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Abstract

A boundary element method based on a hypersingular integral and
dual-reciprocity formulation is proposed for the numerical solution of
a dynamic antiplane problem involving an elastic bimaterial with an
imperfect viscoelastic interface. The interface is modelled using lin-
ear springs and dashpots with a jump in the interfacial displacement.
To reduce the problem approximately to a system of linear algebraic
equations, the Laplace transform is employed to suppress the time
derivatives of the unknown functions. Once the linear algebraic equa-
tions are solved, the physical solution is recovered through the use of
a numerical method for inverting Laplace transform. The proposed
method is applied to solve some specific problems.
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1 Introduction

Composites consisting of two or more dissimilar materials play an important

role in modern technology. For example, media with a large number of very

fine layers are employed in optical recording, and synthetic materials, such

as plywood and fabric laminates, are widely used in the design and construc-

tion of modern aircrafts. Many studies assume the dissimilar materials are

perfectly joined to one another along their common boundaries (see, for ex-

ample, Ang [1], Berger and Karageorghis [2], Clements [3] and Lee and Kim

[4]). In reality, microscopic imperfections are bound to be present along the

interfaces of the materials. Because of this, in recent years, there is a surg-

ing interest in the analyses and the modelling of microscopically imperfect

interfaces (see, for example, Benveniste and Miloh [5], Fan and Sze [6], Ang

et al. [7] and other references therein).

The numerical solution of an antiplane problem involving an elastic bima-

terial with a plane interface that is microscopically imperfect and viscoelastic

is considered here. As in Fan and Wang [8], the interface is modelled using

linear springs and dashpots with a jump in the interfacial displacement. The

model has practical applications in engineering. For example, such an im-

perfect viscoelastic interface may be observed at room temperature (that is,

at around 300◦ Kelvin) when epoxy with a melting temperature between

340◦ and 380◦ Kelvin is used as an adhesive to join together a pair of metals

with a high melting temperature (for example, aluminium with a melting

temperature of about 1000◦ Kelvin).

Ang and Fan [9] describes a hypersingular boundary integral method for

solving the problem. In their work, the antiplane deformation of the bima-

terial is taken to be in a quasi-static state with the antiplane displacement

governed by the two-dimensional Laplace’s equation, that is, the acceler-

ation term in the governing partial differential equation is assumed negli-
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gible. The present paper considers the full dynamic problem by retaining

the acceleration term, so that the antiplane deformation is governed by the

two-dimensional wave equation.

As in [9], the Green’s function for the corresponding perfect interface

in an elastostatically deformed bimaterial is used to obtain a hypersingular

boundary integral formulation for the problem under consideration. Such a

Green’s function is a modified fundamental solution of the two-dimensional

Laplace’s equation and it is relatively simple to evaluate as its terms involve

only the elementary logarithmic function. An undesirable consequence of us-

ing such an elastostatic modified fundamental solution for an elastodynamic

problem is that the acceleration term in the wave equation gives rise to addi-

tional integrals over the entire physical domain of the bimaterial. However,

as shown in Brebbia and Nardini [10], Partridge and Brebbia [11] and many

other papers in the literature, the domain integral may be successfully treated

without having to discretise the solution domain into tiny cells or elements.

An alternative approach would be to use the fundamental solution for the

modified Helmholtz equation (see, for example, Rizzo and Shippy [12]), but

this would require a greater computational effort in computing the modified

Bessel function and its derivative and the kernel of the hypersingular inte-

gral in the formulation of the imperfect viscoelastic interface would assume

a more complicated form.

A boundary element procedure together with the Laplace transform is

employed to approximately reduce the hypersingular boundary integral for-

mulation given in the present paper into a system of linear algebraic equa-

tions. Once the linear algebraic equations are solved, the required physical

solution is recovered through the use of a numerical method for inverting

Laplace transform. To assess its validity and accuracy, the proposed numer-

ical approach is applied to solve some specific problems.
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2 Problem and model

An isotropic body is made up of two homogeneous materials that are possibly

dissimilar. It has a geometry that does not vary along the z-direction. On the

Oxy plane, the interface between the materials is the straight line segment

Γ which lies on part of the x-axis between the points (a, 0) and (b, 0) (where

a and b are given real numbers such that a < b). The exterior boundary of

the body is a simple closed curve C comprising two parts, namely C+ which

lies above the x-axis and C− below the axis. Figure 1 gives a geometrical

sketch of the problem under consideration. Note that the regions enclosed

by C+ ∪ Γ and C− ∪ Γ are denoted by R+ and R− respectively.

Figure 1: A geometrical sketch of the problem.

The body is deformed in such a way that the only non-zero component

of the displacement is the one along the Oz direction, given by the func-

tion w(x, y, t), where t denotes time. The non-vanishing components of the
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Cartesian stress tensor are given by

σxz = µ
±∂w

∂x
, σyz = µ

±∂w

∂y
for (x, y) ∈ R±, (1)

where µ+ and µ− are the elastic shear moduli of the materials in R+ and R−

respectively.

