
Bioheat transfer in the human eye:
a boundary element approach

E. H. Ooi, W. T. Ang* and E. Y. K. Ng
School of Mechanical and Aerospace Engineering

Nanyang Technological University
50 Nanyang Avenue, Singapore 639798

Abstract

A boundary element method is applied for the numerical solution
of a boundary value problem for a two-dimensional steady-state bio-
heat transfer model of the human eye. The human eye is modeled
as comprising four distinct homogeneous regions. The boundary con-
dition on the outer surface of the cornea is non-linear due to heat
radiation. An iterative approach is used to treat the non-linear heat
radiation term. The center corneal temperature is computed numeri-
cally and compared with values reported in the literature. It appears
that the boundary element method calculates the normal heat flux
more accurately than the finite element method on the corneal sur-
face, especially near its edges.
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1 Introduction

In recent years, the boundary element method has become more popular as

a numerical tool for analyzing heat transfer processes in biological systems.

Chan [1] applied the method for the numerical solution of the Pennes bioheat

equation and obtained numerical results that were in good agreement with

analytical solutions. In [1], the fundamental solution in the form of a mod-

ified Bessel function was used to derive the appropriate boundary integral

equation for the bioheat equation with the blood perfusion term. An alterna-

tive approach for analyzing the same bioheat equation, as given in Lu et al.

[2], made use of the simpler fundamental solution for the Laplace equation.

The resulting formulation would contain a domain integral which may be re-

duced approximately to a boundary integral by the dual reciprocity method.

Poljak et al. [3] presented a boundary element analysis of heat transfer in

the human body exposed to electromagnetic waves.

In the present paper, the boundary element method is applied to analyze

the steady state temperature distribution in a two-dimensional model of the

human eye. The earliest reported model for heat transfer in the eye was for

a rabbit eye subject to electromagnetic waves (Emery et al. [4] and Guy

et al. [5]). It was solved by the finite element method and the numerical

results were reported to be in good agreement with data from experimental

measurements. Scott [6] and Amara [7] used the finite element method to

determine the steady state temperature in two-dimensional models of the hu-

man eye. In some earlier studies involving relatively simpler ocular models,

the finite difference method was used to solve the governing equations numer-

ically (see, for example, Lagendijk [8] and Okuna [9]). More recently, Hirata

et al. [10], [11] applied the finite difference time domain method to study the

temperature rise in the human eye exposed to electromagnetic waves.

There are some good reasons for using the boundary element method in
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the analysis of bioheat transfer in the human eye. Firstly, the method requires

only the boundary of the solution domain to be discretized. It helps not

only to reduce the requirement on computer memory, but is also particularly

advantageous in analyzing human eye models which comprise several sub-

regions with different material properties and rather complicated geometries.

Secondly, unlike the finite element or finite difference methods that solve for

not necessarily wanted values of the temperature inside the whole eye, the

boundary element method solves for the only unknown temperature or heat

flux on the boundaries. Temperature and heat flux inside the eye may then

be calculated as a post processing procedure, if needed. Current technology

for eye temperature measurement uses infra-red thermography in which the

temperature profile on the corneal surface is captured and displayed on a

color- coded monitor. The corneal surface forms part of the boundary for

the human eye. Knowing the temperature on the corneal surface is often

sufficient for comparison with infra-red thermograms. Thirdly, the boundary

element method is in general more accurate than the finite element method

in computing secondary variables such as the heat flux.

2 A mathematical model of the human eye

As in Ng and Ooi [12], a two-dimensional model of the human eye as sketched

in Figure 1 is considered here. In reality, in between the sclera and the

vitreous, one may find two tissue layers known as the retina and the choroid.

For simplicity, since these layers are relatively thin, they are modeled together

with the sclera and the optic nerve as a single homogeneous region.

The thermal conductivities of the sclera, vitreous, lens, aqueous humor,

iris and cornea may be found in the literature. They are given in Table 1.

Each of the subdomains is assumed to be thermally isotropic and homoge-

neous.
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Figure 1. A sketch of the model.

Table 1. Thermal conductivities of the subdomains in the human eye.

Subdomain
Thermal conductivity

(in Wm−1(◦C)−1)
Reference

Cornea 0.58 Emery et al. [4]
Aqueous humor 0.58 Emery et al. [4]
Iris 1.0042 Cicekli [13]
Sclera 1.0042 Cicekli [13]
Lens 0.40 Lagendijk [8]
Vitreous 0.603 Scott [6]
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Figure 2. The four homogeneous regions and exterior boundary conditions.

