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Abstract

A generalised plane strain crack problem is considered for a class of inhomoge-
neous anisotropic elastic materials. The problem is reduced to a boundary integral
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1 Introduction

The study of crack problems for inhomogeneous materials has received con-
siderable attention in recent decades. This interest is related to the extensive
use of composite materials in various engineering applications. In this connec-
tion many of the studies have been concerned with materials which are made
up of two or more homogeneous parts and many problems have now been
solved for materials of this type (see for example England [1], Rice and Sih [2]
and Clements [3]). In comparison crack problems for materials in which the
elastic moduli vary continuously with the spatial coordinates have received
less attention. To some extent this is due to the inherent difficulties in solv-
ing boundary value problems for materials of this type. However in recent
years some progress has been made with the analytical solution of particular
problems for a restricted class of inhomogeneous materials (see for example
Ang and Clements [4], Erdogan and Ozturk [5], Chen and Erdogan [6] and

Clements, Ang and Kusuma [7]).

The current study is concerned with the solution of a crack problem for a
class of inhomogeneous anisotropic elastic materials under generalised plane
strain. The elastic moduli are assumed to vary continuously with two Cartesian
coordinates. A boundary integral formulation is used to obtain a solution to
the governing differential equations and this is then applied to the relevant
crack problem. For certain variations in the elastic modulus this boundary
integral equation has a relatively simple form and this case is used to obtain

numerical results for a particular crack problem.



2 Statement of the problem

Referred to a Cartesian frame Ox x223 consider an anisotropic elastic body
with a geometry that does not vary in the Ox3 direction. Let the body occupy
the region €2 with boundary 02 which consists of a finite number of piecewise
smooth closed curves in the Ox x5 plane. The material contains a plane crack
which does not intersect with the boundary. The crack is defined to start at
coordinates A = (a,b) and end at B = (¢, d). The outer boundary is denoted
by C' and the crack surface will be referred to as D. Either the displacement
or traction is specified at each point of the outer boundary C. The specified
boundary displacement or traction on C'is such that the crack opens and hence
the crack faces D are taken to be traction free. The problem is to determine
the stress and displacement throughout the elastic material, and to obtain

values for the stress intensity factors at the tips of the plane crack.

3 Basic equations

The equilibrium equations governing small generalised plane deformations of

an inhomogeneous anisotropic elastic material may be written in the form

9 8uk(x)] o "

oy o) "

where 4,7, k,1 = 1,2,3, x = (1, z2), uj, denotes the displacement, ¢;;x(x) the
elastic moduli and the repeated summation convention (summing from 1 to 3)

is used for repeated Latin suffices. The stress displacement relations are given



ou
Oij (X) = Cijkl - (2)

&vl

and the traction vector P; on the boundary 0f2 is defined as

ou
P;(x) = 04 nj = Ciju —* n;, (3)

le

where n = (ny, ny) denotes the outward pointing normal to the boundary 0.

For all points in  the coefficients ¢;j;(x) are required to satisfy the usual

symmetry condition
Cijkl = Cijik = Cjikl = Cklij (4)
and also sufficient conditions for the strain energy density to be positive. This

requirement ensures that the system of partial differential equations is elliptic

throughout (2.

On the boundary C' the displacement wy, is specified on C(") and the traction
P; is specified on C® where C = C" U C®. Also the traction P; is zero on
D. A solution to (1) is sought which is valid in 2 and satisfies the specified

boundary conditions on 92 = C' U D.

