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Abstract

The present paper examines the effective macroscopic behavior of

a microscopically damaged interface between an infinitely long piezo-

electric layer and a piezoelectric half-space under antiplane deforma-

tion. The interface is modeled as containing a periodic array of micro-

cracks. The lengths and the positions of the micro-cracks on a period

interval of the interface are randomly generated. The micro-statistical

model is formulated in terms of hypersingular integral equations and

used to investigate in detail the influences of the material constants

of the piezoelectric layer and the half-space and the width of the layer

on the effective properties of the interface.

Keywords: Weak interface, micro-statistical model, effective proper-

ties, piezoelectric materials, hypersingular integral equations.

*Author for correspondence, mwtang@ntu.edu.sg

1

Published in International Journal of Solids and Structures 96 (2016)1-10.

http://ees.elsevier.com/ijss/viewRCResults.aspx?pdf=1&docID=14690&rev=1&fileID=552706&msid={13808E9C-0B68-4CD5-8AA5-22D7F232DECD}


1 Introduction

The macro-level generalized spring-like model for a weak interface Γ between

two piezoelectric materials denoted by 1 and 2 is given by the interfacial

conditions

σ(1) • n = σ(2) • n = a • (u(1) − u(2)) + b ((1) − (2))

D(1) • n = D(2) • n = c • (u(1) − u(2)) + ((1) − (2))

¾
on Γ (1)

where n is the unit normal vector to Γ pointing into material 1, u() and

σ() are respectively the displacement and the stress in material , () and

D() are respectively the electrical potential and the electrical displacement

in material  and the scalar  the vectors b and c and the second rank tensor

a are tensorial quantities characterizing the effective properties of Γ.

The spring-like model has been proposed and used by many researchers

for analyzing weak interfaces in elastic layered materials (Benveniste and

Miloh [3], Hashin [7], Jones and Whittier [8], López-Realpozo et al. [13],

Pilarski and Rose [16] and Rokhlin and Wang [17]) as well as in piezoelectric

layered materials (Li and Lee [10, 11, 12], Wang and Pan [23], Wang et

al. [24] and Wang and Sudak [25]). For the case of piezoelectric layered

materials, most (if not all) of the existing papers made the assumption that

no coupling exists between the displacement and electrical potential jumps in

the interfacial conditions, that is, they assumed that b =0 and c =0 in (1).

The validity of such an assumption may be checked by using micro-models

to estimate the effective properties of microscopically damaged interfaces.

As is clear from the reference [8] above, there are, however, few research

papers on micro-analyses for estimating the effective properties of micro-

damaged interfaces between dissimilar materials. Fan and Sze [4] studied

the effective electrical behavior of a micro-cracked interface between dielectric

materials by using a finite-element based three-phase model. More recently,
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Wang et al. [20, 21, 22] proposed a micro-statistical model for estimating the

effective stiffness of a micro-damaged interface between dissimilar materials

under elastostatic deformations.

The current paper adopts the micro-statistical approach to analyze the

effective properties of a micro-damaged interface between an infinitely long

piezoelectric layer and a piezoelectric half-space under antiplane deforma-

tion. As in [20, 21, 22], the interface is modeled as containing a periodic

array of micro-cracks which are taken to be either electrically impermeable

or permeable. The lengths and the positions of the micro-cracks on a period

interval of the interface are randomly generated. The boundary conditions on

the micro-cracks are expressed in terms of hypersingular integral equations

which are solved numerically. Once the hypersingular integral equations are

solved, quantities describing the effective properties of the interface can be

readily estimated. The influences of the material constants of the piezo-

electric layer and the half-space and the width of the layer on the effective

properties of the interface are examined in detail.

The problem under consideration here may be of practical interest as

piezoelectric thin film structures are widely used in microelectronics (Park

el al. [14, 15] and Trolier-McKinstry and Muralt [19]). Such a structure

is formed by coating a thin layer of piezoelectric material on a substrate of

dissimilar material (see Tateyama el al. [18]). The interface between the thin

layer and the substrate may be damaged by a distribution of micro-cracks.

