
A LAPLACE TRANSFORMATION DUAL-RECIPROCITY
BOUNDARY ELEMENT METHOD FOR A CLASS OF
TWO-DIMENSIONAL MICROSCALE THERMAL

PROBLEMS

Whye-Teong Ang
Division of Engineering Mechanics

School of Mechanical and Production Engineering
Nanyang Technological University

50 Nanyang Avenue, Singapore 639798
Republic of Singapore

E-mail: mwtang@ntu.edu.sg

Abstract. The numerical solution of a two-dimensional thermal problem
governed by a third order partial differential equation derived from a non-
Fourier heat flux model which may account for thermal waves and/or micro-
scopic effects is considered. A dual-reciprocity boundary element method is
proposed for solving the problem in the Laplace transformation domain. The
solution in the physical domain is recovered by a numerical inverse Laplace
transformation technique.

Keywords:
Non-Fourier heat flux model, microscale thermal problems,
dual-reciprocity boundary element method, Laplace transformation
Short title:
LT-DRBEM for Microscale Thermal Problems

Note. This has been a draft of the article published in Engineering
Computations 19 (2002) 467-478.

1



About the author. Whye-Teong Ang graduated with a doctorate degree in
Applied Mathematics from the University of Adelaide in 1987. Presently, he
is an Associate Professor in the Division of Engineering Mechanics, School
of Mechanical and Production Engineering at Nanyang Technological Uni-
versity in Singapore. One of his main research interests is in scientific and
engineering computation. To date, he has published about 50 papers in inter-
national journals on areas which include boundary element methods, stress
analysis around cracks, thermo-elasticity and diffusion.

2



A LAPLACE TRANSFORMATION DUAL-RECIPROCITY
BOUNDARY ELEMENT METHOD FOR A CLASS OF
TWO-DIMENSIONAL MICROSCALE THERMAL

PROBLEMS

Abstract. The numerical solution of a two-dimensional thermal problem
governed by a third order partial differential equation derived from a non-
Fourier heat flux model which may account for thermal waves and/or micro-
scopic effects is considered. A dual-reciprocity boundary element method is
proposed for solving the problem in the Laplace transformation domain. The
solution in the physical domain is recovered by a numerical inverse Laplace
transformation technique.

1 Introduction

The classical Fourier heat flux model assumes that the heat flux is instan-

taneously proportional to the temperature gradient of the thermal field. It

leads to the physically undesirable conclusion that thermal waves travel at

an infinite speed. A quite often used justification for the model is that the

wave nature of heat conduction is important only over a very short period

of time or under extreme conditions (such as at very low temperature or

when heat flows at a very high rate), i.e. the model is applicable under “nor-

mal conditions” and is therefore adequate for thermal analysis in most (if

not all) practical situations. Kaminski (1990) reported that thermal waves

might possibly be observed in solids at normal room temperatures, how-

ever, and Yuen and Lee (1989) showed that they may possibly be significant

over a relatively long period of time. In addition, microscopic phenomena

such as phonon scattering and phonon-electron interaction which the Fourier

heat flux model fails to capture play an influential role in heat conduction

in many micro-engineering applications, e.g. in dielectric films, insulators
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and semiconductors. Thus, heat flux models which can account for ther-

mal waves and/or microscopic effects have become increasingly important in

recent years.

One such heat flux model is the dual-phase lag model proposed by Tzou

(1995, 1997). It has been successfully employed in the analysis of certain

microscale thermal problems. The thermal waves and microscopic effects are

modeled by introducing small time delays required for the temperature gra-

dient and the heat flux to be set up in the heat conduction process. More

mathematically, for two-dimensional heat conduction in a thermally isotropic

solid, if q1(x1, x2, t) and q2(x1, x2, t) are functions giving the components of

the heat flux in the x1 and x2 directions respectively (x1 and x2 are the Carte-

sian coordinates and t denotes time) and if T (x1, x2, t) is the temperature

then

qi(x1, x2, t+ τ q) = −κ ∂

∂xi
[T (x1, x2, t+ τT )] for t ≥ 0, (1)

where τ q and τT are given positive constants of small magnitudes giving

the phase lags of the heat flux components and the temperature gradient

respectively and κ (assumed to be constant here) is the heat conductivity of
the solid. In the classical Fourier heat flux model, the constants τ q and τT

are both taken to be zero. For further details on the Tzou dual-phase lag

model, refer to Tzou (1995, 1997) and other relevant references there-in.

