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Abstract

Some generalised plane strain contact problems are considered for a class of
inhomogeneous anisotropic elastic materials for which the elastic moduli vary
continuously with the spatial coordinates. Strip loading of a half-space and
a layer on a rigid foundation are considered and integral expressions for the
displacement and stress are obtained. Numerical results are obtained for some
particular transversely isotropic and isotropic materials.
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1. Introduction

Contact problems involving the indentation of an elastic half-space by applied
loads on its plane surface are the subject of an extensive literature. The greater
part of this literature is concerned with either a homogeneous isotropic half-
space or a half-space consisting of contiguous layers of homogeneous isotropic
materials. Corresponding problems for anisotropic homogeneous materials have
also attracted the attention of a number of authors and a considerable literature
exists on this class of problems.

The solution of contact problems for an inhomogeneous half-space in which
the elastic moduli vary continuously with the spatial coordinates generally
presents considerable difficulties compared with the corresponding problems for
homogeneous materials. Nevertheless a number of authors have succeeded in
obtaining analytical solutions to contact problems involving this class of mate-
rials. Such analytical solutions as do exist are restricted to particular types of
inhomogeneous materials. Thus, for example, in some of the early works in this
area Gibson [1] and Gibson, Brown and Andrews [2] considered contact prob-
lems for an incompressible half-space in which the elastic moduli varied linearly
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with the perpendicular distance from the plane boundary of the half-space while
Mossakovskii [3] considered problems where the elastic moduli varied exponen-
tially with the perpendicular distance form the plane boundary. Other more
recent examples of solutions to problems for half-spaces with continuously vary-
ing elastic moduli include the work of Clements and Ang [4], Azis and Clements
[5] and Selvadurai [6]. The latter paper contains a number of references to papers
which have addressed problems in this area in the latter half of the twentieth
century.

The present work is concerned with the solution of some generalised plane
contact problems for an anisotropic half-space in which the elastic parameters
are a quadratic function of the spatial variables. The problems considered in-
volve a specified displacement and a specified force on the boundary of the
half-space. Solutions to these problems are obtained either in closed form or
alternatively in terms of integrals which readily yield some analytical informa-
tion regarding the solution and also numerical values for the displacement and
stress. The analysis is for general anisotropy and through a limiting procedure
also yields numerical results for the relevant class of isotropic materials. In the
case of isotropic materials the class of materials to which the analysis applies
has a Poisson’s ratio of 1/4. The results obtained exhibit some similar charac-
teristics to the results obtained by Gibson [1] and Gibson, Brown and Andrews
[2] for inhomogeneous isotropic materials with a Poisson’s ratio 1/2.

2. Statement of the problem

Referred to a Cartesian frame Ox1x2x3 consider an anisotropic elastic body with
a geometry that does not vary in the Ox3 direction. Let the body occupy the
region Ω which consists either of the half-space x2 > 0 or the slab lying in the
region 0 < x2 < h where h is a constant. On the plane boundary x2 = 0 either
the displacement or stress is specified and the slab adheres to a rigid foundation
so that for the slab the displacement is zero on x2 = h. The problem is to
determine the stress and displacement throughout the elastic material,

3. Basic equations

The equilibrium equations governing small generalised plane deformations
of an inhomogeneous anisotropic elastic material may be written in the form

∂

∂xj

[

cijkl(x)
∂uk(x)

∂xl

]

= 0, (1)

where i, j, k, l = 1,2,3, x = (x1, x2), uk denotes the displacement, cijkl(x) the
elastic moduli and the repeated summation convention (summing from 1 to 3)
is used for repeated Latin suffices. The stress displacement relations are given
by

σij(x) = cijkl
∂uk
∂xl

(2)
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and the stress vector Pi on a boundary with outward pointing normal n =
(n1, n2) is defined as

Pi(x) = σij nj = cijkl
∂uk
∂xl

nj , (3)

For all points in Ω the coefficients cijkl(x) are required to satisfy the usual
symmetry condition

cijkl = cijlk = cjikl = cklij (4)

and also sufficient conditions for the strain energy density to be positive. This
requirement ensures that the system of partial differential equations is elliptic
throughout Ω.

