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Abstract-A numerical method for the approximate solution 
of the one-dimensional heat equation subject to suitably 
prescribed initial-boundary condition and specification of 
energy is presented. It is applied to solve a specific test 
problem. 
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I. INTRODUCTION 

Problems governed by partial differential equations of 
physics subject to non-classical conditions have been a 
subject of considerable interest. An example of such 
problems requires solving the one-dimensional heat 
equation (in non-dimensionalised form) 
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subject to the initial-boundary conditions 
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and the non-local condition 
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where x and t are respectively the spatial and temporal 
variables, u(x,t) is the unknown function (temperature) to 
be determined, s(x,t), f(x), g(t) and E(t) are well 
prescribed functions, α and β are suitably given constants 
and l  is a given constant such that 0< l  ≤1. 

Note that (4) implies the total energy in the region 0<x< l  
is constrained. The special case in which  α=1 and β=0 
gives the Dirichlet condition at the boundary x=1. The 
Neumann condition is applicable at x=1if α =0 and β =1. 

Finite-difference methods for the numerical solution of the 
problem defined by (1)-(4) are given by various 
researchers, e.g. [DEH, 03] (for l =1 and Dirichlet 
condition at x=1), [CAN, 90]  (for s(x,t)=0 and Neumann 
condition at x=1) and [CAN, 82] (for s(x,t)=0 and 
Dirichlet condition at x=1). 

In the present paper, an alternative numerical method 
based on an integro-differential formulation of (1) and the 

use of local interpolating functions for approximating u is 
presented for solving the problem. The approach reduces 
(1)-(4) to an initial-value problem governed by a linear 
system of first order ordinary differential equations 
containing unknown functions of time t. To solve the 
intial-value problem numerically, the first order time 
derivatives of the unknown functions are approximated 
using linear functions of t. Numerical results for a specific 
test problem are presented. 

II. INTEGRO-DIFFERENTIAL EQUATION 
 
Through partial integrations of the heat equation (1) with 
respect to x, one may derive the integro-differential 
equation 
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where p and q are the boundary flux functions defined by  
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The problem under consideration may be reformulated as 
one that requires finding u(x,t) from (5) together with the 
initial-boundary conditions (2)-(4). 

III. APPROXIMATION OF UNKNOWN FUNCTION 

The unknown function u(x,t) is approximated as  
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where um(t)=u(ξm,t), ξ1,  ξ2, …, ξN−1 and ξN are N distinct 
well-spaced nodes selected from the interval [0,1] with 
ξ1=0 and ξN=1, σn(x)=1+|x−ξn |3/2 is the local interpolating 
function centred about ξn and cnm are constant coefficients 
defined by  
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with δnp being the Kronecker-delta (that is, δnp=1 if n=p 
and δnp=0 if n≠p). 

In general, u1(t), u2(t), …, uN−1(t) and uN(t) may be 
regarded as unknown functions. The integro-differential 
equation (5) and the approximation (7) can be used 



together with (2)-(4) to obtain a numerical procedure for 
determining the unknown functions. 

IV. NUMERICAL PROCEDURE 

If (7) is substituted into (5) with ξ=ξr for r=1, 2,…, N, one 
obtains the system of ordinary differential equations 
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where 
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In general, the system (9) contains N+2 unknown 
functions of t as given by u1(t), u2(t), …, uN−1(t), uN(t), p(t) 
and q(t) but comprises only N equations. Two more 
equations are required to complete the system. They come 
from (3) and (4) as given respectively by 
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The first order time derivatives of the unknown functions 
in (9) are approximated as linear functions of t over the 
time interval [τ, τ + 2∆t] as given by 
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where ∆t is a very small positive constant. 

 
TABLE I 

A COMPARISON OF NUMERICAL AND EXACT SOLUTIONS 

Point x N=5,∆t=0.10 N=9,∆t=0.10 N=17,∆t=0.05        Exact 
0.00   0.337679    0.334842    0.334174          0.333997 
0.25   0.424551    0.422419    0.421968          0.421844 
0.50   0.487809    0.486385    0.486095          0.486008 
0.75   0.527955    0.527274    0.527137          0.527093 

Substituting (13) into (9) and letting t=τ+j∆t (for j=1,2), 
one obtains 
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If un(τ) is assumed to be known for n=1,2,…,N, then (14) 
may be regarded as a system of 2N linear algebraic 
equations containing 2(N+2) unknowns given by p(τ+j∆t), 
q(τ+j∆t) and un(τ+j∆t) (n=1,2,…,N and j=1,2). Another 4 
equations are obtained by letting t=τ+j∆t (for j=1,2) in 
(11). Thus, 
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The equations in (14) and (15) may be solved as follows. 
Work out un(0)  using the initial condition in (2) and let 
τ=0 in (14) and (15) to solve for p(∆t), q(∆t), un(∆t), 
p(2∆t), q(2∆t) and un(2∆t). With p(2∆t), q(2∆t) and 
un(2∆t) now known, let τ=2∆t in (14) and (15) to solve for 
p(3∆t), q(3∆t), un(3∆t), p(4∆t), q(4∆t) and un(4∆t). 
Marching forward in time, one can let τ=4∆t, 6∆t, …, to 
solve for the unknown quantities at higher and higher time 
levels. 

V. A SPECIFIC TEST PROBLEM 

For a specific test problem, the given parameters in (1)-(4) 
are chosen to be 
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The exact solution is given by 
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To execute the numerical procedure in Section IV, the 
collocation points are selected to be given by 
ξk=(k−1)/(N−1) for k=1,2,…,N. Table I compares 3 sets of 
numerical values of u at 4 selected points and at t=1 with 
the exact solution. The numerical values agree well with 
the exact ones. Furthermore, as N is increased and/or as ∆t 



is reduced, there is an obvious improvement in the 
accuracy of the numerical solution. 

Plots of  the boundary flux functions p(t) and q(t) obtained 
numerically by solving (14) and (15) with N=17 and 
∆t=0.05 are given in Fig. 1 for 0<t<2. The graphs for the 
approximately determined p(t) and q(t) are visually 
indistinguishable from those obtained from the exact 
solution (17). In Fig. 1, the numerical and exact values of 
p(t) and q(t) mainly agree to three significant figures. 

 

 

 

 

 

 

 

 

 

Fig. 1. Plots of numerical and exact flux functions. 

VI. CONCLUSION 

A numerical method has been successfully developed and 
implemented for solving the one-dimensional heat 
equation subject to a non-local condition. It (the method) 
uses chosen local interpolating functions to reduce a 
suitable integro-differential equation into a system of first 
order ordinary differential equations. This results in a 
formulation containing the boundary heat fluxes, allowing 
for easy treatment of boundary conditions involving 
fluxes. If the boundary fluxes are not known a priori, they 
are unknown functions which can be directly and 
accurately determined from the formulation. It is not 
necessary to approximate the boundary fluxes using any 
finite-difference formula. Numerical results obtained for a 
specific test problem (and some other problems not 
reported herein) indicate that the temperature and the 
boundary heat fluxes can be computed accurately by the 
numerical procedure here. 
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