Following Tzou (1997), we can expand the left and right hand sides of (1)

respectively as Taylor-Maclaurin series about τ q = 0 and τT = 0 and ignore

second and higher order terms in τ q and τT (i.e. assume that the phase lags

are sufficiently small) to obtain the constitutive relation:

qi(x1, x2, t) + τ q
∂

∂t
[qi(x1, x2, t)]

= −κ ∂

∂xi

µ
T (x1, x2, t) + τT

∂

∂t
[T (x1, x2, t)]

¶
for t ≥ 0. (2)

The well-known Cattaneo-Vernotte constitutive relation for heat flux (Cat-

taneo, 1958; Vernotte, 1958) can be recovered from (2) by letting τT = 0.
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The use of (2) together with the energy equation

ρc
∂

∂t
[T (x1, x2, t)] = −

2X
i=1

∂

∂xi
qi(x1, x2, t) for t ≥ 0 (3)

gives rise to

2X
i=1

µ
∂2

∂x2i
[T (x1, x2, t)] + τT

∂3

∂t∂x2i
[T (x1, x2, t)]

¶
=

ρc

κ

½
τ q

∂2

∂t2
[T (x1, x2, t)] +

∂

∂t
[T (x1, x2, t)]

¾
for t ≥ 0, (4)

where ρ and c are the volume density and the specific heat of the solid.

According to Tzou (1997), the term containing the third order mixed partial

derivative on the left hand side of (4) accounts for the effects of certain

microscopic phenomena on heat conduction. On the other hand side, the

term ρcκ−1τ q∂2T/∂t2 reveals the wave nature of heat conduction.
An important class of non-Fourier heat conduction problems is therefore

to solve (4) in a two-dimensional region R bounded by a simple closed curve

C subject to the initial-boundary conditions

T (x1, x2, 0) = f (x1, x2) for (x1, x2) ∈ R, (5)

∂T

∂t

¯̄̄̄
t=0

= g(x1, x2) for (x1, x2) ∈ R, (6)

T (x1, x2, t) = p(x1, x2, t) for (x1, x2) ∈ C1 and t > 0, (7)

H(x1, x2, t) = r(x1, x2, t) for (x1, x2) ∈ C2 and t ≥ 0, (8)

where f, g, p and r are suitably given functions, C1 andC2 are non-intersecting

curves such that C1 ∪ C2 = C, the heat flux H is defined by H(x1, x2, t) =

q1(x1, x2, t)n1(x1, x2) + q2(x1, x2, t)n2(x1, x2) and [n1(x1, x2), n2(x1, x2)] de-

notes the unit normal vector to C at the point (x1, x2) pointing away from

R.

For the case in which τT = 0, Manzari and Manzari (1998) had solved

(4) numerically subject to suitable initial-boundary conditions using a finite-

element method. For the case in which T depends on x1 and t only, Dai and
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Nassar (1999) had developed a finite difference scheme for solving numeri-

cally (4) in the region 0 < x1 < l with T specified at x1 = 0 and x1 = l.

More recently, Zhang and Zhao (2001) devised a finite-difference method to

solve (4) approximately in a square region with the temperature completely

specified on the boundary. In the present paper, a dual-reciprocity bound-

ary element method (DRBEM) is proposed for the numerical solution of the

problem defined by (4)-(8) after taking the Laplace transformation (LT) of

the equations with respect to the time parameter t. A numerical technique

for inverting LT is then employed to recover the physical solution. Such a

Laplace transformation DRBEM approach had been previously used by Zhu,

Satravaha and Lu (1994) and Zhu and Liu (1998) for the numerical solution of

diffusion equations. The proposed method is applicable for arbitrary-shaped

regions and mixed boundary conditions. It is applied to solve numerically a

specific test problem.

2 Formulation in the LT domain

The Laplace transformation L of a function φ(x1, x2, t) with respect to the

time parameter t ≥ 0 is defined by

L{φ(x1, x2, t); t→ s} =
Z ∞

0

φ(x1, x2, t) exp(−st)dt, (9)

where s is the LT parameter. In the present paper, s is taken to be real.