The coefficients in (1) are required to take the form

cijkl(x) = c
(0)
ijkl g(x), (5)

where the c
(0)
ijkl are constants and g(x1, x2) is a twice differentiable function of

the variables x1 and x2. Also in addition to the symmetry condition (4) the

c
(0)
ijkl are required to satisfy the additional condition

c
(0)
ijkl = c

(0)
ilkj . (6)

Equation (17) may now be written in the form

c
(0)
ijkl

∂

∂xj

(

g
∂uk
∂xl

)

= 0. (7)

Following Azis and Clements [5] consider a transformation of the dependent
variables in the form

uk = g−1/2 ψk. (8)

Use of (8) in (7) provides the equation

c
(0)
ijkl

[

g1/2 ∂2ψk
∂xj∂xl

+
∂g1/2

∂xj

∂ψk
∂xl

−
∂g1/2

∂xl

∂ψk
∂xj

− ψk
∂2g1/2

∂xj∂xl

]

= 0,

(9)

where by virtue of (6) this equation reduces to

g1/2 c
(0)
ijkl

∂2ψk
∂xj∂xl

− ψk c
(0)
ijkl

∂2g1/2

∂xj∂xl
= 0. (10)

Thus if

c
(0)
ijkl

∂2ψk
∂xj∂xl

= 0 (11)

and

c
(0)
ijkl

∂2g1/2

∂xj∂xl
= 0, (12)
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then (10) will be satisfied. Thus when g satisfies the system (12) the transfor-
mation given by (8) transforms the linear system with variable coefficients (7)
to the linear system with constant coefficients (11).

As a result of the symmetry property cijkl = cklij equation (12) consists
of a system of six constant coefficients partial differential equations in the one
dependent variable g1/2. In general this system will be satisfied by a linear
function of the two independent variables x1, x2. Thus g(x) may be taken in
the form

g(x) = (αx1 + βx2 + γ)
2
, (13)

where α, β and γ are constants which may be used to fit the elastic moduli

cijkl(x) = c
(0)
ijkl g(x) to given numerical data.

Now substitution of (5) and (8) into (3) yields

Pi = −P
[g]
ik ψk + P

[ψ]
i g1/2, (14)

where

P
[g]
ik (x) = c

(0)
ijkl

∂g1/2

∂xl
nj , (15)

P
[ψ]
i (x) = c

(0)
ijkl

∂ψk
∂xl

nj . (16)

Equation (11) has the general solution ((see Eshelby, Read and Shockley [7],
Clements [8])

ψi = 2<

[

3
∑

α=1

Aiαfα(zα)

]

, (17)

where < denotes the real part of a complex number, fα(zα), α = 1, 2, 3 are
arbitrary analytic functions of the complex variables zα = x1 + ταx2, α = 1, 2, 3
where τα are the three roots with positive imaginary part of the sextic in τ

|c
(0)
i1k1 + c

(0)
i2k1τ + c

(0)
i1k2τ + c

(0)
i2k2τ

2| = 0. (18)

The Aiα occurring in (17) are the solutions of the system

(

c
(0)
i1k1 + c

(0)
i2k1τα + c

(0)
i1k2τα + c

(0)
i2k2τ

2
α

)

Akα = 0. (19)

Use of (17) in (14) to (16) provides a representation for Pi in terms of the
arbitrary functions fα(zα) in the form

Pi = 2<

[

3
∑

α=1

−P
[g]
ik Akαfα(zα) + g1/2Lijαf

′

α(zα)nj

]

, (20)

where primes denote differentiation with respect to the argument in question
and

Lijα = (c
(0)
ijk1 + ταc

(0)
ijk2)Akα, (21)
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From (19) and (21) it follows that

Li1α = ταLi2α. (22)

Hence, in general it will only be necessary to consider the 3x3 matrix [Li2α].
The matrix [Li1α] may then be determined through (22).

From (8) and (17) the displacement in terms of the functions fα(zα) may be
written in the form

uk = 2g−1/2<

[

3
∑

α=1

Akαfα(zα)

]

, (23)

It is useful to have to have some alternative forms for equations (20) and
(23). Let

3
∑

α=1

Aiαfα(z) = θi(z), (24)

where the θi(z), k = 1, 2, 3 are analytic functions of the complex variable z. The
matrix [Aiα] is non-singular (see Stroh [9], Clements [8]) and hence from (24)

fα(z) = Niαθi(z), (25)

where

δik =

3
∑

α=1

AiαNαj , (26)

where δij is the Kronecker delta. Substitution of (25) into (23) and (20) yields

uk = 2g−1/2<

[

3
∑

α=1

AkαNαjθj(zα)

]

, (27)

Pi = 2<

[

3
∑

α=1

−P
[g]
ik AkαNαjθj(zα) + g1/2LijαNαjθ

′

j(zα)nj

]

. (28)

In particular, on x2 = 0 (27) and (28) become

uk = g−1/2
[

θk(x1) + θk(x1)
]

, (29)

Pi = −P
[g]
ik

[

θk(x1) + θk(x1)
]

− g1/2
[

Cikθ
′

k(x1) + Cikθ
′

k(x1)
]

, (30)

where the bar denotes the complex conjugate and

Cik =

3
∑

α=1

Li2αNαk. (31)