For a simpler mathematical analysis of the layered piezoelectric structure,

the interface may be modeled using (1). Unless the edge of the layer is very

far away from the micro-cracks, its effects on the effective properties of the

micro-cracked interface cannot be ignored in the modeling of the interface.
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2 The problem and basic equations

With reference to a Cartesian coordinate system 123 consider a thin

piezoelectric layer occupying the region 0  2   ( is a positive constant)

bonded to a piezoelectric half-space in the region 2  0 The layer and the

half-space are occupied possibly dissimilar materials. The interface 2 = 0

between the thin layer and the half-space is microscopically damaged. The

geometries of the piezoelectric bimaterial are independent of the spatial co-

ordinate 3

The micro-damaged interface is modeled as containing a periodic array

of micro-cracks. Specifically, a period interval of the interface contains 

arbitrarily located micro-cracks of possibly different lengths. In the region

0  1   2 = 0, the tips of the -th micro-cracks are given by (
() 0)

and (() 0), where () and () ( = 1 2 · · ·  ) are real numbers such
that 0  (1)  (1)  (2)  (2)  · · ·  ()  ()   The micro-cracks

on the remaining part of the interface are given by ()+  1  ()+

for = 1 2 · · ·   and  = ±1 ±2 · · ·  that is, the remaining parts of the
interface are periodically distributed replicas of the region 0  1   2 =

0 Refer to Figure 1 for a geometrical sketch of the piezoelectric bimaterial

having three micro-cracks ( = 3) over a period interval of the interface.
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Figure 1. A sketch of the geometry of the piezoelectric bimaterial for

 = 3

The damage ratio (or micro-crack density)  of the interface is defined by

 =
1



X
=1

(() − ()). (2)

The piezoelectric bimaterial undergoes an antiplane deformation with

electrical poling in the 3 direction. The only non-zero component of the

Cartesian displacement is 3 which is a function of only 1 and 2 The an-

tiplane stresses 3 and the electric displacements  are given by (see, for
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example, Auld [2] and Li and Lee [11])

3 = 44(2)
3


+ 15(2)






 = 15(2)
3


− 11(2)




 (3)

where  is the electrical potential which is also a function of only 1 and 2,

and 44(2) 15(2) and 11(2) are respectively the elastic moduli, piezoelec-

tric coefficient and dielectric coefficient of the piezoelectric bimaterial given

by

(44(2) 15(2) 11(2))

=

(
(
(1)
44  

(1)
15  

(1)
11 ) for 0  2  

(
(2)
44  

(2)
15  

(2)
11 ) for 2  0

(4)

with 
()
44  

()
15 and 

()
11 ( = 1 2) being suitably given constants.

According to the law of conservation of momentum and the Gauss law

of electric flux, the antiplane deformation of the piezoelectric bimaterial is

governed by the partial differential equations

2


(44(2)3 + 15(2)) = 0

2


(15(2)3 − 11(2)) = 0 (5)

Note that the Einsteinian convention of summing over repeated indices ap-

plies for lower case Latin subscripts which run from 1 to 2

For the antiplane deformation, the generalized spring-like model in (1)

for the micro-cracked interface 2 = 0 between the piezoelectric layer and

the piezoelectric half-space can be re-written as∙
32(1 0

+)
2(1 0

+)

¸
=

∙
32(1 0

−)
2(1 0

−)

¸
=

∙
11 12
21 22

¸ ∙
∆3(1)
∆(1)

¸
for −∞  1 ∞ (6)
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where ∆3(1) = 3(1 0
+)−3(1 0

−) ∆(1) = (1 0
+)−(1 0

−) and

 are coefficients characterizing the effective piezoelectric properties of the

interface.

The problem of interest here is to estimate the effective properties 

of the interface by taking into consideration the details of the interfacial

micro-cracks.

For the macro-level model in (6), the interfacial micro-cracks are taken to

be electrically impermeable. Thus, there is a jump in the electrical potential

 across the interface.

However, if the interfacial micro-cracks are electrically permeable, the

electrical potential  is continuous on the interface. For an electrically perme-

able interface, the interfacial conditions in (6) for the generalized spring-like

model should be modified to become

32(1 0
+) = 32(1 0

−) = ∆3(1)
2(1 0

+)−2(1 0
−) = 0

(1 0
+)− (1 0

−) = 0

⎫⎬⎭ for −∞  1 ∞ (7)

where  is the effective stiffness of the interface to be estimated.