If we apply L on (4)-(8), the problem under consideration is then to solve
for bT (x1, x2, s) from

2X
i=1

∂2

∂x2i
[bT (x1, x2, s)] = ρcs[sτ q + 1]

κ[sτT + 1]
bT (x1, x2, s) + bF (x1, x2, s) in R, (10)

subject to

bT (x1, x2, s) = bp(x1, x2, s) for (x1, x2) ∈ C1, (11)bH(x1, x2, s) = br(x1, x2, s) for (x1, x2) ∈ C2, (12)
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where bT (x1, x2, s) = L{T (x1, x2, t); t→ s}, bH(x1, x2, s) = L{H(x1, x2, t); t→
s}, bp(x1, x2, s) = L{p(x1, x2, t); t → s}, br(x1, x2, s) = L{r(x1, x2, t); t → s}
and

bF (x1, x2, s) =
ρc

κ[sτT + 1]
{−[sτ q + 1]f (x1, x2)− τ qg(x1, x2)

+
κτT
ρc

2X
i=1

∂2

∂x2i
[f(x1, x2)]}. (13)

3 LT-DRBEM

From (10), one may derive the integral equation

λ(ξ1, ξ2)bT (ξ1, ξ2, s)
=

ZZ
R

½
ρcs[sτ q + 1]

κ[sτT + 1]
bT (x1, x2, s) + bF (x1, x2, s)¾Φ(x1, x2, ξ1, ξ2)dx1dx2

+

I
C

bT (ξ1, ξ2, s)Γ(x1, x2, ξ1, ξ2)dS(x1, x2)
+

I
C

bP (ξ1, ξ2, s)Φ(x1, x2, ξ1, ξ2)dS(x1, x2), (14)

where λ(ξ1, ξ2) = 0 if (ξ1, ξ2) /∈ C ∪ R, λ(ξ1, ξ2) = 1 if (ξ1, ξ2) ∈ R, 0 <
λ(ξ1, ξ2) < 1 if (ξ1, ξ2) ∈ C and

κ(sτT + 1) bP (ξ1, ξ2, s) = (sτ q + 1) bH(ξ1, ξ2, s)− τ qr(ξ1, ξ2, 0)

−κτT
2X
i=1

ni(ξ1, ξ2)
∂

∂ξi
[f(ξ1, ξ2)].

Φ(x1, x2, ξ1, ξ2) =
1

4π
ln
£
(x1 − ξ1)

2 + (y2 − ξ2)
2
¤
,

Γ(x1, x2, ξ1, ξ2) =
n1(x1, x2)(x1 − ξ1) + n2(x1, x2)(y2 − ξ2)

2π [(x1 − ξ1)
2 + (y2 − ξ2)

2]
. (15)
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For a guide on the derivation of (14), one may refer to Clements (1981).

The integral equation (14) may be used to devise a DRBEM for solving

numerically (10) in R subject to (11)-(12) as follows.

Discretize the boundary C by putting on it N well-spaced out points

(x(1)1 , x
(1)
2 ), (x

(2)
1 , x

(2)
2 ), · · · , (x(N−1)1 , x(N−1)2 ) and (x(N )1 , x(N)2 ) in an anticlock-

wise order. Define: (x(N+1)1 , x(N+1)2 ) = (x(1)1 , x
(1)
2 ). For k = 1, 2, · · · , N, join

the point (x(k)1 , x
(k)
2 ) to (x

(k+1)
1 , x(k+1)2 ) to form a directed line segment denoted

by C(k). We approximate the curve C by:

C ' C(1) ∪ C(2) ∪ · · · ∪ C(N−1) ∪ C(N ). (16)

To treat the double integral over R in (14) using the dual-reciprocity

method described in Brebbia and Nardini (1983) and Patridge and Brebbia

(1990), we choose N collocation points on the boundary C and another L

in the interior of R. Let us denote these collocation points by (ξ
(p)
1 , ξ

(p)
2 ) for

p = 1, 2, · · · , N + L. For k = 1, 2, · · · , N, we take (ξ(k)1 , ξ(k)2 ) to be the
midpoint of C(k). (The remaining L collocation points lie in the interior of

R.) With these collocation points, we then make the approximation:

ρcs[sτ q + 1]

κ[sτT + 1]
bT (x1, x2, s) + bF (x1, x2, s) ' N+LX

j=1

bµ(j)(s)σ(j)(x1, x2), (17)

where

σ(j)(x1, x2) = 1 +
³
[x1 − ξ(j)1 ]

2 + [x2 − ξ(j)2 ]
2
´
+
³
[x1 − ξ(j)1 ]

2 + [x2 − ξ(j)2 ]
2
´3/2

.