4 Boundary integral equation

The coefficients in (1) are required to take the form

Cijri(X) = Cg% 9(x), (5)



where the cé?,ll are constants and g(z, z2) is a twice differentiable function of

the variables z; and xs. Also in addition to the symmetry condition (4) the

(0)

Cijr are required to satisfy the additional condition

0 0
Cz(jl)cl = Cz(llgj' (6)

Equation (1) may now be written in the form

[0 0 (g g%f) — 0. (7)

ijkl axj

Following Azis and Clements [8] consider a transformation of the dependent

variables in the form

up =g "y (8)

Use of (8) in (7) provides the equation

2,0 Pk o) 0972 0 ) 99" Oy 0 g% _

L L C:. — Y C; =
R aib'jal’l QL 03:]- 03:1 QL 03:1 aib'j ”klax]@xl

(9)

[

where by virtue of (6) this equation reduces to

g SO (10
Thus if

e =0 (1)
and

o 97 _, (12)

C:. =
ikt 835]035;



then (10) will be satisfied. Thus when ¢ satisfies the system (12) the trans-
formation given by (8) transforms the linear system with variable coefficients

(7) to the linear system with constant coefficients (11).

As a result of the symmetry property c;ju = cij equation (12) consists of
a system of six constant coefficients partial differential equations in the one
dependent variable ¢g'/2. In general this system will be satisfied by a linear
function of the two independent variables x1,x2. Thus g(x) may be taken in

the form

g(x) = (ax; + Bry + )7, (13)

where «,  and ~ are constants which may be used to fit the elastic moduli

Cijki(x) = cg-),)d g(x) to given numerical data.

Now substitution of (5) and (8) into (3) yields

P, = PP g+ P g\, (14)
where
391/2
0
Pi[lg] (x) = ngl?zl o1, Mjs (15)
O
0 k
P60 = i g, i (16)

A boundary integral equation for the solution of (11) with ¢; given on 0§,

and PiM given on 0€); may be written in the form (see Clements [10])

Mm(x0) = = [ [P) @i, %0) = 130 Tin(x, %0)] ds(), (17)



for m = 1,2, 3, where xq is the source point, n =0if xo ¢ Q, n =1 if xg €
and n = % if xo € 002 and 0f) has a continuously turning tangent at xo. The

®,,, in (17) is any solution of the equation

(0) 32@2-"1 (X, XO)

(0 — 50 (X — 18
Cijki 0,0z, kmd (X — Xo) (18)
and the I';, is given by
0P
i = Ay (19)

Cijkl 1, 1.

For generalised plane problems with xo = (&, &, x = (21, 22), @i and Ty,

are given by (see Clements [10] and Clements and Jones [9])

1 3
(I)im(Xa XO) = %m [Z AiaNak log(za - Ca)] dkma (20)
a=1
1 3
Fim(X, XO) = %% [Z LijaNak(Za — Ca)_ll ledkm, (21)
a=1

where @ denotes the real part of a complex number, z, = x; + 7,22 and
Co = & + To&o, where 7, are the three roots with positive imaginary part of

the sextic in 7

0 0 0 0
|Cz(ll)cl + 0221117' + 01(11)927' + 0521127'2| = 0. (22)

The A;, occurring in (20) are the solutions of the system

(Cz((l)l)cl + Cz(gl?clTa + 05?1)927@ + 0531)927'2) Aga = 0. (23)
Also the Nq, Lijo and dg,, are defined by

3
61’1@ = Z AiaNaka (24)

a=1



z(;)l?cl + Tac(ql)cz)Akaa (25)

Lija=(c i
R S
5im = _51 Z {LiQaNak - Li2aNalc} dkma (26)
a=1

where the bar denotes the complex conjugate and ¢ denotes the square root

of minus one.

5 Solution of the problem

Use of (8) and (14) in (17) yields

192 (%0) t (x0) = = [ {P.(x) [572() i, %,)]

—u;(x) [9"/(x) Tim (%, Xo) — P (%) Bom (%, %,)] } s (x). (27)

This equation provides a boundary integral equation which may be used to
construct a system of linear equations to solve for the unknown w,, or P, on
the boundary, and then the values of P,(x) and u,,(x) may be calculated at

any point in €.