3 Hypersingular integral formulation

For mathematical convenience, we introduce the generalized displacements

 and stresses  ( = 1 2;  = 1 2)

1 = 3, 2 =  1 = 3, 2 = 

11 = 44 12 = 15 21 = 15 22 = −11 (8)

and rewrite (3) and (5) as

 = 



for   = 1 2 (9)
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and


2


= 0 for  = 1 2 (10)

The convention of summing over repeated indices also applies for upper case

Latin subscripts running from 1 to 2

The boundary value problem for the micro-cracked interface described in

Section 2 requires solving (10) in the piezoelectric bimaterial subject to the

conditions

2(1 ) = 0
2(1 0

+) = 2(1 0
−)

¾
for −∞  1 ∞

∆(1) = 0 for points (1 0) outside micro-cracks,

(1 2)→ 0 as 2 → −∞ (11)

and

2(1 0) = −(1)

for points (1 0) on electrically impermeable micro-cracks, (12)

where ∆(1) = (1 0
+) − (1 0

−) and (1) are suitably pre-

scribed internal loads acting on the micro-cracks. The internal loads (1)

are periodic functions of 1 with period  For the analysis here, they are

taken to be constants. For the far-field conditions in (11), we require the

generalized stresses to decay as (|2|−) for large |2|, where  is a real

number such that   1

In Wang et al. [21], the same boundary value problem was solved for

a micro-cracked interface between an orthotropic elastic layer and an or-

thotropic half-space under inplane deformations. The hypersingular integral

equations for (10) together with (11) and (12) can be extracted from [21].
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They are given by

1

2
=

Z 

0

(1 ) [
1

(1 − 1)
2
+Θ(1 1)]1

+
1

2

Z 

0

(1 ) Re{Ω(1 1 2)}1

− 1
2

X
=1

Z ()

()
∆(1) Re{Ω(1 1−)}1

− 1
2

X
=1

Z ()

()
∆(1) Re{Ω(1 1 )}1

= 0 for 0  1   (13)

and

− 1
2

Z 

0

(1 ) Re{Ω(1 1 )}1

+
1

2
[=

Z ()

()

∆(1)

(1 − 1)
2

1

+
X
=1
6=

Z ()

()

∆(1)

(1 − 1)
2

1

+
X
=1

Z ()

()
∆(1)Θ(1 1)1]

= (1) for 
()  1  () ( = 1 2 ) (14)

where =
R
denotes that the integral is to be interpreted in the Hadamard

finite-part sense,  =
√−1  =  +    and  are constants

defined by

[ ] =

"
−(1)44 −(1)15
−(1)15 

(1)
11

#
 (15)
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11 = −0
(1)
44 [(

(2)
44 − 

(1)
44 )(

(1)
11 + 

(2)
11 )− ((1)15 + 

(2)
15 )

2]

−20[
(1)
44 (

(2)
15 )

2 + 
(2)
44 (

(1)
15 )

2]

12 = 21 = −0
(1)
15 (

(1)
44 − 

(2)
44 )(

(1)
11 − 

(2)
11 )

+0(
(1)
15 − 

(2)
15 )[2

(1)
44 

(1)
11 + 

(1)
15 (

(1)
15 + 

(2)
15 )]

22 = 0
(1)
11 [(

(2)
44 + 

(1)
44 )(

(2)
11 − 

(1)
11 )− ((1)15 + 

(2)
15 )

2]

+20[
(1)
11 (

(2)
15 )

2 + 
(2)
11 (

(1)
15 )

2]

0 =
1

(
(1)
44 + 

(2)
44 )(

(1)
11 + 

(2)
11 ) + (

(1)
15 + 

(2)
15 )

2
 (16)

and Θ(1 1) and Ω(1 1 ) are defined by

Θ(1 1) =
1

2
Ψ1(

+ 1 − 1


) +
1

2
Ψ1(

+ 1 − 1


)

Ω(1 1 ) =
1

(1 − 1 + )2
+
1

2
Ψ1(

+ 1 − 1 + 


)

+
1

2
Ψ1(

− 1 + 1 − 


) (17)

with Ψ1 being the trigamma function.