An alternative representation may be obtained by putting

3
∑

α=1

Li2αfα(z) = χi(z), (32)
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where the χk(z), k = 1, 2, 3 are analytic functions of the complex variable z.
The matrix [Li2α] is non-singular (see Stroh [9], Clements [8]) and hence from
(32)

fα(z) = Miαχi(z), (33)

where

δik =

3
∑

α=1

Li2αMαk, (34)

Substitution of (33) into (23) and (20) yields

uk = 2g−1/2<

[

3
∑

α=1

AkαMαjχj(zα)

]

, (35)

Pi = 2<

[

3
∑

α=1

−P
[g]
ik AkαMαrχr(zα) + g1/2LijαMαrχ

′

r(zα)nj

]

. (36)

In particular, on x2 = 0 (35) and (36) become

uk = g−1/2
[

Bkjχj(x1) +Bkjχj(x1)
]

, (37)

Pi = −P
[g]
ik

[

Bkrχr(x1) +Bkrχr(x1)
]

− g1/2 [χ′

i(x1) + χ′

i(x1)] , (38)

where

Bkr =

3
∑

α=1

AkαMαr. (39)

4. A half-space with specified boundary displacement

Consider an inhomogeneous elastic half-space x2 > 0 with the displacement
uk prescribed on the boundary x2 = 0. The displacement and stress fields are
required throughout the half-space. The boundary conditions on x2 = 0 are

uk(x1, 0) = Uk(x1), (40)

where the Uk(x1), k = 1, 2, 3 are given functions of x1. For this problem the
representation (8)-(12) is useful with θj(z) given by

θj(z) =
1

2π

∫

∞

0

Gj(p) exp(ipz)dp, (41)

where the Gj(p), j = 1, 2, 3 are functions of p which will be determined by the
boundary conditions. From (11) and (40) it follows that

g−1/2(x1, 0)<

[

1

π

∫

∞

0

Gk(p) exp(ipx1)dp

]

= Uk(x1). (42)
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Use of the inversion theorem for Fourier transforms provides

Gk(p) =

∫

∞

−∞

g1/2(ξ1, 0)Uk(ξ) exp(−ipξ)dξ. (43)

Substitution of (43) into (41) and changing the order of integration yields

θj(z) =
1

2π

∫

∞

−∞

g1/2(ξ, 0)Uk(ξ)dξ

∫

∞

0

exp(ip(z − ξ))dp,

=
1

2πi

∫

∞

−∞

g1/2(ξ, 0)Uk(ξ)dξ

ξ − z
. (44)

As a particular example consider the case when the surface displacement is
given by

Uk(x1) =

{

U
(0)
k (a2 − x2

1)
1/2 for |x1| < a,

0 for |x1| > a.
(45)

where the U
(0)
k for k = 1, 2, 3 and a are constants. With g(x) given by (13)

equation (44) yields

θk(z) =
U0
k

2πi

∫ a

−a

(αξ + γ)(a2 − ξ2)1/2dξ

ξ − z

=
U0
k

i

[

(αz + γ)(z2 − a2)1/2 − α(z2 − a2) − γz
]

. (46)

Use of (46) in (27) and (28) provides expressions for the displacement vector
uk and the stress vector P i throughout the the half-space when the surface
displacement is given by (45)

Attention is now restricted to the case when U1 = U3 = 0 and α = 0 so that
equation (46) provides θ1 = θ3 = 0 and

θ2(z) =
U0

2 γ

i

[

(z2 − a2)1/2 − z
]

, (47)

θ′2(z) =
U0

2 γ

i

[

z

(z2 − a2)1/2
− 1

]

. (48)

Commonly problems of this type are applicable for half-spaces in which the
planes xi = 0, i = 1, 2, 3 are planes of elastic symmetry. If the anisotropy

is restricted to materials which exhibit this symmetry the c
(0)
ijkl with an odd

number of ones, twos and threes in the suffices are zero. Thus from (15) and

(13) (with α = 0) on the boundary x2 = 0 the matrix [P
[g]
ik ] has the form

[P
[g]
ik ] =







−βc
(0)
1212 0 0

0 −βc
(0)
2222 0

0 0 −βc
(0)
3232






. (49)

Also in view of the symmetry it may be verified from the analysis of section 3
that the matrix [Ckj ] adopts the form (see Clements [8])
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[Ckj ] =





ic11 c12 0
c21 ic22 0

0 0 ic33



 , (50)

where the cij , i, j = 1, 2, and c33 are real.
Use of (47) and (48) in (29) and (30) provides

P1(x1) =

{

2U
(0)
2 c12γ

2
[

x1(a
2 − x2

1)
−1/2

]

for |x1| < a,
0 for |x1| > a.