On the crack the coordinates x; and xy may be written in terms of a single

parameter £ in the form
1 =X (t) =[(c —a)t+ (c+a)]/2 for t € [-1,1], (28)
o = Xo(t) = [(d = b)t + (b+ d)]/2 for t € [—1,1]. (29)

Thus, since the tractions P; are zero over the crack faces, equation (27) pro-

vides

ng" 2 x0) uelxo) = = [ {Palx)g™/2(0) @un(x, ;)



—tn (%) [9"7%(%) T (%, %) = PYI(x) Bor(x,%)] | ds(x)

+§/ [gl/Q(X(t)) Fnk(X(t)7X0)

— PUN(X (1)) @ (X (1), %0) | Awn (1)t

(30)

where X(t) = (X1(t), Xa(t)), Aw, = u, —u, and L is the length of the crack.

Now from (3), (5) and (27) an integral equation for P; is given by

Ouy, 0
P (x0) = ignt 15 = 0 elGh9050) 5 g
= Pl (x0) / {Pa() [g7172(%) Do (x, %))
CuD

— () [912(%) Dok (%, %) — Pi8)(x) ®(x, %) | } ds(x)
—g"2(x0) [ {Pax) [972() O (x, )

CuD

—u (%) [9"7 (%) Win (%, %0) — P(x) ©14(x,%,)] } ds(x),

where
0) 0Py
Oin(x,%y) = ”kl % uy
aFnk
Ui, (Xa XO) z]kl ag

Hence from (20) and (32)

1 _
Oin(x, %) = o [Z AnaNar(c Ejlz:l + Tl 53112)( — Ca) !
a=1
LR[S (o — c0)
- 4 ian\Ra — Cq )
2T o
where

Sian = AnaNar (0551)91 + Tacz(?l?ﬂ)njdrk

njd,k

(31)

(34)



and from (21) and (33)

1 2 _
U, (x,%0) = §§R [Z Lnsoé]\fa,n(cz(-?/,)cl + Tacz(-?,)d)(za —Ca) ? NNy,

a=1
1 22: )
== _§R [ Ricm(za - Ca)_ ) (36)
2m a=1
where
Ricm — LnsaNar (052]11 + Tacz(?]?ﬂ)nsnjdrk- (37)

Now as xo = (&1, &2) approaches the crack, the integral over this crack in (30)
must be interpreted as a Cauchy principal value integral. Hence differentiation
of this integral (with respect to either & or &) as x¢ approaches the crack

leads to a Hadamard finite-part integral.

On the crack the coordinates & and & may be written in terms of a single

parameter s in the form
& =Xi(s) =[(c—a)s+ (c+a)]/2 for se€[-1,1], (38)

& = Xy(s) = [(d—b)s+ (d+b)]/2 for s€[~1,1]. (39)

Thus using equation (31) the traction-free condition P, = 0 on the crack can

be expressed as

nP(X(s)) = P (X(s)) L/ {Pa(x) [9772(x) B (x, X (5))]

() [072(%) T3, X (5)) — PEI00) s, X (5))]} s ().
o [0 X(0) T (X (1), X (5)) Au (1)

-1
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+§ / PI(X (1)) @o(X(1), X () Aw,(t)dt
—up (%) [9'7(%) Win(x, X (5)) — PE(x) ©3(x, X(5))] } ds(x)

_g / G2 (X (1)) Wan (X (1), X () Aw, (1) dt

—PEI(x(t)) O (X (1), X(5))] Awy (t)dt]
=0 for —1<s<1, (40)

where the integrals over the crack involving ', (X (), X(s)) and 0;4(X(¢), X(s))
are Cauchy principal value integrals and the integral involving ¥;, (X(t), X(s))

is a Hadamard finite-part integral.