To compute the coefficients  in (6) for the effective properties of the

weak interface modeled using electrically impermeable micro-cracks, the hy-

persingular integral equations are solved numerically for ∆(1) as de-

scribed in Wang et al. [21] for two independent set of loads  = 
(1)
 and

 = 
(2)
  If the solution corresponding to  = 

()
 is given by ∆

()
 (1)

then  can be determined by solving the system∙
11 12
21 22

¸ X
=1

Z ()

()

"
∆

()
1 (1)

∆
()
2 (1)

#
1 =

Z 

0

"

()
1 (1)


()
2 (1)

#
1 for  = 1 2

(18)

For more details on numerical methods for hypersingular integral equations,

refer to Ang [1].

If the micro-cracks are electrically permeable, the boundary conditions in
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(12) are replaced by

∆2(1) = 0 for −∞  1 ∞

12(1 0) = −1(1)
for points (1 0) on electrically permeable micro-cracks, (19)

and the corresponding hypersingular integral equations are given by (13)

for  = 1 2 and (14) for  = 1 (only) together with ∆2 = 0 Once the

integral equations are solved for ∆1(1) the effective stiffness  in (7), for

the interface weakened by electrically permeable cracks, can be estimated

from



X
=1

Z ()

()
∆1(1)1 =

Z 

0

1(1)1 (20)

For the special case  → ∞ (that is, the case where the micro-cracked

interface lies between two half-spaces), the hypersingular integral equations

in (13) and (14) for electrically impermeable micro-cracks reduce to

1

2
[=

Z ()

()

∆(1)

(1 − 1)
2

1

+
X
=1
6=

Z ()

()

∆(1)

(1 − 1)
2

1

+
X
=1

Z ()

()
∆(1)Θ(1 1)1]

= (1) for 
()  1  () ( = 1 2 ) (21)

and the hypersingular integral equations for electrically permeable micro-
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cracks are given by

1

2
[=

Z ()

()

∆1(1)11

(1 − 1)
2
1

+
X
=1
6=

Z ()

()

∆1(1)11

(1 − 1)
2
1

+
X
=1

Z ()

()
∆1(1)11Θ(1 1)1]

= 1(1) for 
()  1  () ( = 1 2 ). (22)

For such a case, by directly comparing (21) and (22) for constant loads  ,

we may easily see that

∆
(imp)
1 (1)

111 + 221
=

∆
(imp)
2 (1)

112 + 222
=

∆
(per)
1 (1)11

1
 (23)

where [ ] is the inverse of [ ], ∆
(imp)

 (1) and ∆
(per)
1 (1) are respec-

tively the generalized displacement jumps for the electrically impermeable

and permeable micro-cracks. From (21), (22) and (23), we may deduce that

the effective stiffness coefficient 11 in (18) (for electrically impermeable in-

terface) is equal to the effective stiffness  in (20) (for electrically permeable

interface) for the special case where →∞

4 Statistical approach

The statistical approach in Wang et al. [22], which takes into account the

random positions and sizes of the micro-cracks, is adopted here to estimate

the effective properties of the micro-cracked interface.

The lengths of the  micro-cracks over the period interval 0  1  

2 = 0 are randomly generated to follow the 
2 distribution of a particular

degree of freedom , that is, 2() For a more realistic simulation of the
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micro-crack length variation, a low degree of freedom, like  = 5, is used

in the 2 distribution, so that a greater number of shorter micro-cracks are

generated. Once the lengths are generated, the micro-cracks are randomly

positioned over the period interval to form a micro-cracked interface.

To estimate the effective properties of micro-cracked interfaces,  inter-

faces, each having the same number of micro-cracks and the same damage

ratio, are randomly generated to form a statistical sample. The effective

properties of each of the  interfaces in the statistical sample are calculated

for fixed values of 
()
44  

()
15 and 

()
11 ( = 1 2) and b ( is the width of the

piezoelectric layer and 2b is the average length of the micro-cracks on the
interface) as explained in Section 3.