The interface Γ is microscopically damaged and exhibits viscoelastic be-

haviours. If the imperfect viscoelastic interface is macroscopically modelled

using a distribution of linear springs and dashpots connected in parallel, as

in Fan and Wang [8] (see also Ang and Fan [9]), then the following interfacial

conditions hold:

σyz(x, 0
+, t) = σyz(x, 0

−, t),

σyz(x, 0
+, t) = α∆w(x, t) + β

∂

∂t
[∆w(x, t)]

for x ∈ (a, b) and t > 0. (2)

where α and β are respectively the spring and the dashpot coefficients and

∆w(x, t) = w(x, 0+, t) − w(x, 0−, t) is the jump in the displacement across
the imperfect interface. For homogeneous interface, α and β are constants.

The antiplane deformation of the materials in R+ and R− is governed by

the two-dimensional wave equation

∂2w

∂x2
+

∂2w

∂y2
=

ρ±

µ±
∂2w

∂t2
for (x, y) ∈ R± and t > 0, (3)

where ρ+ and ρ− are the densities of the materials in R+ and R− respectively.

At each and every point on the exterior boundary C = C+ ∪ C−, either
the displacement w or the traction p = σxznx + σyzny (but not both) is

known. Note that [nx, ny] is the unit normal vector to C, pointing away from

the region R. In addition, since (3) contains a second order time derivative

of w, it is necessary to specify w and ∂w/∂t throughout R+ and R− at time

t = 0. Note that ∆w(x, 0) may be deduced from w(x, y, 0).
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The problem is to solve (3) for w subject to the known boundary data

of either w or p at each point on C, the initial values of w and ∂w/∂t in

R+ ∪ R− at t = 0 and the interfacial conditions in (2).

3 Integral formulation

Following closely the analysis in Ang and Fan [9], one may apply the recip-

rocal theorem for the two-dimensional Poisson’s equation (in Clements [13])

to (3) to derive the integral equation (for η 6= 0)

γ(ξ, η)w(ξ, η, t) =

ZZ
R+∪R−

Φ(x, y, ξ, η)ρ(x, y)
∂2

∂t2
w(x, y, t)dxdy

+

Z
C

[w(x, y, t)µ(x, y)
∂

∂n
Φ(x, y, ξ, η)

− Φ(x, y, ξ, η)p(x, y, t)]dS(x, y)

−
bZ
a

∆w(x, t)µ+
∂

∂y
Φ(x, y, ξ, η)

¯̄̄̄
y=0+

dx, (4)

where γ(ξ, η) = 1 if (ξ, η) lies inside R+ or R−, 0 < γ(ξ, η) < 1 if (ξ, η)

lies on C+ or C− [γ(ξ, η) = 1/2 if (ξ, η) lies on a smooth part of C+ or C−],

µ(x, y) = µ± if (x, y) ∈ R±, ρ(x, y) = ρ± if (x, y) ∈ R± and Φ(x, y, ξ, η) is the
Green’s function for the corresponding perfect interface in an elastostatically

deformed bimaterial as given by (Berger and Karageorghis [2])

Φ(x, y, ξ, η) =
1

2πµ±
Re{ln([x− ξ] + i[y − η])}+ Φ±(x, y, ξ, η) for ± y > 0,

(5)

∂

∂n
Φ(x, y, ξ, η) = nx(x, y)

∂

∂x
Φ(x, y, ξ, η) + ny(x, y)

∂

∂y
Φ(x, y, ξ, η), (6)
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Φ+(x, y, ξ, η) = − µ− − µ+
2πµ+(µ− + µ+)

Re{H(−η) ln([x− ξ] + i[y − η])

+H(η) ln([x− ξ] + i[y + η])}, (7)

Φ−(x, y, ξ, η) =
µ− − µ+

2πµ−(µ− + µ+)
Re{H(−η) ln([x− ξ] + i[−y − η])

+H(η) ln([x− ξ]− i[y − η])}, (8)

with i =
√
−1 and H denoting the unit-step Heaviside function.

The function Φ(x, y, ξ, η) as given by (5), (7) and (8) is a modified funda-

mental solution of the two-dimensional Laplace’s equation (for elastostatic

problems) and it satisfies the conditions on the corresponding perfect inter-

face. With Φ(x, y, ξ, η) thus given, the continuity of σyz on Γ as expressed on

the first line of (2) is automatically satisfied by (4). It follows that the right

hand side of the formulation (4) contains only one unknown function on the

interface Γ, that is, the jump in the antiplane displacement w as denoted by

∆w(x, t).

Use of (1) and (4) gives

σyz(ξ, η, t) = µ
+

ZZ
R+∪R−

∂

∂η
Φ(x, y, ξ, η)ρ(x, y)

∂2

∂t2
w(x, y, t)dxdy

+ µ+
Z
C

[w(x, y, t)µ(x, y)
∂2

∂n∂η
Φ(x, y, ξ, η)

− p(x, y, t) ∂
∂η

Φ(x, y, ξ, η)]dS(x, y)

− (µ+)2
bZ
a

∆w(x, t)
∂2

∂y∂η
Φ(x, y, ξ, η)

¯̄̄̄
y=0+

dx

for (ξ, η) in the interior of R+. (9)
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With (9), one may rewrite (2) as

α∆w(ξ, t) + β
∂

∂t
∆w(ξ, t)

= µ+ lim
²→0
{
ZZ

R+∪R−

∂

∂η
Φ(x, y, ξ, η)