(51)

P2(x1) =

{

2U
(0)
2 βγc

(0)
2222(a

2 − x2
1)

1/2 + 2U
(0)
2 γ2c22 for |x1| < a,

−2U
(0)
2 c22γ

2
[

x1(a
2 − x2

1)
−1/2 − 1

]

for |x1| > a.
(52)

Let β = m/γ where m ≥ 0 is a constant. In terms of m and γ equation (5)
together with (13) (with α = 0) yields the elastic parameters in the form

cijkl = c
(0)
ijkl [γ + βx2] (53)

= c
(0)
ijkl

[

γ +
m

γ
x2

]

(54)

and the normal surface force in the form

P2(x1) =

{

2U
(0)
2 mc

(0)
2222(a

2 − x2
1)

1/2 + 2U
(0)
2 γ2c22 for |x1| < a,

−2U
(0)
2 c22γ

2
[

x1(a
2 − x2

1)
−1/2 − 1

]

for |x1| > a.
(55)

As β → 0 for a fixed and finite γ > 0 it is apparent from (52) that, with the
specified boundary displacement, the normal force over the contact region tends
to a constant value and when β = 0 (so that the material is homogeneous) the

normal force over the contact region assumes the constant value 2U
(0)
2 γ2c22.

If γ is sufficiently small for terms of order γ2 to be ignored then (52) yields

P2(x1) =

{

2U
(0)
2 βγc

(0)
2222(a

2 − x2
1)

1/2 for |x1| < a,
0 for |x1| > a.

(56)

Thus for a fixed finite β with γ sufficiently small for terms of order γ2 to
be ignored the surface force is concentrated over the contact region. Over that
region the surface force is a multiple of the specified surface displacement. Also
the surface force is order γ and hence tends to zero as γ → 0.

For a fixed finite m as γ → 0 it is apparent from (55) that

P2(x1) →

{

2U
(0)
2 mc

(0)
2222(a

2 − x2
1)

1/2 for |x1| < a,
0 for |x1| > a.

(57)

Thus if the elastic parameters have the form given by (54) then as γ → 0 the
boundary force outside the contact region tends to zero and the displacement
over the contact region is a constant finite multiple of the specified surface
displacement.
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5. A half-space with specified boundary force

Consider an inhomogeneous elastic half-space x2 > 0 with the stress vector
Pi prescribed on the boundary x2 = 0. The displacement and stress fields are
required throughout the half-space. The boundary conditions on x2 = 0 are

Pi(x1, 0) = Pi(x1) for i = 1, 2, 3, (58)

where the Pi(x1), i = 1, 2, 3 are given functions of x1. For this problem the
representation (35)-(39) is useful with χj(z) given by

χj(z) =
1

2π

∫

∞

0

Gj(p) exp(ipz)dp for j = 1, 2, 3, (59)

where the Gj(p), j = 1, 2, 3 are functions of p which will be determined by the
boundary conditions. From (38), (59) and (58) it follows that

<

[

1

π

∫

∞

0

[

−P
[g]
ik Bkr − ig1/2pδir

]

Gr(p) exp(ipx1)dp

]

= Pi(x1). (60)

If g(x)=(βx2 + γ)2 where β ≥ 0 and γ > 0 are constants then g and P
[g]
ik are

constant on x2 = 0 and thus use of the inversion formula for Fourier transforms
provides

DirGr(p) =

∫

∞

−∞

Pi(ξ) exp(−ipξ)dξ, (61)

where from (60) and (15)

Dir = −P
[g]
ik Bkr − ig1/2(0)pδir

= βc
(0)
i2k2Bkr − iγpδir. (62)

Hence

Gr(p) = Eri(p)

∫

∞

−∞

Pi(ξ) exp(−ipξ)dξ, (63)

where
δij = DirErj . (64)

Use of (63) in (59) gives

χr(z) =
1

2π

∫

∞

0

Erj(p) exp(ipz)dp

∫

∞

−∞

Pi(ξ) exp(−ipξ)dξ. (65)

Substitution of (65) into (35) gives an expression for the displacement through-
out the half-space in the form

uk =
1

πg1/2
<

3
∑

α=1

AkαMαr

∫

∞

0

Erj(p) exp(ipzα)dp

∫

∞

−∞

Pi(ξ) exp(−ipξ)dξ.

(66)
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In particular the displacement on the surface x2 = 0 is given by

uk(x1, 0) =
1

πγ
<

[

Bkr

∫

∞

0

Erj(p) exp(ipx1)dp

∫

∞

−∞

Pi(ξ) exp(−ipξ)dξ

]

. (67)

Once the material constants c
(0)
ijkl, β and γ are known the constants P

[g]
ik , Akα,

Lijα, Mαr and Bkr may be calculated from the analysis in section 3 and then
the Eij may be obtained through equations (62) and (64). Then when Pi(x1 ) is
known (66) and (67) provide equations which are suitable for the calculation of
the displacement throughout the half-space. Also substitution of (65) into (36)
provides an expression from which the stress vector may be calculated.