The temperature distribution in the eye is assumed to be in steady-state

condition. If the blood perfusion and the metabolic heat generation terms in

the Pennes bioheat equation are neglected, the equation of flow of heat inside

the eye may be reduced to the two-dimensional Laplace equation. Under

such assumptions, since the cornea and the aqueous humor are contiguous

and their thermal conductivities are of the same value, they are modeled as

5



a single homogeneous region denoted by R1 in Figure 2. Similarly, the iris

and the sclera are taken to be the homogeneous region R2. The lens and

the vitreous occupy the homogeneous regions R3 and R4 respectively. The

exterior boundary of the eye comprises the cornea surface Γ1 and the outer

part Γ2 of the sclera. Note that the measurement unit for the length along

the x and y axes in Figure 2 is meter.

If the steady-state temperature in Ri is denoted by Ti then the heat flow

is governed by

∇2Ti = 0 in Ri (i = 1, 2, 3, 4), (1)

where ∇2 denotes the Laplacian operator.
The cornea is the only region in the eye that is exposed to the environ-

ment. At an ambient temperature lower than the corneal surface tempera-

ture, heat is extracted away from the eye via convection and radiation. A

layer of tear film sits on top of the cornea. This layer is constantly evaporated

and refreshed through the blinking of the eyelids. Besides convection and ra-

diation, the evaporation of tears increases the cooling rate on the corneal

surface. The loss of heat from the cornea generates a flow of heat flux from

the regions of high temperature inside the eye to the corneal surface. Thus,

the boundary condition on the corneal surface Γ1 (the exterior boundary of

the region R1 in Figure 2) may be written as (see, for example, Scott [6])

−k1∂T1
∂n

= hambient(T1 − Tambient) + εσ(T 41 − T 4ambient) +E on Γ1, (2)

where k1 is the thermal conductivity of the cornea, ∂T1/∂n is the rate of

change of the temperature T1 in the direction of the outward unit vector to

R1, hambient is the heat transfer coefficient related to the convection process in

the surrounding environment, Tambient is the temperature of the surrounding

environment, ε and σ are the corneal emissivity and the Stefan-Boltzmann
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constant respectively, and E is the loss in heat flux due to evaporation of

tears . Note that the non-linear term in (2) models the heat transfer process

by radiation.

On the exterior boundary Γ2 of the region R2, heat enters the eye system

through the flow of blood. This may be modeled by using the boundary

condition

−k2∂T2
∂n

= hblood(T2 − Tblood) on Γ2, (3)

where k2 is the thermal conductivity of the sclera, ∂T2/∂n is the rate of

change of the temperature T2 in the direction of the outward unit vector to

R2, hblood is the heat transfer coefficient related to the convection process in

the blood, and Tblood is the temperature of the blood.

The values of control parameters (such as ε, σ and hblood) related to the

boundary conditions in (2) and (3) may be chosen as in Ng and Ooi [12].

Refer to Table 2.

The interfaces between the different contiguous regions are given by

T1 = T2 and k1
∂T1
∂n

= k2
∂T2
∂n

on I12,

T1 = T3 and k1
∂T1
∂n

= k3
∂T3
∂n

on I13,

T2 = T4 and k2
∂T2
∂n

= k4
∂T4
∂n

on I24,

T3 = T4 and k3
∂T3
∂n

= k4
∂T4
∂n

on I34, (4)

where ki is the thermal conductivity of Ri, Iij denotes the interface between

Ri and Rj and ∂Ti/∂n (on the interface) denotes the rate of change of Ti in

the direction of a normal vector to the interface.

The human eye model of interest here is mathematically defined by (1)

together with (2), (3) and (4).
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Table 2. Control parameters for the exterior boundary conditions.

Control parameter Value
Blood temperature Tblood (

◦C) 37
Ambient temperature Tambient (

◦C) 25
Emissivity of cornea ε 0.975
Blood convection coefficient hblood (Wm

−2(◦C)−1) 65
Ambient convection coefficient hambient (Wm

−2(◦C)−1) 10
Heat flux loss due to tear evaporation E (Wm−2) 40
Stefan-Boltzmann constant σ (Wm−2(◦C)−4) 5.67 × 10−8

3 Boundary element approach

A boundary element approach for the numerical solution of (1) subject to

(2), (3) and (4) is outlined here.

The governing equation (1) may be recast in the integral form (see, for

example, Clements [14])

c(ξ, η)Ti(ξ, η) =

Z
∂Ri

(Ti(x, y)
∂

∂n
[G(x, y; ξ, η)]

−G(x, y; ξ, η) ∂
∂n
[Ti(x, y)])ds(x, y)

for (ξ, η) ∈ Ri ∪ ∂Ri, (5)

where ∂Ri denotes the boundary of the region Ri, c(ξ, η) = 1 if (ξ, η) lies in

the interior of Ri, c(ξ, η) = 1/2 if (ξ, η) lies on a smooth part of ∂Ri, ∂f/∂n

denotes the rate of change of f in the direction of the outward unit vector

to Ri, and G(x, y; ξ, η) is the fundamental solution of the two-dimensional

Laplace equation as given by

G(x, y, ξ, η) =
1

4π
ln([x− ξ]2 + [y − η]2). (6)