¯̄̄̄
η=|²|

ρ(x, y)
∂2

∂t2
w(x, y, t)dxdy

+µ+
Z
C

[w(x, y, t)µ(x, y) [
∂2

∂n∂η
Φ(x, y, ξ, η)]

¯̄̄̄
η=|²|

−p(x, y, t) [ ∂
∂η

Φ(x, y, ξ, η)]

¯̄̄̄
η=|²|

]dS(x, y)}

+
µ+µ−

π(µ+ + µ−)
H

bZ
a

∆w(x, t)

(ξ − x)2 dx

for a < ξ < b, (10)

where H denotes the integral over the interval [a, b] is to be interpreted in the
Hadamard finite-part sense as in Chen and Hong [14] or as given equivalently

by the alternative definition (Ang and Clements [15])

H
bZ
a

F (x)dx

(x− ξ)2
def
= lim

σ→0+
[

bZ
a

(x− ξ)2F (x)dx

[(x− ξ)2 + σ2]2
− π

2σ
F (ξ)] for a < ξ < b. (11)

Note that, because of the acceleration term in the governing partial dif-

ferential equation, domain integrals over the region R+ ∪ R− appear in (4)
and (10). In Section 4, the dual-reciprocity method that does not require the

region R+ and R− to be discretised into finite elements or cells is applied to

treat these integrals. A Laplace transform dual-reciprocity boundary element

method based on (4) and (10) is then derived for the numerical solution of

the problem described in Section 2. If one avoids collocating (4) at points on

the interface but uses (10) instead to deal with the interfacial conditions (2)

then the numerical procedure involves only one unknown function ∆w(x, t)
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on the interface. The Laplace transform is applied to remove the time deriva-

tives in (4) and (10) and the final solution is recovered through the use of a

numerical technique for inverting Laplace transform.

4 Numerical procedure

To develop a dual-reciprocity hypersingular boundary integral method for

the problem in Section 2, the curves C+ and C− are discretised into N+ and

N− straight line elements respectively. The elements from C+ are denoted

by C+1 , C
+
2 , · · · , C+N+−1 and C

+
N+ and those from C− by C

−
1 , C

−
2 , · · · , C−N−−1

and C−N− .

For collocation purpose, let the midpoint of the element C±k (k = 1, 2,

· · · , N±) be (ξ±k , η
±
k ). In addition, M

+ and M− well-spaced out collocation

points in the interior of R+ and R− respectively are chosen. TheM± interior

points in R± are denoted by (ξ±m, η
±
m) form = N±+1, N±+2, · · · , N±+M±.

The dual-reciprocity method is applied to treat the domain integral in

(4). To do this, the partial derivative ∂2w/∂t2 is approximated as

∂2

∂t2
w(x, y, t)

'
N±+M±X
k=1

d2

dt2
[w±k (t)]

N±+M±X
j=1

χ±kjτ
±
j (x, y) for (x, y) ∈ R±, (12)

where w±k (t) = w(ξ±k , η
±
k , t), the local interpolating functions τ±j (x, y) are

given by

τ±j (x, y) = 1 + ([x− ξ±j ]
2 + [y − η±j ]

2) + ([x− ξ±j ]
2 + [y − η±j ]

2)3/2, (13)

and the coefficients χ±kj are defined by

N±+M±X
k=1

τ±j (ξ
±
k , η

±
k )χ

±
kp = δjp, (14)
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where δjp is the Kronecker-delta.

Note that the local interpolating functions in (13) are those proposed by

Zhang and Zhu [16] and the coefficients χ±kp are the elements of the inverse

of the (N± +M±)× (N± +M±) matrix [β±jk], where β
±
jk = τ±j (ξ

±
k , η

±
k ).

With (12), the domain integral in (4) can now be approximated asZZ
R+∪R−

Φ(x, y, ξ, η)ρ(x, y)
∂2

∂t2
w(x, y, t)dxdy

'
N++M+X
k=1

ρ+

µ+
Ψ+
k (ξ, η)

d2

dt2
[w+k (t)]

+
N−+M−X
k=1

ρ−

µ−
Ψ−k (ξ, η)

d2

dt2
[w−k (t)], (15)

where

Ψ±
k (ξ, η) =

N±+M±X
j=1

χ±kj [γ
±(ξ, η)θ±j (ξ, η)

+

Z
C±∪Γ

µ±[Φ(x, y, ξ, η)
∂

∂n
θ±j (x, y)

−θ±j (x, y)
∂

∂n
Φ(x, y, ξ, η)]dS(x, y)],

γ+(ξ, η) =

⎧⎨⎩ 1 if (ξ, η) ∈ R+
1/2 if (ξ, η) ∈ C+ (on smooth part)
0 if (ξ, η) ∈ R− ∪ C−

γ−(ξ, η) =

⎧⎨⎩ 1 if (ξ, η) ∈ R−
1/2 if (ξ, η) ∈ C− (on smooth part)
0 if (ξ, η) ∈ R+ ∪ C+

θ±j (x, y) =
1

4
([x− ξ±j ]

2 + [y − η±j ]
2) +

1

16
([x− ξ±j ]

2 + [y − η±j ]
2)2

+
1

25
([x− ξ±j ]

2 + [y − η±j ]
2)5/2. (16)
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Note that C±∪Γ denotes the closed curve enclosing R± and the unit normal
vector [nx, ny] on C