Of particular interest is the case when the loading Pi(x1) on the surface of

the half-space consists of a constant pressure P
(0)
i over a strip of finite width so

that

Pi(x1) =

{

P
(0)
i for |x1| < a,

0 for |x1| > a.
(68)

In this case (66) and (67) yield

uk =
2P

(0)
j

πg1/2
<

[

3
∑

α=1

AkαMαr

∫

∞

0

Erj(p)
sin pa

p
exp(ipzα)dp

]

. (69)

uk(x1, 0) =
2P

(0)
j

πγ
<

[

Bkr

∫

∞

0

Erj(p)
sin pa

p
exp(ipx1)dp

]

. (70)

Commonly problems of this type are applicable for half-spaces in which the
planes xi = 0, i = 1, 2, 3 are planes of elastic symmetry. If the anisotropy

is restricted to materials which exhibit this symmetry the c
(0)
ijkl with an odd

number of ones, twos and threes in the suffices are zero. Thus from (15) and

(13) (with α = 0) on the boundary x2 = 0 the matrix [P
[g]
ik ] has the form given

by equation (49). Also in view of the symmetry it may be verified from the
analysis of section 3 that the matrix [Bkj ] adopts the form (see Clements [8])

[Bkj ] =





ib11 b12 0
b21 ib22 0

0 0 ib33



 , (71)

where the bij , i, j = 1, 2, and b33 are real. Therefore from (62) and (64) the
matrices [Dir] and [Erj ] take the forms

[D
[g]
ik ] =







i(βb11c
(0)
1212 − γp) βb12c

(0)
1212 0

βb21c
(0)
2222 i(βb22c

(0)
2222 − γp) 0

0 0 iβb33c
(0)
3232 − iγp






, (72)

[E
[g]
ik ] =







i(βb22c
′

2222
−γp)

D
−(βb12c

′

1212
)

D 0
−(βb21c

′

2222
)

D
i(βb11c

′

1212
−γp)

D 0
0 0 1

(iβb33c′3232−iγp)






, (73)
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where

D = −(βb11c
(0)
1212 − γp)(βb22c

(0)
2222 − γp) − (βb21c

(0)
2222)(βb12c

(0)
1212) (74)

Referred to the non-dimensional variables

x′ = x1/a, p′ = pa, c′ijkl = c
(0)
ijkl/C, b′ij = bijC,

β′ = βa, P ′

i = P
(0)
i /C, B′

kr = BkrC, E′

rj(p
′) = Erja (75)

equation (70) may be written in the form

uk(x
′, 0)/a =

2P ′

j

πγ
<

[

B′

kr

∫

∞

0

E′

rj(p
′)

sin p′

p′
exp(ip′x′1)dp

]

. (76)

where C is a reference pressure and γ is a non-dimensional constant.
With the assumed elastic symmetry the plane and antiplane problems sep-

arate out and, from equation (76), the antiplane displacement on the surface
x2 = 0 is given by

u3(x
′, 0)/aP ′

3 =
2

πγ

[

b′33

∫

∞

0

1

β′b′33c
′

3232 − γp′
sin p′

p′
cos(p′x′)dp′

]

, (77)

In the case of a normal load with P ′

1 = 0 and P ′

3 = 0 the normal displacement
is given by

u2(x
′, 0)/aP ′

2 =
−2

πγ

∫

∞

0

F (p′)
sin p′

p′
cos(p′x′)dp′, (78)

where

F (p′) =
−[b′21(β

′b′12c
′

1212) + b′22(β
′b′11c

′

2222 − γp′)]

(β′b′11c
′

1212 − γp′)(β′b′22c
′

2222 − γp′) + β′b′21c
′

2222β
′b′12c

′

1212

. (79)

Let

β′ =
m′

γ
(80)

where m′ is a constant. In terms of m′ and γ equation (5) together with (13)
(with α = 0) yields the elastic parameters in the form

cijkl
C

= c′ijkl

[

γ +
m′

γ

x2

a

]

(81)

and the antiplane surface displacement in the form

u3(x
′, 0)/aP ′

3 =
2

π

[

b′33

∫

∞

0

1

m′b′33c
′

3232 − γ2p′
sin p′

p′
cos(p′x′)dp′

]

, (82)

For a fixed m′ as γ → 0

u3(x
′, 0)/aP ′

3 →
2

π

∫

∞

0

1

m′c′3232

sin p′

p′
cos(p′x′)dp′

=

{ 1
m′c′

3232

for |x′| < 1,

0 for |x′| > 1.
(83)
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For the purpose of obtaining some numerical values for the antiplane surface
displacement the relevant constants c′ijkl for a particular transversely isotropic
material with the x1 axis normal to the transverse planes are chosen as c′1111 =
18.1, c′2222 = 16.2, c′1212 = c′1122 = c′1133 = c′1313 = 6.9, c′3232 = 5.4. With these
values of the c′ijkl the analysis of section 3 may be used to determine the values
of b′ij as b′11 = − − 0.1227, b′12 = 0.0416, b′21 = −0.01426, b′22 = −0.1297 and
b′33 = −0.1638.