Now use of (28), (29), (38) and (39) in (34) and (36) yields

O (X(1), X(s)) = 12 (41)
where

By, = _%%X:ISi“" (c— a) + o (d — )] (42)
and

kin

Ea(X(0,X(5) = (43
where

Fin = %éR S~ Ruan (= )+ mald ~ )] . (44)

Also use of (28), (29), (38) and (39) in (20) and (21) yields

D (X (1), X(5)) = o —don Tog |t — 5| + fin, (45)

11



where

fin = 5B azijl AN Yog {[(c — @) + 7a(d — B)] /2} din (46)
and

Cin (X (1), X(s) = 2 (47)
where

= R Lot 6= 0) + 70l =] (1)

Now use of (41), (43), (45) and (47) in (40) yields

PRX() | [ {Pa0) [57720) Du(x, X(5))]

—%(HfW@RMXx@D—Hﬂ@@M&X@M}%@)

2/91/2 ) G (t — 5) " Awy (t)dt

1

£ p[gg(X( 1) [(1/27)di log [t — s| + fur] Aw, (t)dt

1/2 L/ 71/2 m(x,X(s))}

—un (%) [9"7(x) Win (%, X (5)) — PL)(x) ©1(x, X(5))] } ds(x)

sn

2 /91/2 zn t_ S) ZAwn(t)dt

1
o [ PEIK() bt — 5)7 A (1)
—1
=0 for —1<s<1, (49)

-1

where the integrals involving the terms (¢ — s)~! are Cauchy principal value

integrals and the integral involving (¢ —s)~? is a Hadamard finite-part integral.

12



Equations (30) and (49) are used for the numerical solution of the problem.

Following Kaya and Erdogan [11] and Ang [12], let

gl/Q(X(t))Awn(t) ~\1—t2 XJ: @pnUp—1(t) (2NJ unknowns), (50)

0201U02U"'UCM,
u ~ u™ constant over Cp,, P ~ P constant over C,,

where Us(t) denotes the Chebyshev polynomial of the second kind. Letting
x{™ = (ém), fém)) be the midpoint of C,,, the equation (30) may be approxi-

mated by (for m =1,2,---, M)

+QUNX (1)) Dot (X(8), x6™)] U1 (VT = £ dt,
(51)

where

QA(x) = —g7"*(x) P(x). (52)

There are 2J + 2M unknowns in (51) and the integrals over C), can be evalu-
ated numerically using standard techniques for the boundary element method
(see Clements and Jones [9]). The integrals in (51) over (—1,1) can be evalu-
ated numerically by using expression (25.4.40) in Abramowitz and Stegun [13].

Equation (51) consists of 2M equations since m =1,2,---, M and k=1, 2.

13



In a similar manner the discretised formulation of equation (49) may be ob-

tained in the form

+T ﬁZ gndnkT(s)
5 S [ QKO {Grosle ol + £} Uy sV TP
9" (X (s)) ZI{PS") / [971/%(x) Oin(x, X(5))] ds(x)

—u [ g2 (x) Wi, X(5)) — PEx) O3, X(5))] } ds(x)

=0 for —1<s<l1. (53)

where a result given in Kaya and Erdogan [11] has been used to evaluate the

2

integral involving the term (¢ — s) ¢ in equation (49).

In order to generate the extra 2J equations required to solve the system,
equation (53) may be evaluated at .J points on the crack (for instance, setting
s = s, = cos([2p — 1|7 /[2J]), (p = 1,2,---,J) for the crack). Thus the total
number of unknowns 2.J + 2M is equal to the number of linear algebraic

equations, and the unknowns can be determined.

14



6 Stress intensity factors and crack energy

For the Chebyschev polnomials U,(t) use of contour integration provides

1
V1—12 mUu(1)
dt > ——=— as s— 1+ for a=0,1,2... (54)
/ t—s V2(s — 1)
1
(VI =12 (=1
/U()—th%L() as s > —1— for a=0,1,2...(55)
S (t=5s) V2(s+1)

From (40) and (53) it is apparent that the left hand side of (53) provides an
expression for the P;(X(s)) for all real s and it therefore follows from (54),

(55) and (53) that as s — 1+

PX(3)) = 59" (X(1)) 3 et %l (56)
and as s -+ —1—
PAX()) = 502X (=1) 3 ki {%} . 657)

Let s =1+ d; where §; > 0 is small. Then from (38) and (39)