± ∪ Γ points out of R±.
To treat the domain integral in (10), one may use (15) to derive

lim
²→0

ZZ
R+∪R−

∂

∂η
Φ(x, y, ξ, η)

¯̄̄̄
η=|²|

ρ(x, y)
∂2

∂t2
w(x, y, t)dxdy

'
N++M+X
k=1

ρ+

µ+
Ω+k (ξ)

d2

dt2
[w+k (t)] +

N−+M−X
k=1

ρ−

µ−
Ω−k (ξ)

d2

dt2
[w−k (t)]

for a < ξ < b, (17)

where

Ω±k (ξ) =
N±+M±X
j=1

χ±kj [−κ
∂

∂η
θ±j (ξ, η)

¯̄̄̄
η=0

+ lim
²→0

Z
C±

µ±
∂

∂η
[Φ(x, y, ξ, η)]

¯̄̄̄
η=|²|

∂

∂n
θ±j (x, y)dS(x, y)

− lim
²→0

Z
C±

µ±θ±j (x, y)
∂2

∂η∂n
Φ(x, y, ξ, η)

¯̄̄̄
η=|²|

dS(x, y)

± κ

π
H

bZ
a

θ±j (x, 0)

(x− ξ)2
dx], (18)

where κ = −µ−/(µ+ + µ−).
Over the boundary element C±m (m = 1, 2, · · · , N±), the antiplane dis-

placement w and traction p are assumed to be spatially invariant given re-

spectively by w±m(t) and p
±
m(t), where w

±
m(t) = w(ξ±m, η

±
m, t) and p

±
m(t) =

p(ξ±m, η
±
m, t). For the approximation of the antiplane displacement jump

across the interface, that is, ∆w(x, t), the interface Γ given by the interval

[a, b] (on the x-axis) is divided into P subintervals (elements) [x0, x1], [x1, x2],

· · · , [xP−2, xP−1] and [xP−1, xP ], where x0 = a, xP = b and xj < xj+1 for

j = 1, 2, · · · , P − 1. The displacement jump ∆w(x, t) is approximated by a

spatially invariant function ∆wj(t) over the subinterval [xj−1, xj].
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Letting (ξ, η) = (ξ±m, η
±
m) (m = 1, 2, · · · , N± +M±) in (4) and using

(15), one may then approximately obtain

γ(ξ+m, η
+
m)w

+
m(t)

=
N++M+X
k=1

ρ+

µ+
Ψ+
k (ξ

+
m, η

+
m)
d2

dt2
[w+k (t)] +

N−+M−X
k=1

ρ−

µ−
Ψ−k (ξ

+
m, η

+
m)
d2

dt2
[w−k (t)]

+
N+X
k=1

Z
C+k

[µ+w+k (t)
∂

∂n
Φ(x, y, ξ+m, η

+
m)− p+k (t)Φ(x, y, ξ+m, η+m)]dS(x, y)

+
N−X
k=1

Z
C−k

[µ−w−k (t)
∂

∂n
Φ(x, y, ξ+m, η

+
m)− p−k (t)Φ(x, y, ξ+m, η+m)]dS(x, y)

−
PX
j=1

∆wj(t)

xjZ
xj−1

µ+
∂

∂y
Φ(x, y, ξ+m, η

+
m)

¯̄̄̄
y=0+

dx

for m = 1, 2, · · · , N+ +M+, (19)

and

γ(ξ−m, η
−
m)w

−
m(t)

=
N++M+X
k=1

ρ+

µ+
Ψ+
k (ξ

−
m, η

−
m)
d2

dt2
[w+k (t)] +

N−+M−X
k=1

ρ−

µ−
Ψ−k (ξ

−
m, η

−
m)
d2

dt2
[w−k (t)]

+
N+X
k=1

Z
C+k

[µ+w+k (t)
∂

∂n
Φ(x, y, ξ−m, η

−
m)− p+k (t)Φ(x, y, ξ−m, η−m)]dS(x, y)

+
N−X
k=1

Z
C−k

[µ−w−k (t)
∂

∂n
Φ(x, y, ξ−m, η

−
m)− p−k (t)Φ(x, y, ξ−m, η−m)]dS(x, y)

−
PX
j=1

∆wj(t)

xjZ
xj−1

µ+
∂

∂y
Φ(x, y, ξ−m, η

−
m)

¯̄̄̄
y=0+

dx

for m = 1, 2, · · · , N− +M−. (20)
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Note that either w±k (t) or p
±
k (t) (not both) is known over the element C

±
k .