(18)

The local interpolating functions in (18) are those suggested by Zhang and

Zhu (1994).

The approximation (17) allows the double integral in (14) to be trans-

formed approximately into a line integral as follows:ZZ
R

½
ρcs[sτ q + 1]

κ[sτT + 1]
bT (x1, x2, s) + bF (x1, x2, s)¾Φ(x1, x2, ξ1, ξ2)dx1dx2

'
N+LX
j=1

bµ(j)(s)Ψ(j) (ξ1, ξ2) , (19)
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where

Ψ(j)(ξ1, ξ2) = λ(ξ1, ξ2)θ
(j)(ξ1, ξ2) +

I
C

Φ(x1, x2, ξ1, ξ2)β
(j)(x1, x2)dS(x1, x2)

−
I
C

Γ(x1, x2, ξ1, ξ2)θ
(j)(x1, x2)dS(x1, x2),

θ(j)(x1, x2) =
1

4

³
[x1 − ξ(j)1 ]

2 + [x2 − ξ(j)2 ]
2
´

+
1

16

³
[x1 − ξ(j)1 ]

2 + [x2 − ξ(j)2 ]
2
´2
+
1

25

³
[x1 − ξ(j)1 ]

2 + [x2 − ξ(j)2 ]
2
´5/2

,

β(j)(x1, x2) = n1(x1, x2)
∂

∂x1
[θ(j)(x1, x2)] + n2(x1, x2)

∂

∂x2
[θ(j)(x1, x2)]. (20)

For further details, refer to Brebbia and Nardini (1983) and Patridge and

Brebbia (1990).

From (19), by letting (ξ1, ξ2) be given by (ξ
(n)
1 , ξ

(n)
2 ) for n = 1, 2, · · · ,N+L

in (14), we obtain:

λ(ξ(n)1 , ξ
(n)
2 )T

(n)(s) =
N+LX
j=1

bµ(j)(s)Ψ(j)
³
ξ
(n)
1 , ξ

(n)
2

´

+
NX
m=1

T (m)(s)

Z
C(m)

Γ(x1, x2, ξ
(n)
1 , ξ

(n)
2 )dS(x1, x2)

+
NX
m=1

P (m)(s)

Z
C(m)

Φ(x1, x2, ξ
(n)
1 , ξ

(n)
2 )dS(x1, x2)

for n = 1, 2, · · · , N + L, (21)

where T (n)(s) = bT (ξ(n)1 , ξ(n)2 , s) and P (m)(s) = bP (ξ(m)1 , ξ
(m)
2 , s). In deriving

(21), we make the approximation:bT (x1, x2, s) ' T (m)(s)bP (x1, x2, s) ' P (m)(s)
)
for (x1, x2) ∈ C(m). (22)
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Also, if we collocate (17) in a similar way, we obtain:

N+LX
j=1

bµ(j)(s)σ(j)(ξ(n)1 , ξ(n)2 ) =
ρcs[sτ q + 1]

κ[sτT + 1]
T (n)(s) + bF (ξ(n)1 , ξ(n)2 , s)

for n = 1, 2, · · · , N + L. (23)

Since either T (m)(s) or P (m)(s) (not both) is known from (11)-(12) for

m = 1, 2, · · · ,N, we find that for a given s, (21) and (23) can be solved as a
system of 2(N + L) linear algebraic equations for 2(N + L) unknowns given

by T (N+p) for p = 1, 2, · · · , L (the values of the LT of the temperature at the
interior collocation points), either T (m)(s) or P (m)(s) for m = 1, 2, · · · , N
(the values of the LT of either the temperature or heat flux at the boundary

points) and bµ(j)(s) for j = 1, 2, · · · ,N + L (the unknown coefficients in the
approximation (17)). Once bµ(j)(s) are determined, the LT of the temperature
and its spatial partial derivatives, namely bT (x1, x2, s) and ∂[bT (x1, x2, s)]/∂xi,
can be computed approximately at any point (x1, x2) ∈ R using (17).