For the material with these constants the the antiplane surface displacement
u3(x

′, 0)/aP ′

3 given by (82) is plotted in Figure 1 for various values of β′ and γ
with β′γ = m′ = 1. The plotted values indicate the movement as γ → 0 of the
surface displacement towards the values given by (83) in which in this particular
case 1/(m′c′3232) = 1/5.4 = 0.1852.

Similarly in terms of m′ and γ equation (78) yields the normal surface dis-
placement in the form

u2(x
′, 0)/aP ′

2 =
−2

π

∫

∞

0

F ′(p′)
sin p′

p′
cos(p′x′)dp′, (84)

where

F ′(p′) =
−[b′21(m

′b′12c
′

1212) + b′22(m
′b′11c

′

1212 − γ2p′)]

(m′b′11c
′

1212 − γ2p′)(m′b′22c
′

2222 − γ2p′) +m′2b′21c
′

2222b
′

12c
′

1212

. (85)

For a fixed m′ as γ → 0

u2(x
′, 0)/aP ′

2 →
2

m′c′2222π

∫

∞

0

sin p′

p′
cos(p′x′)dp′

=

{ 1
m′c′

2222

for |x′| < 1,

0 for |x′| > 1.
(86)

For the purpose of obtaining some numerical values for the normal surface
displacement the constants c′ijkl for a particular transversely isotropic material
are chosen as c′1111 = 5, c′2222 = 16.2, c′1212 = c′1122 = c′1133 = c′1313 = 2,
c′3232 = 5.4. With these values of the c′ijkl the values of bij are b′11 = −−0.3787,
b′12 = 0.0909, b′21 = −0.0909 b′22 = −0.2104 and b′33 = −0.3043.

For the material with these constants the surface displacement u2(x
′, 0)/aP ′

2

is plotted in Figure 2 for various values of β′ and γ with β′γ = m′ = 1. The
plotted values indicate the movement as γ → 0 of the surface displacement
towards the values given by (86) in which in this particular case 1/(m′c′2222) =
1/16.2 = 0.0617.

6. An elastic layer on a rigid foundation

Consider an inhomogeneous elastic layer occupying the region 0 < x2 < h
with the stress vector Pi prescribed on the boundary x2 = 0. The displacement
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and stress fields are required throughout the layer. The layer adheres to a rigid
foundation on x2 = h. The boundary conditions are

Pi(x1, 0) = Pi(x1), (87)

ui(x1, h) = 0, (88)

where the Pi(x1), i = 1, 2, 3 are given functions of x1. For this problem the
representation (35)-(39) is useful with χj(z) given by

χj(z) =
1

2π

∫

∞

0

[Gj(p) exp(ipz) +Hj(p) exp(−ipz)]dp for j = 1, 2, 3, (89)

where the Gj(p) and Hj(p), j = 1, 2, 3 are functions of p which will be deter-
mined by the boundary conditions. From (38), (87) and (89) it follows that

−1

π
<

∫

∞

0

[(P
[g]
ik Bkr + ig1/2pδir)Gr(p)

+(P
[g]

ikBkr + ig1/2pδir)Hr(p)] exp(ipx1)dp = Pi(x1). (90)

From (37), (88) and (89) it follows that

1

πg1/2
<

3
∑

α=1

∫

∞

0

[(AkαMαj)Gj(p) exp(iταph)

−(AkαMαj)Hj(p) exp(iταph)] exp(ipx1)dp = 0. (91)

Equation (91) may be written in the form

1

πg1/2
<

∫

∞

0

[Rkj(p)Gj(p) − Skj(p)Hj(p)] exp(ipx1)dp = 0, (92)

where

Rkj(p) =

3
∑

α=1

AkαMαj exp(iταph), (93)

Skj(p) =

3
∑

α=1

AkαMαj exp(iταph). (94)

Equation (92) will be satisfied if

Hj(p) = −Tjn(p)Rnl(p)Gl(p), (95)

where
Skj(p)Tjn(p) = δkn. (96)

Substitution of (95) in (90) provides

1

π
<

∫

∞

0

[Fir(p)Gr(p)] exp(ipx1)dp = Pi(x1), (97)