Thus, there are N++M++N−+M−+P unknown functions of t as given by

either w±k (t) or p
±
k (t) for k = 1, 2, · · · , N±, w±m(t) for m = N± + 1, N± + 2,

· · · , N± +M±, and ∆wj(t) for j = 1, 2, · · · , P. To complete the system,
another P equations are set up by letting ξ = qm (m = 1, 2, · · · , P ) in (10),
where qm = (xm−1 + xm)/2, to obtain

α∆wm(t) + β
d

dt
∆wm(t)

=
N++M+X
k=1

ρ+Ω+k (qm)
d2

dt2
[w+k (t)] +

N−+M−X
k=1

µ+ρ−

µ−
Ω−k (qm)

d2

dt2
[w−k (t)]

+µ+
N+X
k=1

Z
C+k

[w+k (t)µ
+ [

∂2

∂n∂η
Φ(x, y, qm, η)]

¯̄̄̄
η=0+

−p+k (t) [
∂

∂η
Φ(x, y, qm, η)]

¯̄̄̄
η=0+

]dS(x, y)

+µ+
N−X
k=1

Z
C−k

[w−k (t)µ
− [

∂2

∂n∂η
Φ(x, y, qm, η)]

¯̄̄̄
η=0+

−p−k (t) [
∂

∂η
Φ(x, y, qm, η)]

¯̄̄̄
η=0+

]dS(x, y)

+
µ+µ−

π(µ+ + µ−)

PX
j=1

∆wj(t)[
1

qm − xj
− 1

qm − xj−1
]

for m = 1, 2, · · · , P. (21)

Let us denote the Laplace transform of a function f(t) by bf(s), that is,
bf(s) = ∞Z

0

f(t) exp(−st)dt, (22)

where s is the Laplace transform parameter.

In the Laplace transform domain, (19), (20) and (21) are respectively
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given by

γ(ξ+m, η
+
m)bw +

m (s) =
N++M+X
k=1

ρ+

µ+
Ψ+
k (ξ

+
m, η

+
m)[s

2 bw +
k (s)− sw+k (0)−

d

dt
[w+k (t)]

¯̄̄̄
t=0

]

+
N−+M−X
k=1

ρ−

µ−
Ψ−k (ξ

+
m, η

+
m)[s

2 bw −
k (s)− sw−k (0)−

d

dt
[w−k (t)]

¯̄̄̄
t=0

]

+
N+X
k=1

Z
C+k

[µ+ bw +
k (s)

∂

∂n
Φ(x, y, ξ+m, η

+
m)− bp +k (s)Φ(x, y, ξ+m, η+m)]dS(x, y)

+
N−X
k=1

Z
C−k

[µ− bw −
k (s)

∂

∂n
Φ(x, y, ξ+m, η

+
m)− bp−k (s)Φ(x, y, ξ+m, η+m)]dS(x, y)

−
PX
j=1

∆bwj(s) xjZ
xj−1

µ+
∂

∂y
Φ(x, y, ξ+m, η

+
m)

¯̄̄̄
y=0+

dx

for m = 1, 2, · · · , N+ +M+, (23)

γ(ξ−m, η
−
m)bw −

m (s) =
N++M+X
k=1

ρ+

µ+
Ψ+
k (ξ

−
m, η

−
m)[s

2 bw +
k (s)− sw+k (0)−

d

dt
[w+k (t)]

¯̄̄̄
t=0

]

+
N−+M−X
k=1

ρ−

µ−
Ψ−k (ξ

−
m, η

−
m)[s

2 bw −
k (s)− sw−k (0)−

d

dt
[w−k (t)]

¯̄̄̄
t=0

]

+
N+X
k=1

Z
C+k

[µ+ bw +
k (s)

∂

∂n
Φ(x, y, ξ−m, η

−
m)− bp +k (s)Φ(x, y, ξ−m, η−m)]dS(x, y)

+
N−X
k=1

Z
C−k

[µ− bw −
k (s)

∂

∂n
Φ(x, y, ξ−m, η

−
m)− bp −k (s)Φ(x, y, ξ−m, η−m)]dS(x, y)

−
PX
j=1

∆bwj(s) xjZ
xj−1

µ+
∂

∂y
Φ(x, y, ξ−m, η

−
m)

¯̄̄̄
y=0+

dx

for m = 1, 2, · · · , N− +M−, (24)
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and

α∆bwm(s) + β[s∆bwm(s)−∆wm(0)]

=
N++M+X
k=1

ρ+Ω+k (qm)[s
2 bw +

k (s)− sw+k (0)−
d

dt
[w+k (t)]

¯̄̄̄
t=0

]

+
N−+M−X
k=1

µ+ρ−

µ−
Ω−k (qm)[s

2 bw −
k (s)− sw−k (0)−

d

dt
[w−k (t)]

¯̄̄̄
t=0

]

+µ+
N+X
k=1

Z
C+k

[ bw +
k (s)µ

+ [
∂2

∂n∂η
Φ(x, y, qm, η)]

¯̄̄̄
η=0+

−bp +k (s) [ ∂∂ηΦ(x, y, qm, η)]
¯̄̄̄
η=0+

]dS(x, y)

+µ+
N−X
k=1

Z
C−k

[bw −
k (s)µ

− [
∂2

∂n∂η
Φ(x, y, qm, η)]

¯̄̄̄
η=0+

−bp −k (s) [ ∂∂ηΦ(x, y, qm, η)]
¯̄̄̄
η=0+

]dS(x, y)

+
µ+µ−

π(µ+ + µ−)

PX
j=1

∆bwj(s)[ 1

qm − xj
− 1

qm − xj−1
]

for m = 1, 2, · · · , P. (25)

Note that bw ±
k (s), bp ±k (s) and ∆bwm(s) are the Laplace transform of w±k (t),

p±k (t) and ∆wm(t) respectively.