4 LT inversion

The temperature T (x1, x2, t) can be recovered from bT (x1, x2, s) by using a
numerical LT inversion technique. A survey and comparison of some numer-

ical LT inversion methods was given by Davies and Martin (1979). For the

inversion of bT (x1, x2, s) here, we choose the numerical method due to Ste-
hfest (1970), which is nowadays increasingly used in applied and engineering

science for the numerical inversion of LT (e.g. Ang, 1988; Smith et al., 1994;

and Hemker, 1999).

Using the Stehfest’s algorithm, we obtain the approximation:

T (x1, x2, t) ≈ ln(2)
t

2MX
n=1

cn bT µx1, x2, n ln(2)
t

¶
, (24)

where M is a positive integer and

cn = (−1)n+M
min(n,M )X

m=[(n+1)/2]

mM (2m)!

(M −m)!m!(m− 1)!(n−m)!(2m− n)! , (25)
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where [r] denotes the integer part of the real number r.

Most (if not all) numerical LT inversion techniques are highly susceptible

to errors in the Laplace transforms. The Stehfest’s algorithm is no exception.

In theory, to obtain more accurate values of T (x1, x2, t), a larger value of M

(i.e. more terms) must be used in the LT inversion formula (24). Unfor-

tunately, in practice, this is only true if we can guarantee that there is no

error in the calculation of bT (x1, x2, s), as the magnitude of the coefficient cn
increases rapidly with increasing n.Thus,M cannot be selected to be as large

as we like. On the other hand, taking M to be too small may give numerical

results of lower accuracy. The optimum choice of M depends on the arith-

metical precision of the computer as well as the accuracy of the numerical

values of bT (x1, x2, s) (Stehfest, 1970).
Perhaps the best way to choose the optimum M is through testing the

computer code of (24) on inverting bT (x1, x2, s) obtained by the DRBEM from

specific problems with known exact solutions. In general, one may determine

the reliability of the numerical results obtained by starting the inversion

of bT (x1, x2, s) with M = 2 (say) and performing the same inversion again

and again using increasingly larger values of M. Initially, as M increases,

convergence should be observed in the numerical results, if everything is in

order. However, when M is greater than a certain value, the LT inversion

returns results that fail to show any convergent pattern. Alternatively, one

may also choose to invert bT (x1, x2, s) using two or more different LT inversion
techniques in order to assess whether the numerical values of the temperature

obtained can be accepted.

5 A specific example

Let us take the region R to be R = {(x1, x2) : x21 + x22 < 1, x1 > 0, x2 > 0}
and a special case of the governing equation (4) with ρc = 1, κ = 1, τT = 1/2
and τ q = 1/4, i.e.
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2X
i=1

µ
∂2

∂x2i
[T (x1, x2, t)] +

1

2

∂3

∂t∂x2i
[T (x1, x2, t)]

¶
=
1

4

∂2

∂t2
[T (x1, x2, t)] +

∂

∂t
[T (x1, x2, t)] . (26)

We shall apply the LT-DRBEM to solve (26) in R subject to the initial-

boundary conditions:

T (x1, x2, 0) = (1 + x1) sin(

r
3

2
x2) + x1x2 for (x1, x2) ∈ R, (27)

∂T

∂t

¯̄̄̄
t=0

= −(1 + x1) sin(
r
3

2
x2) for (x1, x2) ∈ R, (28)

T (0, x2, t) = exp(−t) sin(
r
3

2
x2) for x2 ∈ [0, 1], t > 0, (29)

T (x1, 0, t) = 0 for x1 ∈ [0, 1], t > 0, (30)

H(x1, x2, t) = −2
3

(
x1 sin(

r
3

2
x2)

+

r
3

2
(1 + x1)x2 cos(

r
3

2
x2)

)
exp(−t)− 2x1x2

for x21 + x
2
2 = 1, x1 > 0, x2 > 0, t ≥ 0. (31)

It is easy to verify by direct substitution that the exact solution of the

test problem is

T (x1, x2, t) = (1 + x1) exp(−t) sin(
r
3

2
x2) + x1x2. (32)