13



where

Fir(p) = −(P
[g]
ik Bkr + ig1/2pδir) − (P

[g]

ikBkm + ig1/2pδim)Tmk(p)Rkr(p). (98)

Use of the inversion formula for Fourier transforms now provides

Fir(p)Gr(p) =

∫

∞

−∞

Pi(ξ) exp(−ipξ)dξ. (99)

If Pi(x1) satisfies (68) then

Fir(p)Gr(p) = P
(0)
i

∫ a

−a

exp(−ipξ)dξ

= 2P
(0)
i

sin pa

p
. (100)

Hence

Gn(p) = 2Uni(p)P
(0)
i

sin pa

p
, (101)

where
Uni(p)Fir(p) = δnr. (102)

Hence

Hj(p) = −2Tjk(p)Rkl(p)Uli(p)P
(0)
i

sin pa

p
. (103)

The surface displacement is given by

uk(x1, 0) = <
1

πγ

∫

∞

0

[BkrGr(p) −BkrHr(p)] exp(ipx1)dp

= <
2P

(0)
i

πγ

∫

∞

0

[Bkn −BkrTrl(p)Rln(p)]Uni(p)
sin pa

p
exp(ipx1)dp.(104)

With the same elastic symmetry as in the previous section the plane and an-
tiplane parts of the problem separate with the antiplane surface displacement
given by

u3(x1, 0) = <
2

πγ

∫

∞

0

[B33 −B33T33R33]U33P
(0)
3

sin pa

p
exp(ipx1)dp, (105)

where

B33 = ib33, (106)

R33 = ib33 exp(iτ1ph), (107)

S33 = −ib33 exp(iτ1ph), (108)

T33 = 1/(S33) = i(b33)
−1 exp(−iτ1ph), (109)

F33 = (iβc
(0)
3232b33 − iγp) + (iβc

(0)
3232b33 − iγp) exp(i(τ1 − τ1)ph), (110)

U33 = 1/F33. (111)
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Use of (106) - (111) in (105) provides

u3(x1, 0) =
2b33
π

∫

∞

0

[1 − exp(i(τ1 − τ1)ph)] sin(pa) cos(px1)P
(0)
3

(βc
(0)
3232b33 − γp)[1 + exp(i(τ1 − τ1)ph)]p

dp, (112)

Referred to the non-dimensional coordinates of the previous section and with
h = ah′ equation (112) becomes

u3(x
′, 0)

aP
′

3

=
2b′33
πγ

∫

∞

0

[1 − exp(i(τ1 − τ1)p
′h′)] sin(p′) cos(p′x′)

(β′b′33c
′

3232 − γp′)[1 + exp(i(τ1 − τ1)p′h′)]p′
dp′. (113)

Setting β′ = m′/γ where m′ is a non-dimensional positive constant equation
(113) yields

u3(x
′, 0)

aP
′

3

=
2b′33
π

∫

∞

0

[1 − exp(i(τ1 − τ1)p
′h′)] sin(p′) cos(p′x′)

(m′b′33c
′

3232 − γ2p′)[1 + exp(i(τ1 − τ1)p′h′)]p′
dp′. (114)

Since the imaginary part of τ1 is chosen to be positive it follows from equation
(112) that as γ → 0 and h→ ∞

u3(x1, 0)

aP
′

3

→
2

π

∫

∞

0

sin(p′) cos(p′x′)

m′c
′

3232p
′

dp′,

=

{

1
m′c

′

3232

for |x′| < 1

0 for |x′| > 1
(115)

7. An isotropic half-space and layer on a rigid foundation

For isotropic materials the non-zero elastic coefficients cijkl may be expressed
in terms of the two Lamé coefficients λ and µ where

λ = λ(0)g(x), µ = µ(0)g(x), (116)

where λ(0) and µ(0) are constants. The relevant coefficients cijkl are related to
λ and µ by the equations

c1111 = c2222 = c3333 = λ+ 2µ, (117)

c1122 = c1133 = c2233 = λ, (118)

c1212 = c1313 = c2323 = µ. (119)

The coefficients c
(0)
ijkl may be expressed in terms of the two constants λ(0)

and µ(0) by the equations

c
(0)
1111 = c

(0)
2222 = c

(0)
3333 = λ(0) + 2µ(0), (120)

c
(0)
1122 = c

(0)
1133 = c

(0)
2233 = λ(0), (121)

c
(0)
1212 = c

(0)
1313 = c

(0)
2323 = µ(0). (122)
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The coefficients cijkl must satisfy the condition (6) which requires that cijkl =
cilkj so that from (118), (119), (121) and (122) it follows that

λ = µ, λ(0) = µ(0). (123)

Young’s modulus E and Poisson’s ratio ν are related to the Lamé coefficients
by the equations