From the initial conditions of the problem under consideration, w±k (t),

d[w±k (t)]/dt and ∆wm(t) are known at t = 0. On C
+
k , either bw +

k (s) or bp +k (s)
(not both) is known from the Laplace transform of the prescribed boundary

conditions. Similarly, on C−k , either bw −
k (s) or bp −k (s) is prescribed. Thus,

(23), (24) and (25) consitute a system of N+ +M+ +N− +M− + P linear

algebraic equations containing N++M++N−+M−+P unknown functions

of s. Once these unknowns are determined for selected values of s, a numer-
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ical technique (as explained below) may be applied to recover the required

physical solution.

5 Numerical inversion of Laplace transform

The Stehfest’s method for the numerical inversion of Laplace transform has

been applied successfully to solve quite a wide range of engineering problems

(see, for example, Moench and Ogata [17], Ang [1], Zhu et al. [18] and

Sladek et al. [19]). According to Stehfest [20], if bf(s) in (22) is known, f(t)
is approximately given by

f(t) ' ln(2)

t

LX
n=1

vn bf(n ln(2)
t

), (26)

where L is an even integer and

vn = (−1)n+L/2
min(n,L/2)X
m=[(n+1)/2]

mL/2(2m)!

(L/2−m)!m!(m− 1)!(n−m)!(2m− n)! (27)

with [r] being the integer part of the real number r.

Most (if not all) numerical techniques for inverting Laplace transform are

highly susceptible to errors in the calculation of bf(s). Formula (26) is no
exception. Theoretically, the integer L which denotes the number of terms

in (26) should be selected to be as large as possible. However, in practice, due

to the limitation of computers as finite machines which store real numbers

in truncated form and possible numerical errors in bf(s), the approximation
(26) may start to deteriorate rapidly once L exceeds a critical value. The

coefficient vn increases in magnitude with increasing n. Thus, the sum in

(26) may contain extremely large magnitude terms which do not cancel each

other properly due to errors if L is too large. The critical value of L depends

on the arithmetical precision of the calculation as well as the accuracy in the

16



evaluation of bf(s) (Stehfest [20]). If a higher arithmetical precision is used
or if bf(s) is computed more accurately, the critical value is larger.
Perhaps a possible method for finding suitable values of L for any prob-

lem is through testing the computer code developed for special cases with

known solutions. To obtain a rough idea of the range of the value L that may

be used to invert Laplace transform dual-reciprocity boundary element so-

lutions of dynamic problems in engineering, one may refer to relevant works

in the literature. For example, Zhu et al. [18] reported that their numerical

results for particular test problems solved using double precision arithmetics

and constant elements did not change significantly when the value of L was

increased from 6 to 16. Sladek et al. [19] obtained a Laplace transform so-

lution of a dynamic crack problem using a meshless local boundary integral

equation method and used L = 10 to invert the Laplace transform.

6 Specific problems

Problem 1. For a specific test problem, we take

µ+ = 1/5, µ− = 1/2, ρ+ = 1/5 and ρ− = 1/2, (28)

and the regions R+ and R− to be

R+ = {(x, y) : 0 < x < 1, 0 < y < 1/2},

R− = {(x, y) : 0 < x < 1, − 1/2 < y < 0}. (29)

Furthermore, we require the unknown stress σyz(x, y, t) and the displace-

ment jump ∆w(x, t) to satisfy the interfacial conditions

σyz(x, 0
+, t) = σyz(x, 0

−, t)

=

√
26

40
∆w(x, t) +

√
26

40

∂

∂t
[∆w(x, t)]

for x ∈ (0, 1) and t > 0. (30)
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A solution of (3) satisfying (30) [with µ+, µ−, ρ+ and ρ− as given by (28)]

is

w(x, y, t) = H(y){[ 1
10
cosh(

√
26

5
y) +

1

10
sinh(

√
26

5
y)] cos(x) exp(− t

5
)}

+H(−y){[− 1
10
cosh(

√
26

5
y) +

1

25
sinh(

√
26

5
y)]

× cos(x) exp(− t
5
)}+ sin( t

5
) cos(

y

5
). (31)

To devise a test problem, we use (31) to generate boundary values of the

displacement w on the sides y = ±1/2, 0 < x < 1, boundary values of the
traction p on x = 0, −1/2 < y < 1/2 and also on x = 1, −1/2 < y < 1/2
and initial values of w and ∂w/∂t at t = 0 in R+ and R−. The numerical

procedure outlined above is then applied to solve (3) subject to the initial-

boundary data thus generated and the interfacial conditions (30). If the

procedure really works, we should recover approximately the solution (31)

and the displacement jump ∆w(x, t) approximately at selected time instants.

From (31), the exact ∆w(x, t) is given by

∆w(x, t) =
1

5
cos(x) exp(− t

5
). (32)

Each side of the square region 0 < x < 1, −1/2 < y < 1/2, is divided

into J boundary elements of equal length. To avoid ambiguity, J is chosen

to be even so that a boundary element is entirely in either R+ or R− (though

one of the endpoints of an element may lie on Γ). Thus, N+ = N− = 2J.