The non-dimensionalized effective properties b11(2)
44 , b12q

(2)
44 

(2)
11 b21q

(2)
44 

(2)
11 and b22(−(2)11 ) have values ()

11  
()
12  

()
21 and 

()
22 re-

spectively for the -th interface in the statistical sample of  interfaces

damaged by electrically impermeable micro-cracks. The non-dimensionalized

effective properties are estimated using the mean b with standard deviation

, where

b =
1



X
=1


()
 and  =

vuut 1

 − 1
X
=1

(
()
 − b)2 (24)

Similarly, for the statistical sample of interfaces damaged by electrically

permeable micro-cracks, if non-dimensionalized effective stiffness b(2)
44 of

the -th interface are given by (), then the mean value b and the corre-

sponding standard deviation  of the non-dimensionalized effective stiffness

coefficient are respectively given by

b =
1



X
=1

() and  =

vuut 1

 − 1
X
=1

(() − b)2 (25)

13



5 Number of micro-cracks required for ho-

mogenizing the interface

For a sufficiently large sample of interfaces (like  = 50), the average valuesb and b calculated in (24) and (25) are found not to vary significantly with

 (the number of micro-cracks on a period interval of an interface) when

exceeds a certain positive integer

For the purpose of illustration, we take the thin layer to be occupied by

the dielectric material Germanium with material constants 
(1)
44 = 671×1010

N/m2 
(1)
15 = 000 C/m

2 and 
(1)
11 = 147 × 10−10 C/(V m) (Gurzadyan and

Tzankov [5]) and the half-space by the piezoelectric material ZnO with the

material constants 
(2)
44 = 425 × 1010 N/m2 

(2)
15 = 048 C/m2 and 

(2)
11 =

076× 10−10 C/(V m) (Li and Gupta [9]).
For  = 05 and b = 1 we generate a sample of 50 interfaces, each

damaged by micro-cracks per period interval of the interface. The lengths

of the micro-cracks vary according to the 2(5) distribution. We investi-

gate how the average means of b11(2)
44  b12q

(2)
44 

(2)
11  b21q

(2)
44 

(2)
11

and b22(−(2)11 ) (for electrically impermeable micro-cracks) and b(2)
44 (for

electrically permeable micro-cracks), as computed by using the interfaces in

the sample, vary with  For a given value of  scatter plot of the data of

the non-dimensionalized effective properties for the 50 interfaces damaged by

electrically impermeable micro-cracks and the mean of the data are shown

in Figures 2, 3 and 4. (Note that 12 = 21) Similar scatter plots and the

means of the non-dimensional effective stiffness of the 50 interfaces damaged

by electrically permeable interfaces are shown in Figure 5.
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Figure 2. Scatter plots of the data of b11(2)
44 and plots of the mean of the

data for different values of 

Figure 3. Scatter plots of the data of b12q
(2)
44 

(2)
11 and plots of the mean

of the data for different values of 
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Figure 4. Scatter plots of the data of b22(−(2)11 ) and plots of the mean of
the data for different values of 

Figure 5. Scatter plots of the data of b(2)
44 and plots of the mean of the

data for different values of 
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In Figures 2, 3, 4 and 5, the mean values of the non-dimensionalized

coefficients decrease drastically as  increases from 10 to 40 and does not

change very much for  greater than 40 The ranges of the scattered data

of the non-dimensionalized coefficients remain more or less the same as 

increases from 40 to 60 and are somewhat narrower than those for  less

than 40

The results in Figures 2, 3, 4 and 5 as well as further investigations

conducted using other values of  and b, 2 distribution of different degrees
of freedom and other materials in the layer and the half-space indicate that 40

micro-cracks per period interval of each interface are sufficient to homogenize

the effective properties.

From all the investigations conducted, we also observe that the mean value

of b(2)
44 (for interfaces containing electrically permeable micro-cracks) is

very close to the corresponding mean value of b11(2)
44 (for interfaces con-

taining electrically impermeable micro-cracks). For a given  the percent-

age difference between the two mean values is of the order 10−5 or smaller.

Hence, only results involving interfaces damaged by electrically impermeable

micro-cracks are presented in the parametric studies below.

6 Case studies

Some parametric studies on the effective properties of the interface are car-

ried out here by using the micro-model proposed in Section 3. The studies

conducted in this section assume that the micro-cracks on the interface are

electrically impermeable. As pointed out in Section 4, the effective stiffness 

for the interface containing electrically permeable micro-cracks is very close

to the effective stiffness coefficient 11 for the interface containing electrically
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impermeable micro-cracks.

For the estimation of the effective properties , a sample of 50 interfaces

is generated randomly. The micro-crack length follows the 2(5) distribution.

A period interval of the interface contains 40 micro-cracks.