Note that the interfaces between two contiguous regions in the human eye

model may be parts of the boundary ∂Ri. For example, ∂R1 consists of Γ1

and the interfaces I12 and I13.
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Now if Ti and ∂Ti/∂n (which is essentially the heat flux) are known at

all points on ∂Ri then then the temperature at any point (ξ, η) in Ri may

be computed by evaluating approximately the boundary integral in (5). The

heat flux components at any interior point (ξ, η) may also be computed di-

rectly by differentiating (5) partially with respect to ξ and η. Now if the

non-linear radiation term in the boundary condition on the corneal surface

is ignored (as done in some studies), the integral equation (5) together with

(2), (3) and (4) may be discretized to set up a system of linear algebraic

equations for finding approximately the values of Ti and ∂Ti/∂n over bound-

ary elements on the exterior boundary Γ1∪Γ2 and the interfaces between the
different regions of the eye. For details of such a procedure, one may refer

to, for example, Clements [14] and Brebbia et al. [15]. The coefficients of

the linear algebraic equations may be evaluated either numerically or analyt-

ically. If discontinuous linear elements are used, analytical formulae for the

coefficients may be found in Ang [16]. The analytical formulae for constant

elements may also be recovered as a special case from the results in [16].

The presence of the non-linear term in (2) slightly complicates matter,

but may be easily be dealt with by using an iterative procedure as follows.

The temperature Ti is obtained through consecutive approximations T
(0)
i ,

T
(1)
i , T

(2)
i , · · · . Assuming that T (m−1)1 is known, one uses the standard bound-

ary element procedure to discretize (5) together with (3), (4) and (in the place

of the non-linear condition (2)) the approximate linear boundary condition

given by

−k1∂T1
∂n

= hambient(T1 − Tambient) + εσ([T
(m−1)
1 ]4 − T 4ambient) +E on Γ1,

(7)

in order to set up a system of linear algebraic equations for determining T
(m)
i

and ∂T
(m)
i /∂n on the boundary Γ1 ∪ Γ2 and the interfaces. Thus, one may

begin with the initial approximation T
(0)
1 = Tambient on Γ1 in order to solve
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for T
(1)
i and ∂T

(1)
i /∂n on the boundary Γ1 ∪ Γ2 and all the interfaces. The

procedure may be repeated to obtain higher and higher order approximations

for T until the criterion

|T (m)1 − T (m−1)1 | < ² on Γ1, (8)

where ² is a pre-selected real number of sufficiently small magnitude, is sat-

isfied.

For the purpose here, ² is taken to be 1 × 10−5. In the numerical re-
sults presented below, not more than 8 iterations are needed to achieve the

convergence defined by the criterion (8).

4 Numerical results

With the model in Section 2 and the data in Tables 1 and 2, the boundary

element approach outlined in Section 3 is used to compute the temperature

distribution in the human eye. The exterior boundary Γ1 ∪ Γ2 of the eye

and the interfaces I12, I13, I24 and I34 between the different ocular regions

are discretized into many short straight line elements. The temperature and

the heat flux are approximated as constants (to be determined) over each

boundary element, that is, constant elements are used. To carry out the

calculation, 470 boundary elements are used, with 76 of them on the corneal

surface Γ1.

It is obvious from Figure 2 that a point lying on the corneal surface Γ1

may be uniquely determined by its y coordinate. Figure 3 gives a plot of

the temperature on the corneal surface Γ1 (as obtained from the boundary

element method) against the y coordinate of points on Γ1. It appears that

the temperature is minimum at the center of the corneal surface, that is, at

the point (0, 0).
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Figure 3. Temperature on corneal surface Γ1.
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Table 3. Values of the temperature at the center of the corneal surface.

Method Temperature (◦C)
Boundary element method
(present work)

33.65

Finite element method
(Ng and Ooi [12])

33.68

Finite element method
(Scott [6])

33.25

Finite element method
(Amara [7])

33.713

Experiment
(Mapstone [17])

34.80

Experiment
(Rysä and Sarvaranta [18])

34.50

Experiment
(Fielder et al. [19])

33.40

Experiment
(Efron et al. [20])

34.30

Experiment
(Morgan et al. [21])

33.50

Experiment
(Craig et al. [22])

33.82

The numerical value of the temperature at the center of the corneal sur-

face is found to be 33.65◦C. It is compared in Table 3 with values reported

by other researchers. Ng and Ooi [12] used exactly the same mathematical

model for the human eye as the one considered here, but solved it differently

by using the finite element method provided by the commercialized software

package COMSOL Multiphysics 3.2. Thus, it is perhaps not surprising that

the numerical value obtained here agrees the most closely with the one re-

ported in Ng and Ooi [12]. In [12], as many as 8557 domain elements were
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employed in the finite element calculation. The human eye models in Scott

[6] and Amara [7] differ from the one used here in details such as the values

of the thermal conductivities used for the different regions of the eye and

the modeling of heat loss through the corneal surface. A greater difference

between the numerical values (of the temperature at the center of the corneal

surface) in [6] and [7] and the one obtained here are only to be expected.