Furthermore, the M+ +M− collocation points in the interior of R+ and R−

are chosen to be given by (i/(K1+1), j/[2(K2+1)]) for i = 1, 2, · · · , K1 and

j = ±1, ±2, · · · , ±K2, where K1 and K2 are positive integers. Note that

M+ = M− = K1K2. Thus, there are 2K1K2 interior collocation points. For

example, the 12 interior collocation points generated by (K1,K2) = (3, 2) are

as shown in Figure 2. The interface Γ is divided into P elements of equal

length.
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Figure 2: Distribution of the interior collocation points generated using
(K1, K2) = (3, 2).

Table 1. Numerical and exact values of the displacement w at selected interior

points and time t = 1 are compared (Problem 1).

Point (x, y)
J = P = 6
(K1,K2) = (3, 1)
L = 6

J = P = 18
(K1,K2) = (7, 3)
L = 10

Exact

(0.25, 0.25) 0.29902 0.30129 0.30078
(0.50, 0.25) 0.28942 0.29116 0.29114
(0.75, 0.25) 0.27469 0.27631 0.27572
(0.25, −0.25) 0.10529 0.10815 0.10832
(0.50, −0.25) 0.11378 0.11668 0.11682
(0.75, −0.25) 0.12704 0.13018 0.13038

In Table 1, we compare the numerical values of w at various selected

interior points at time t = 1 with the exact solution (31). The numerical
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Figure 3: A graphical comparison between numerical and exact ∆w(x, 1) for
0 < x < 1 (Problem 1).

values in the second column of the table are obtained using J = P = 6 (24

exterior boundary elements and 6 interfacial elements, each of length 1/6

units), (K1, K2) = (3, 1) (6 interior collocation points) and L = 6 [6 terms

in the Stehfest’s formula (26)]. When the test problem under consideration

is solved more accurately in the Laplace transform domain by using more

elements and interior collocation points, more terms may be employed in the

Stehfest’s formula. Thus, in the third column of Table 1, with J = P = 18

(72 exterior boundary elements and 18 interfacial elements, each of length

1/18) and (K1,K2) = (7, 3) (42 interior collocation points), the numerical

values are obtained by using L = 10 in (26) to invert the numerical solution

in the Laplace transform domain. It is obvious that the numerical values

in the third column are more accurate compared with those in the second
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column.

Figure 4: A graphical comparison between numerical and exact
w(0.250, 0.375, t) over the time interval 0 < t < 6 (Problem 1).

In Figure 3, some numerical values of the interfacial displacement jump

∆w(x, t) obtained using J = P = 18, (K1,K2) = (7, 3) and L = 10 are

compared against the graph of (32) over the interval 0 < x < 1 at time

t = 1. There is a reasonably good agreement between the numerical and the

exact interfacial displacement jump except at interfacial points which are

very close to the exterior sides x = 0 and x = 1 of the bimaterial. However,

it is possible to improve the accuracy of the numerical values at those points

by refining the computation, such as by employing more interfacial elements

near x = 0 and x = 1.

In Figure 4, some numerical values of w(x, y, t) at (0.250, 0.375), as ob-
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tained using J = P = 18, (K1, K2) = (7, 3) and L = 10, are compared

against the graph of the exact solution (31) over the time interval 0 < t < 6.

The numerical values agree well with the exact solution over the time interval

under consideration.

Problem 2. In Problem 1 above, note that ρ+/µ+ = ρ−/µ−, that is, the

waves travel at the same speed in both regions R+ and R−. Furthermore,

∆w(x, t) differs from ∂[∆w(x, t)]/∂t by a mere constant factor and does not

vary sinusoidally with time. For a test problem in which ρ+/µ+ is not equal

to ρ−/µ− and ∆w(x, t) varies sinusoidally with time, choose

µ+ = 1, µ− = 2, ρ+ = 1 and ρ− = 1/2, (33)

and take the unknown stress σyz(x, y, t) and the displacement jump ∆w(x, t)

to satisfy the interfacial conditions

σyz(x, 0
+, t) = σyz(x, 0

−, t)

= ∆w(x, t) +
∂

∂t
[∆w(x, t)]

for x ∈ (0, 1) and t > 0. (34)

It is easy to check that a solution of (3) satisfying (34) [with µ+, µ−, ρ+

and ρ− as given by (33)] is given by

w(x, y, t) = H(y){[−1
2
cos(t) +

1

2
sin(t)] cos(y)

+ sin(t) sin(y) + sin(2t) sin(2y)

+H(−y){[4
5
cos(2t)− 2

5
sin(2t)] cos(y)

+ sin(t) sin(
y

2
) + sin(2t) sin(y)}. (35)

Note that the displacement jump ∆w(x, t) corresponding to (35) is

∆w(x, t) = −1
2
cos(t) +

1

2
sin(t)− 4

5
cos(2t) +

2

5
sin(2t). (36)
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For the test problem, the regions R+ and R− are as defined in (29) and

(35) is used to generate boundary values of the displacement w on all the

four sides of the square bimaterial as well as initial values of w and ∂w/∂t

at t = 0 in R+ and R−. The numerical procedure outlined above is then

applied to solve (3) subject to the initial-boundary data thus generated and

the interfacial conditions (34).

Figure 5: A graphical comparison between numerical and exact∆w(0.5139, t)
over the time interval 0 < t < 3 (Problem 2).