The non-dimensionalized effective properties b11(2)
44  b12q

(2)
44 

(2)
11 b21q

(2)
44 

(2)
11 and b22(−(2)11 ) are functions of the non-dimensionalized

material constants 
(1)
44 

(2)
44  

(1)
11 

(2)
11 , 

(1)
15 

q

(2)
44 

(2)
11 and 

(2)
15 

q

(2)
44 

(2)
11  the

interfacial damage ratio  and the non-dimensionalized width b of the
layer.

6.1 Effect of the piezoelectric coefficient 
(2)
15 

q

(2)
44 

(2)
11

of the half-space on the effective properties of the

interface

Here we study the influence of 
(2)
15 

q

(2)
44 

(2)
11 on b11(2)

44  b12q
(2)
44 

(2)
11 b21q

(2)
44 

(2)
11 and b22(−(2)11 ) for fixed values of the non-dimensionalized

parameters 
(1)
44 

(2)
44  

(1)
11 

(2)
11  

(1)
15 

q

(2)
44 

(2)
11 ,  and b.

For a particular case, we take 
(1)
15 

q

(2)
44 

(2)
11 = 0 (the thin layer is oc-

cupied by a dielectric material), 
(1)
44 

(2)
44 = 15 

(1)
11 

(2)
11 = 2  = 05 and

b = 1 For this case, the mean values of the non-dimensionalized effective
stiffness coefficients b11(2)

44  b12q
(2)
44 

(2)
11 and b22(−(2)11 ) (from the sta-

tistical simulations) are plotted against log10(
(2)
15 

q

(2)
44 

(2)
11 ) in Figures 6, 7

and 8 respectively. As may be expected, 21 is observed to be very close to

12

From Figures 6 and 8, as 
(2)
15 

q

(2)
44 

(2)
11 increases, the effective coefficientsb11(2)

44 and b22(−(2)11 ) appear to increase more drastically over 03 


(2)
15 

q

(2)
44 

(2)
11  10 (that is, for −05  log10((2)15 

q

(2)
44 

(2)
11 )  1) than over
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other ranges of 
(2)
15 

q

(2)
44 

(2)
11  For 03  

(2)
15 

q

(2)
44 

(2)
11 and 

(2)
15 

q

(2)
44 

(2)
11 

10 b11(2)
44 and b22(−(2)11 ) do not appear to vary much as (2)15 q

(2)
44 

(2)
11

increases.

In Figure 7, we observe that b12q
(2)
44 

(2)
11 has a local maximum at a cer-

tain value of 
(2)
15 

q

(2)
44 

(2)
11 and it appears to approach zero as 

(2)
15 

q

(2)
44 

(2)
11

becomes larger or tends to zero. In general, 12 and 21 are not zero. Hence,

the assumption that 12 and 21 are zero, which may be found in many works

on the macro-level generalized spring-like model for a weak interface, is not

valid and it may probably be valid only under extreme situations such as if

the coupling between the elastic and the electric fields in the half-space is

either extremely small or extremely large.

Figure 6. Plot of b11q
(2)
44 

(2)
11 against log10(

(2)
15 

q

(2)
44 

(2)
11 ).
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Figure 7. Plot of b12q
(2)
44 

(2)
11 against log10(

(2)
15 

q

(2)
44 

(2)
11 ).

Figure 8. Plot of b22(−(2)11 ) against log10((2)15 q
(2)
44 

(2)
11 ).
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If the layer is piezoelectric, that is, 
(1)
15 

q

(2)
44 

(2)
11 6= 0, the variations

of b11(2)
44  b12q

(2)
44 

(2)
11 and b22(−(2)11 ) against log10((2)15 q

(2)
44 

(2)
11 )

may not exhibit the same trends that as those in Figures 6, 7 and 8 (for the

dielectric layer). For 
(1)
44 

(2)
44 = 15 

(1)
11 

(2)
11 = 2  = 05 and b = 1 and

some selected values of 
(1)
15 

q

(2)
44 

(2)
11  we plot b11(2)

44  b12q
(2)
44 

(2)
11 andb22(−(2)11 ) against log10((2)15 q

(2)
44 

(2)
11 ) in Figures 9, 10 and 11 respectively.