Xi(1+6)=X(1 )+51dc‘;§1 =X, (1) + C_“al, (58)

Xo(1401) = Xo(1 )—|—51d§§2 = Xy(1) + d;b51 (59)
Let

(r)? = [Xi(1+61) — Xy (D + [Xo(1+61) — X (1)) (60)

so that from (58), (59) and (60)

7“1:[4(51/2, 8—1:(51:2’[“1/[/. (61)

15



Similarly let s = —1 — 05 where d > 0 is small. Then from (38) and (39)

Xy(—1—6) = X, (~1 )—52‘5;1 = xi(-1) - %, (62)

Xy(=1—=6,) = Xy(—1 )—526522 = Xy(—1) — d;b(sg (63)
Let

(ra)? = [X1(=1 = 82) = Xy (=1)]* + [Xo(=1 = ) — Xo(—1)]? (64)

so that from (62), (63) and (64)

To = L(52/2, —s—1= (52 = 2T2/L. (65)

Hence from (56) and (57) it follows that the mode I and mode II stress intensity

factors for the crack are given by

Ki= lim, (r1) Y2 Py(X (1 + 21 /L) (66)
= %(L)” 29"%( Z Arnkion Uy 1(1), (67)
K= ,«115%+(“) 1/2 Pl(X(l +2r,/L) (68)
= %(L)” 29"%( Z ki Uy 1 (1), (69)
Ky = lim, (r2)1/2P2(X(—1 —2ry/L) (70)
- %(L)?’/le/Q(X(—l)) é:amkgnU,«_l(—l), (71)
K= T3%+(r2)1/2P1(X(—1 — 21y /L) (72)
= S(L)"?g' (X Z ki Up1 (1), (73)

where K} and K}, denote the mode I and mode II stress intensity factors at

the end (c,d) of the crack and K; and K;; denote the mode I and mode II

16



stress intensity factors at the end (a,b) of the crack.

The crack energy U is given by the integral
1
U= §/aijuinjds (74)
Gle)

and since the traction P; = o;;n; is zero over the surface of the cracks this

reduces to

U=

DN | =

/aijuinjds. (75)
C

7 Numerical results

Numerical values for the stress intensity factors and crack energy for some

particular crack problems are given in Tables 1, 2 and 3.

Table 1 provides the non-zero stress intensity factors and the crack energy for
a homogeneous anisotropic material containing a crack lying along the z; axis
between (a/l,b/l) = (0.5,0) and (c/l,d/l) = (—0.5,0) where [ is a reference
length (see Figure 1). The elastic moduli are given by c¢;jxi/po = cg-),)d/pg where
po is a reference stress and the non-zero elastic constants cg-),ll/po take the
values |7}, /po = 6.14, {2, /po = 1.89, %y /po = 1.89, ', /po = 5.96. The
material is under biaxial tension so that the sides 1/l = —h and z,/l = h
are subjected to a constant applied normal stress o1;/py = 1 and the sides
w9/l = —h and x5/l = h are subjected to a constant applied normal stress

099 / po = 1 where pg is a constant reference stress.

The reference crack energy Uy in the tables is the energy of the corresponding

crack in an infinite homogeneous anisotropic material under biaxial tension

17



with the same elastic constants as given in the previous paragraph.

The values of the stress intensity factors in the tables may be compared with
the stress intensity factors for a corresponding crack in an infinite homoge-
neous anisotropic material under biaxial tension. The relevant stress intensity
factors may be obtained from the results in Stroh [14]. Specifically, the non-

zero stress intensity factors are K; /py = 0.5 and K; /py = 0.5

Tables 2 and 3 give the stress intensity factors and crack energy for a single

crack along the line o/ = 2 from (a/l,b/l) = (4.5,2) to (¢/l,d/l) = (3.5,2)

in an inhomogeneous anisotropic material lying in the region 0 < z; < 8, 0 <

o < 4 (see Figure 2). The inhomogeneous material has the elastic mod-
(0

uli cijr/po = Cz’jl)cl(co + T + 02332)2/270 where Cg[i)n/po = 6.14, 052)22/270 =

1.89, ¢\95/po = 1.89, oy /po = 5.96.