E =
µ(3λ+ 2µ)

λ+ µ
, ν =

λ

2(λ+ µ)
. (124)

Hence, by virtue of equation (123) it follows that

E =
5λ

2
, ν =

1

4
. (125)

Thus the analysis of the previous two sections may be applied to an inhomo-
geneous isotropic material for which the Poisson’s ratio ν is 1/4 (a frequently
occurring value in rock materials - see Turcotte [10] ) and the inhomogeneity is
specified by either Young’s modulus or one of the Lamé constants in the forms

E = E(0)(γ + βx2), λ = λ(0)(γ + βx2), µ = µ(0)(γ + βx2), (126)

where these alternative forms are related by

E = 5λ/2, λ = µ, (127)

so that
E(0) = 5λ(0)/2, λ(0) = µ(0). (128)

For the isotropic case the sextic (18) has equal roots. Also the plane and an-
tiplane parts of the problem uncouple to form two separate problems. In the
plane case the two rows of the matrices [Akα] and [Li2α] associated with the
plane problem are linearly dependent and hence their inverses do not exist.
Thus for the plane problems the analysis of the previous three sections is no
longer valid. In order to employ the analysis of the previous sections to obtain
numerical results for the isotropic case the numerical values of the isotropic
elastic moduli are perturbed slightly from their exact isotropic values in or-
der to obtain distinct roots for the sextic (18). Specifically the relevant elastic
parameters c′ijkl are chosen in the form

c′1111 = c′3333 = 3λ′, (129)

c′2222 = 3λ′ + ε, (130)

c′1122 = c′1133 = c′2233 = λ′, (131)

c′1212 = c′1313 = c′2323 = λ′. (132)

where λ′ = λ(0)/C and ε is a small non-dimensional constant. As ε→ 0 numer-
ical values obtained from the relevant equations for the displacement and stress
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vector in the previous three sections tend to the values for an isotropic material
with Poisson’s ratio 1/4.

For illustrative purposes the values of the constants in (129) to (132) are
chosen to be λ = 5.4 and ε = 0.001. With this choice the analysis of section 3
yields the numerical values

τ1 = i, b11 = −0.13888, b12 = 0.04629,
b21 = −0.04629, ; b22 = −0.138888, b33 = −0.18518.
Numerical values of the surface normal displacement for an inhomogeneous

isotropic half-space with the above elastic moduli were calculated using equation
(84). The results are shown in Figure 3. They may be compared with the
corresponding results for an anisotropic half space displayed in Figure 2. The
results in Figure 2 are for an anisotropic material whose constants c′ijkl are all
less than or equal to the corresponding isotropic constants as given by equations
(129) to (132) with λ = 5.4. For the anisotropic material c′2222 = 16.2 while from
(130) c′2222 = 16.201 in the isotropic case. Thus from equation (86) both the
anisotropic and isotropic surface displacement could be expected to be virtually
identical as γ → 0. The Figures 2 and 3 verify that this is the case. For larger
values of γ the lower elastic moduli in the anisotropic case give rise to a larger
surface displacement than for the corresponding isotropic half-space.

Numerical values of the surface antiplane displacement for an isotropic layer
on a rigid base with the above elastic moduli were calculated using equation
(114) for various values of the layer thickness and with m′ = βγ = 1 and
γ = 0.0001. The results are shown in Figure 4. The results indicate that for
sufficiently small layer thickness the antiplane surface displacement is positive
over the contact region and increases as |x′| increases from zero to one. Outside
the contact region the surface displacement becomes negative and tends towards
zero as |x′| → 0. For this isotropic material the soft upper layers can easily move
laterally and under the specified boundary conditions on x2 = 0 and x2 = h
this capability facilitates a sharp change in the antiplane displacement from a
small positive value to a smaller negative value in the vicinity of the edge of the
loaded region. This feature of the displacement profiles in Figure 4 is similar
to profiles obtained by Gibson, Brown and Andrews [2] for a related problem
involving an incompressible isotropic half-space with a linearly varying elastic
modulus.

8. Final remarks

Some contact problems have been considered for an anisotropic half-space
and layer in which the elastic moduli vary quadratically with the spatial vari-
ables. For the class of problems considered formulas for the displacement are
given in either closed form or in integral formulations which readily yield numer-
ical values for particular problems and provide closed form formulas in limiting
cases. The analysis can be used to consider the corresponding contact problems
for isotropic materials as a particular case of the general anisotropic analysis.
The problems considered exhibit a number of characteristics which are similar
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to the features observed by Gibson [1] and Gibson, Brown and Andrews [2] for
the corresponding problems for an inhomogeneous incompressible isotropic half
space and layer in which the elastic moduli vary linearly with a spatial variable.
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