3. A comparison of the numerical and exact values of T with

the exact ones at various points in the interior of the bimaterial.

(x1, x2) 24 elements 72 elements Exact
(0.50, 0.250) 2.0640 2.0633 2.0631
(0.20,−0.10) 0.5577 0.5678 0.5694
(0.80, 0.050) 1.3931 1.3913 1.3912
(0.30,−0.010) 0.7106 0.7175 0.7186
(0.10, 0.010) 2.7428 2.7338 2.7325
(0.990, 0.490) 1.4991 1.3432 1.3333
(0.010,−0.250) 0.2031 0.2226 0.2244
(0.750, 0.0010) 1.4193 1.4181 1.4180

12



Notice that at the points (0.990, 0.490) and (0.010,−0.250) which are
close to the exterior boundary of the solution domain, the calculation using

24 boundary elements yields relatively larger percentage errors than at other

points shown in Table 3. This is consistent with the well known observation

that the accuracy of the boundary element solution is usually poorer at points

whose distance from the boundary is many times smaller than the length

of the nearby boundary elements. However, the interface does not appear

to have such an adverse boundary effect on the accuracy of the boundary

element solution at points close to the interface, due to the use of the special

Green’s function. For example, at the point (0.750, 0.0010) which is very

close to the interface, the error of the numerical value of T is still low at well

below 0.10% even when only 24 boundary elements (each of length about 0

.1667 units) are employed in the computation.

Numerical results obtained for a few other specific test problems (with

known exact solutions) also exhibit the qualitative features reported above.
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