Experimental measurements of the temperature on the corneal surface

may be obtained by using infra-red thermography. Some experimentally

obtained values of the temperature at the center of the corneal surface are

listed in Table 3. In Table 3, the numerical value of 33.65◦C obtained here

(using the boundary element method) is somewhere within the temperature

range between the lowest and the highest experimentally obtained values

(that is, between 33.4◦C and 34.8◦C).

Since the numerical values of the temperature at the center of Γ1 as

computed using the boundary element method here and the finite element

method by Ng and Ooi [12] agree very closely, it may be of interest to compare

the temperature obtained by the two methods at other points in the interior

of the eye.

Figure 4 compares the temperature from the two methods along the hor-

izontal pupiliary axis (the dotted horizontal line shown in Figure 2). As

expected, the numerical values of the temperature along the pupliary axis

obtained using the boundary element method are in good agreement with

those from the finite element method. The temperature on the pupiliary

axis is observed to increase from 33.65◦C at the center of the corneal surface

to a higher temperature of 36.5◦C or thereabout at the sclera.
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Figure 4. Temperature on the pupiliary axis.
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Figure 5. Normal heat flux on the corneal surface.
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Figure 6. Temperature profile throughout the entire eye.

As the boundary element method is known to be in general more accurate

than the finite element method in computing secondary variables such as the

heat flux, a comparison of the two methods for computing the normal heat

flux on the corneal surface is given in Figure 5. The finite element method in

the commercialized software COMSOL Multiphysics 3.2 returns as an output

the numerical values of the normal flux. It is clear from Figure 5 that there is

a good agreement between the numerical values of the normal heat flux from
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the finite element and the boundary element methods on the corneal surface,

except at points near the edges of the corneal surface. Near the edges of

the corneal surface, the finite element method gives numerical values which

fluctuate wildly. The numerical values from the boundary element method

do not behave erratically near the edges of the corneal surface. Instead, they

appear to be varying smoothly across the surface. This seems to suggest that

the boundary element method returns more reliable values of the normal heat

flux than the finite element method near the edges of the corneal surface.

Figure 6 shows the temperature profile throughout the entire eye together

with some isotherms as computed by the boundary element method. An

isotherm farther to the right has a higher temperature. The temperature

becomes closer to the blood temperature (37◦C) at the posterior of the eye

at the sclera . In fact, one may observe in Figure 6 that the temperature is

very close to 37◦C at where the optic nerve is. From a biological standpoint,

such an observation is to be expected, as heat is transfered by blood to the

eye through the exterior boundary of the sclera.

5 Summary and discussion

The boundary element method is applied to analyze the steady-state tem-

perature in a two-dimensional model of the human eye. The cross section of

the eye as depicted in Figures 1 and 2 is chosen as the solution domain of the

two-dimensional model for at least two reasons. Firstly, it contains all the

important tissue components (such as the lens and iris) of the human eye.

Secondly, one may find the largest range of temperature across the chosen

cross section. For example, along the pupiliary axis, the temperature ranges

from the lowest at the center of the outer surface of the cornea (at about

34◦C) to the highest at the outer surface of the sclera (near blood tempera-

ture of about 37◦C). A basic assumption made in the two-dimensional model
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is that the variation of the temperature is comparatively small along any di-

rection that is perpendicular to the cross section of the eye shown in Figures 1

and 2. To investigate the validity of such an assumption, a three-dimensional

model of the human eye (to be solved using the boundary element method)

is currently being developed.

For the two-dimensional model here, the temperature distribution is com-

puted by the boundary element method, using practically realistic values for

the thermal conductivities of the various tissue components and for control

parameters such as the tear evaporation rate. The numerical value of the

temperature at the center of the corneal surface is obtained and found to

fall within the range of the values given by other numerical and experimen-

tal data reported in the literature. In addition, the numerical values of the

temperature along the pupiliary axis and the normal heat flux on the corneal

surface are also compared with those obtained by the finite element method

provided in the software COMSOL Multiphysics 3.2. The two sets of nu-

merical results show good agreement, except that the finite element method

appears to perform very poorly in the computation of the normal heat flux

near the edges of the corneal surface. The boundary element method ap-

pears to give more reliable values for the normal heat flux near the edges of

the corneal surface. It should provide an interesting and viable alternative

(which is advantageous in some aspects) to other numerical techniques for

studying bioheat transfer in the human eye.
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