(Once again, 21 is found to be extremely close to 12) Unlike in Figures 6

and 8, the graphs of b11(2)
44 and b22(−(2)11 ) in Figures 9 and 11 have local

minimum values for −05  log10((2)15 
q

(2)
44 

(2)
11 )  1 Also, unlike in Figure

7, the graph of b12q
(2)
44 

(2)
11 in Figure 10 does not have local maximum

value for −05  log10(
(2)
15 

q

(2)
44 

(2)
11 )  1 It is obvious that 12 6= 0 in

general.

Figure 9. Plots of b11(2)
44 against log10(

(2)
15 

q

(2)
44 

(2)
11 )
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Figure 10. Plots of b12q
(2)
44 

(2)
11 against log10(

(2)
15 

q

(2)
44 

(2)
11 )

Figure 11. Plots of b22(−(2)11 ) against log10((2)15 q
(2)
44 

(2)
11 )
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6.2 Effects of 
(1)
44 

(2)
44 and 

(1)
11 

(2)
11 on the effective prop-

erties of the interface between a dielectric layer

and a piezoelectric half-space

For 
(1)
15 

q

(2)
44 

(2)
11 = 0 (dielectric layer) 

(2)
15 

q

(2)
44 

(2)
11 = 1  = 05, b = 1

and some selected values of 
(1)
11 

(2)
11  we plot b11(2)

44  b12q
(2)
44 

(2)
11 andb22(−(2)11 ) against log10((1)

44 
(2)
44 ) in Figures 12, 13 and 14 respectively.

As before, the difference between 12 and 21 is insignificant and hence only

the plots of 12 are given.

Figure 12. Plots of b11(2)
44 against log10(

(1)
44 

(2)
44 )
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Figure 13. Plots of b12q
(2)
44 

(2)
11 against log10(

(1)
44 

(2)
44 )

Figure 14. Plots of b22(−(2)11 ) against log10((1)
44 

(2)
44 )
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From Figures 12, and 13, both b11(2)
44 and b12q

(2)
44 

(2)
11 appear to

increase as 
(1)
44 

(2)
44 increases (that is, as the strength of the thin layer

relative to that of the half-space increases). In Figure 14, b22(−(2)11 )
seems to decrease as 

(1)
44 

(2)
44 increases. It also appears that b11(2)

44 andb12q
(2)
44 

(2)
11 tend to zero as 

(1)
44 

(2)
44 becomes smaller. The effective co-

efficient b22(−(2)11 ) tends to a non-zero constant as (1)
44 

(2)
44 approaches

zero.

Figure 15. Plots of b22(−(2)11 ) against log10((1)11 (2)11 )
For a dielectric layer that is very soft relative to the half-space, it may be

of interest to examine the effect of varying the non-dimensionalized dielec-

tric constant 
(1)
11 

(2)
11 on b22(−(2)11 ) In Figure 15, for (1)

44 
(2)
44 = 0001


(1)
15 

q

(2)
44 

(2)
11 = 0 

(2)
15 

q

(2)
44 

(2)
11 = 1  = 05, b = 1 and some chosen

values of 
(2)
15 

q

(2)
44 

(2)
11  we plot b22(−(2)11 ) against log10((1)11 (2)11 ) From
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the plots, for a given value of 
(2)
15 

q

(2)
44 

(2)
11  it is obvious that b22(−(2)11 )

increases with increasing 
(1)
11 

(2)
11 and tend to a constant value as 

(1)
11 

(2)
11

becomes larger and larger. Also, b22(−(2)11 ) tends to zero as (1)11 (2)11 ap-
proaches zero.

If we repeat all the calculations above by interchanging the values of


(1)
44 

(2)
44 and 

(1)
11 

(2)
11  the value of b12q

(2)
44 

(2)
11 remains unchanged but

the values of b11(2)
44 and b22(−(2)11 ) are interchanged. (This is true in

general, even for the case in which the layer is piezoelectric.) Thus, for


(1)
15 

q

(2)
44 

(2)
11 = 0 

(2)
15 

q

(2)
44 

(2)
11 = 1  = 05, b = 1 and selected values

of 
(1)
44 

(2)
44 , the plots of b12q

(2)
44 

(2)
11 against log10(

(1)
11 

(2)
11 ) are as given

in Figure 13, with 
(1)
44 

(2)
44 and 

(1)
11 

(2)
11 in the figure replaced by 

(1)
11 

(2)
11

and 
(1)
44 

(2)
44 respectively. Similarly, plots of b11(2)

44 and b22(−(2)11 )
are as given in Figures 12 and 14, with 

(1)
44 

(2)
44 , 

(1)
11 

(2)
11  b11(2)

44 andb22(−(2)11 ) in those figures replaced by (1)11 (2)11 , (1)
44 

(2)
44  b22(−(2)11 ) andb11(2)

44 respectively. For a given 
(1)
44 

(2)
44 , the effective coefficients 12

21 and 22 are found to be close to zero if 
(1)
11 

(2)
11 is extremely small.