The exterior boundary of the solution domain is discretised into 4J equal

length elements and the 2K1K2 interior collocation points are chosen as in

Problem 1 above. In Figure 5, the numerical displacement jump ∆w(x, t),

as obtained by using J = P = 36, (K1, K2) = (8, 4) and L = 18, is com-

pared graphically with the exact value given by (35) at the interfacial point
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(0.5139, 0) over the time interval 0 < t < 3.

Problem 3. For a particular problem with a physical interpretation, con-

sider two dissimilar elastic slabs R+ and R− which occupy the regions 0 <

x < `, 0 < y < `/2, and 0 < x < `, −`/2 < y < 0, respectively, and are

joined along the plane boundary 0 < x < `, y = 0. Here ` is a given con-

stant length. The elastic material in R± is homogeneous with shear modulus

µ± and mass density ρ±. The slab is subject to an antiplane elastodynamic

deformation governed by (3) with the initial-boundary conditions

w(x, y, 0) = 0 and
∂

∂t
[w(x, y, t)]

¯̄̄̄
t=0

= 0 for (x, y) ∈ R+ ∪ R−,

w(x,−1
2
`, t) = 0 and σyz(x,

1

2
`, t) = H(t)σ0 for 0 < x < ` and t > 0,

σxz(0, y, t) = 0 and σxz(`, y, t) = 0 for −
1

2
` < y <

1

2
` and t > 0, (37)

where σ0 is a given constant. In addition, the interface between the slabs is

viscoelastic such that (2) holds.

The exterior boundary of the bimaterial slab is discretised into 4J equal

length elements and 2K1K2 interior collocation points are chosen as in Prob-

lem 1 above (with ` = 1). The numerical procedure in Section 4 is then

applied using J = P = 18, (K1,K2) = (7, 3) and L = 10 in order to com-

pute the displacement field in the slab and the displacement jump across

the imperfect viscoelastic interface. Taking µ+/µ− = 5/4, ρ+/ρ− = 5/3

and β/
√
µ+ρ+ = 100, we plot the non-dimensionalised interfacial displace-

ment jump µ+∆w(x, t)/(σ0`) against the non-dimensionalised time variable√
µ+t/(`

√
ρ+) at x/` = 0.5278 for selected values of `α/µ+ in Figure 6. Note

that for this particular problem ∆w is independent of x. Also, due to the

discontinuity in the load function at t = 0, it may be difficult to obtain sen-

sible numerical results for µ+∆w(x, t)/(σ0`) when the non-dimensionalised
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time variable
√
µ+t/(`

√
ρ+) is extremely small. However, the computa-

tion of µ+∆w(x, t)/(σ0`) for the range of
√
µ+t/(`

√
ρ+) which is of prac-

tical interest presents no considerable difficulty. As may be expected, for

each value of `α/µ+ in Figure 6, the non-dimensionalised displacement jump

µ+∆w(x, t)/(σ0`) rises rapidly to reach a local peak before settling down to

the steady-state value of µ+/(`α).

Figure 6: Plots of µ+∆w(x, t)/(σ0`) against the non-dimensionalised time
variable

√
µ+t/(`

√
ρ+) at x/` = 0.5278 for selected values of `α/µ+ (Problem

3).

7 Summary and discussion

A dual-reciprocity hypersingular boundary integral method is devised for

solving numerically an antiplane elastodynamic problem involving a bima-
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terial with an imperfect viscoelastic interface. The condition which models

the imperfect viscoelastic interface as a distribution of linear springs and

dashpots connected in parallel is expressed in terms of a hypersingular in-

tegral equation. In such a hypersingular boundary integral formulation, the

interfacial displacement jump is the only unknown function on the interface.

In implementing the method, it is not necessary to discretise the region

occupied by the bimaterial but only its exterior boundary and the interface.

The method reduces the problem under consideration to a system of linear

algebraic equations of the formAX = B (where A is a known N×N matrix,

X is an N × 1 matrix containing the unknown parameters in the formula-
tion and B is a given N × 1 matrix) in the Laplace transform domain. The

computation of the matrix A takes up the main bulk of the computer time.

Fortunately, the calculations involved are mostly independent of the Laplace

transform parameter. Thus, although AX = B has to be solved for several

different values of the Laplace transform parameter, the computationally in-

tensive portion of the numerical procedure has to be carried out only once.

After the heavy computation is completed, the system of linear algebraic

equations may be set up and solved using a relatively small amount of com-

puter time for different values of the Laplace transform parameter. Once X

is determined numerically for several selected values of the Laplace transform

parameter, it may be inverted numerically by using the Stehfest’s method

to obtain the interfacial displacement jump as well as the displacements at

selected points in the bimaterial.

The proposed method is applied to solve some specific problems. For

the problems with known solutions, the numerical values of the displacement

and the interfacial displacement jump show good agreement with the exact

solution. Improved accuracy is also observed in the numerical values when

the calculations are refined by using more boundary and interfacial elements
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and more terms in the Stehfest’s method. This suggests the method may be

applied successfully to solve this class of elastodynamic problems involving

an imperfect viscoelastic interface in a bimaterial.

The numerical procedure described in the present paper employs only

constant boundary and interfacial elements. The accuracy of the solution in

the Laplace transform domain may be improved through the use of higher

order elements, such as the discontinous linear elements (refer to, for example,

Paŕis and Cañas [22] and Ang [21]), instead of increasing the number of

constant elements.
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