We apply the LT-DRBEM described in Section 2 to solve (26) numer-

ically subject to (27)-(31) in order to assess the accuracy of the method

through comparing the numerical results with the exact solution (32). We

invert bT (x1, x2, s) using M = 2, 4, 6 and 8 to recover approximately the

temperature T (x1, x2, t). We find that the numerical results obtained using
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M = 4 do not differ significantly from those calculated using M = 6 and are

in good agreement with the exact solution. However, due to the precision

in the computing machine, the LT inversion fails to deliver accurate solu-

tion for M = 8. In fact, for M = 8, the numerical results depart “wildly”

from the actual ones. At the point (0.25, 0.50), the numerical values of the

temperature T calculated using M = 4 [i.e. 8 terms in the formula (24)]

are compared with the exact solution at selected time t in Table 1. The nu-

merical values in the second column of the table are obtained by discretizing

the boundary into 60 elements (N = 60) and choosing 40 well spaced out

collocation points (L = 40) in the interior of the solution domain. The third

column contains numerical values obtained using N = 120 and L = 80. It is

obvious from the table that the numerical values of the temperature agree

well with the exact ones and there is significant improvement in the accuracy

of the numerical results when we double the number of boundary elements

and interior collocation points used.

Table 1. Numerical and exact values of T (0.25, 0.50, t) at selected time t.

t
N = 60
L = 40

N = 120
L = 80

Exact

0.10 0.7746 0.7752 0.7751
0.20 0.7126 0.7133 0.7133
0.30 0.6566 0.6573 0.6573
0.40 0.6060 0.6066 0.6066
0.50 0.5601 0.5607 0.5608
0.60 0.5185 0.5191 0.5193
0.70 0.4809 0.4815 0.4818
0.80 0.4469 0.4475 0.4478
0.90 0.4162 0.4167 0.4171
1.00 0.3884 0.3889 0.3893

13



Figure 1
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On the circular part of the boundary of the solution, i.e. at x21 + x
2
2 = 1,

x1 > 0, x2 > 0, the heat flux is specified and the temperature is unknown.

In Figure 1, we plot the numerical and the exact values of the temperature

at t = 0.50 against the angle θ = arctan(x2/x1), where (x1, x2) is a point

on the circular part of the boundary. The numerical values are obtained by

using N = 120, L = 80 and M = 4. The graphs of the numerical and the

exact temperature on the boundary are in good agreement with each other.

On the boundary x2 = 0, 0 < x1 < 1, the temperature is specified. We

can solve for the LT of ∂T/∂n on this part of the boundary, i.e. for bP (x1, 0, s)
and hence from (15) for the LT of the heat flux across the boundary, i.e. forbH(x1, 0, s). Once bH(x1, 0, s) is obtained, it can be inverted to obtain the
boundary heat flux H(x1, 0, t). Discretizing the boundary into 120 elements,

employing 80 collocation points in the interior of the solution domain and

using 8 terms in the approximate LT inversion formula, we obtain numerical

values of H on x2 = 0 for 0 < x1 < 1 at time t = 0.50. The numerical and

the exact values of H(x, 0, 0.50) are plotted against x for 0 < x < 1 in Figure
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2. [The exact value of H on x2 = 0 for 0 < x1 < 1 varies linearly across the

line according to H(x1, 0, t) =
p
(2/3)(1 + x1) exp(−t).] From Figure 2, the

numerical and exact values of the boundary heat flux agree well except for

points very close to the sharp corners (0, 0) and (1, 0). The accuracy of the

numerical calculation near the corner points can be improved by employing

more and finer boundary elements near those points.

Figure 2
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6 Conclusion

In the present studies, a LT-DRBEM is proposed for the numerical solution

of a two-dimensional micro-scale thermal problem. In the LT domain, the

method reduces the problem under consideration into a system of linear

algebraic equations of the form AX = B. It is necessary to solve the system

several times for different values of the LT parameter s in order to apply

a LT inversion technique to recover the physical solution. A significantly

large amount of computational time is taken up in the setting up of the

matrix A. However, fortunately, most of the elements in A are independent
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of s and therefore have to be evaluated only once. The proposed method is

applied to solve numerically a specific test problem. For the test problem, the

temperature at a selected interior point and at some boundary points as well

as the heat flux across a certain part of the boundary is computed numerically

and found to be in good agreement with the known exact solution. The

accuracy of the numerical solution is also found to improve when the number

of boundary elements and collocation points used is increased.
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