Table 2 shows the stress intensity factors and crack energy for the case when
the outer boundary C'is subjected to a constant applied normal stress 099 /pg =
1 over the sides 23/l = 4 and x5/l = 0 and the sides 27/l = 0 and z;/l = 8
are traction free. Table 3 provides results for the case when the sides 1/l =0
and z,/l = 8 are subjected to a constant applied normal stress 011 /py = 1 and
the sides 25/l = 4 and x2/l = 0 are subjected to a constant applied normal

stress og/po = 1.

8 Final remarks

A boundary element method has been obtained for the solution of a generalised
plane strain crack problem for a class of inhomogeneous materials. The analysis

is restricted to a single plane crack but the extension of the analysis to several

18



non-interacting plane cracks is straightforward.

The class of materials for which the analysis holds is restricted in two ways.
Firstly, the elastic moduli are constrained by the symmetry condition (6). As
a result the elastic modulus relating the stress o,, for @ = 1, 2, 3 to the strain
egp for f=1,2,3 (B # «) is equal to the elastic modulus relating the shear
stress 0,43 to the shear strain €,s. In the case of isotropic materials (which
for the practical purposes of numerical calculations is a limiting case of the
current analysis) the consequence of the symmetry condition (6) is that the
Lamé parameters A and p are equal which provides a Poisson’s ratio of 0.25.
Secondly, the functional form of the elastic moduli is, in general, required to

be of the multi-parameter form given by equations (5) and (13).

Although these constraints on the elastic moduli limit the application of the
analysis it remains applicable to a significant class of materials. For example in
the area of geomechanics a Poisson’s ratio of 0.25 is a common value for rock
materials (see Manolis and Shaw [15] and Turcotte and Schubert [16]). Also
geotechnical analysis of certain subterraean regions (see for example Ward,
Burland and Gallois [17]) indicates that the elastic parameters of such regions
may be closely approximated by a multi-parameter form of the type given by
(5), (6) and (13) with appropriate values of the constants cz(-?,)d, a, ( and 7 (see
Azis and Clements [8]).
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Table 1

Crack energy and stress intensity factors for a homogeneous material.

h U/Us Ki/po Kif/po

8 1.005 0.502  0.502

7 1.007 0.503  0.503

6 1.009 0.504 0.504

5 1.013 0.506  0.506

4 1.021 0.510 0.510

3 1.037 0.518  0.518

2 1.084 0.541 0.541

1 1.353 0.657  0.657
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Table 2

Stress intensity factors and crack energy for a crack in an inhomogeneous

material with moduli ¢;j5/po = CE;-),)CZ(CO—FCl.%'l +Co19)? /po under uniaxial stress.

cw ¢ ¢ L a K; K} K;; K, U/U

1.0 0.0 0.0 1.0 3.5 0.5192 0.5192 -0.0002 0.0002 1.0395
1.0 0.1 0.0 1.0 3.5 0.5238 0.5344 0.0257 0.0296 0.5410

1.0 0.0 0.1 1.0 3.5 0.5264 0.5264 0.0084 -0.0084 0.7326
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Table 3
Stress intensity factors and crack energy for a crack in an inhomogeneous

material with moduli ¢;jx/po = cz(-?,)cl(co + €121 + ¢212)? /po under biaxial stress.

«ww o ¢ L a Ki/pp Kf/po Ki/po Kir/po U/Up

1.0 0.0 0.0 1.0 3.5 0.5187 0.5187 -0.0001 0.0001 1.0385

1.0 0.1 0.0 1.0 3.5 0.53179 0.5284 0.0123 0.0142 0.5349

1.0 0.0 0.1 1.0 3.5 0.5026 0.5026 0.0131 -0.0131 0.6991
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