6.3 Effect of the width of the layer on the effective

properties of the interface

For 
(1)
44 

(2)
44 = 15 (1)15 

q

(2)
44 

(2)
11 = 0 (2)15 

q

(2)
44 

(2)
11 = 025,  = 05

and some chosen values of 
(1)
11 

(2)
11 , Figures 17, 18 and 19 give respectively

the plots of b11(2)
44  b12q

(2)
44 

(2)
11 and b22(−(2)11 ) against b. For a

given value of 
(1)
11 

(2)
11 the effective coefficients b11(2)

44  b12q
(2)
44 

(2)
11 andb22(−(2)11 ) decrease as b increases. This observation may be explained

as follows.

As the width of the layer relative to the average half crack length be-

comes smaller, the edge of the layer interacts with the micro-cracks in such
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a way that they become less stable. Thus, as b increases, the generalized
displacement jumps across the micro-cracks become larger, causing 11 12

and 22 to reduce in magnitude. The effect of the edge of the layer on the

micro-cracks diminishes as b increases (that is, as the width of the layer
relative to the average half crack length increases). It follows that the values

of b11(2)
44  b12q

(2)
44 

(2)
11 and b22(−(2)11 ) tend to constant values as b

approaches zero, as is obvious in Figures 16, 17 and 18.

The observation above on how b11(2)
44  b12q

(2)
44 

(2)
11 and b22(−(2)11 )

vary with b is also true for other suitable values of the material constants

(1)
44 

(2)
44  

(1)
15 

q

(2)
44 

(2)
11  

(2)
15 

q

(2)
44 

(2)
11 and 

(1)
11 

(2)
11 and the damage ratio 

of the interface.

Figure 16. Plots of b11(2)
44 against b
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Figure 17. Plots of b12q
(2)
44 

(2)
11 against b.

Figure 18. Plots of b22(−(2)11 ) against b
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7 Final remarks

The effective properties of micro-cracked interfaces between a layer and a

half-space occupied by piezoelectric materials under antiplane deformations

are estimated using a micro-statistical model. The model is formulated and

solved in terms of hypersingular integral equations.

If the micro-cracks on the interface in question are electrically imper-

meable, the effective properties of the interface are characterized by 

(  = 1 2) as given in the macro-model defined by (6). For electrically

permeable micro-cracks, the macro-model for the interface is given by (7),

where the interface is characterized by only the effective stiffness coefficient



From our investigation on numerous specific cases, the effective stiffness

coefficient  for an electrically permeable interface is numerically very close

to the effective coefficient 11 for the corresponding electrically impermeable

interface. The difference between effective coefficients 12 and 21 is numer-

ically insignificant. In general, 12 and 21 are not zero. The assumption

that 12 and 21 are zero, which is found in many papers on micro-models for

interfaces between piezoelectric materials, may be valid under certain condi-

tions only. From our studies on a specific case involving a dielectric layer,

we find that 12 and 21 are close to zero, very small in magnitude compared

to 11 and 22 only if the coupling in the electric and elastic fields in the

piezoelectric half-space is extremely weak or extremely strong.

We have examined in detail how the elastic moduli, the dielectric con-

stants and the width of the layer affect the effective properties of the interface.

The results obtained are intuitively acceptable.
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In the present work, the micro-cracks are assumed to be either electrically

impermeable or electrically permeable. It is possible to generalize the model

to include micro-cracks with more realistic boundary conditions such as those

given in Hao and Shen [6] and Zhao et al. [29]. However, the procedures for

treating the more realistic conditions may be computationally more intensive.

The micro-model here may also be extended to estimate macro-parameters in

other problems involving imperfect spring-like interfaces, such as the effective

dislocation-like or force-like interface parameters in the works of Wu et al.

[26], Yu [27] and Yu et al. [28].
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