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Abstract

A numerical method based on boundary integral equation and ra-

dial basis function approximation is presented for solving boundary

value problems governed by a second order elliptic partial differential

equation with variable coefficients. The equation arises in the analysis

of steady state anisotropic heat or mass diffusion in nonhomogeneous

media with properties that vary according to general smoothly vary-

ing functions of space. The method requires only the boundary of the

solution domain to be discretized into elements. To check the validity

and accuracy of the numerical solution, some specific problems with

known solutions are solved.
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1 Introduction

The analysis of two-dimensional steady state heat or mass diffusion in an

anisotropic medium may be formulated in terms of boundary value problems

governed by the second order linear elliptic partial differential equation (see,

for example, Bera et al. [8] and Costa [13])

2X
=1

2X
=1




(




) = 0 (1)

where  is the temperature or concentration which is a function of the Carte-

sian coordinates 1 and 2 and  are the diffusion or conduction coefficients

satisfying the symmetric relation  =  and the positive definiteness con-

dition given by the strict inequality

2X
=1

2X
=1

  0 for all real numbers  such that 
2
1 + 22 6= 0 (2)

In nonhomogeneous media such as a functionally graded material,  may

be taken to be varying smoothly from point to point in space. Researchers

such as AL-Jawary and Wrobel [1], Chakrabortya et al. [10], Fahmi [18, 19],

Rangelov et al. [29] and Reutskiy [31], have proposed various numerical

methods for the analyses of such nonhomogeneous materials.

Integral equation based methods like the boundary element method are of

interest here as they offer certain advantages such as computational efficiency

and accuracy in the treatment of the governing differential equations and the

boundary conditions. Boundary element solutions for the boundary value

problems governed by (1) are well established for homogeneous media, that

is, for constant coefficients  (see, for example, Clements [12] and Ooi et al.

[28]). The development of boundary element methods for the more general

case in which the coefficients  are continuously varying functions of 1 and

2 is, however, a more challenging task.

In many papers on boundary integral methods for solving (1) for nonho-

mogeneous media, the diffusion or conduction coefficients are taken to be of
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the form  = (1 2) where  are constants, that is, the variation or

grading of the coefficients are determined by just a single function (1 2)

The perturbation boundary element approach proposed by Rangogni [30]

may be used to solve approximately (1) for slightly varying coefficients 

with (1 2) = 1 + (1 2), where  is a constant parameter of an ex-

tremely small magnitude and (1 2) is a given smoothly varying function.

For heat conduction in isotropic solids, Ang et al. [6] and Clements [11] de-

rived special fundamental solutions for (1) with  = (1) (2) (where

 is the Kronecker-delta and (1) and  (2) are given smoothly varying

functions) and Kassab and Divo [25] introduced the idea of a generalised

fundamental solution. With a suitable fundamental solution, a boundary in-

tegral equation needed for developing a boundary element method may then

be derived for the partial differential equation (1).

From a mathematical standpoint, suitable fundamental solutions in an-

alytic closed forms are, however, inherently difficult, if not impossible, to

derive for general variable coefficients  If the fundamental solution for the

special case where  are constants (homogeneous media) is used instead

to obtain an integral equation for (1) with  given by smoothly varying

functions, the resulting integral formulation contains not only a boundary

integral but also a domain integral containing the unknown function  in

the integrand. For  = (1 2) (with constant ), Ang et al. [5] and

Tanaka et al. [33] applied the dual-reciprocity method proposed by Breb-

bia and Nardini [9] to approximate the resulting domain integral in terms

of a boundary integral, in order to avoid the need to discretize the solution

domain into elements.

In the current paper, we present a boundary element procedure for a

more general steady state anisotropic diffusion equation by including a lin-

ear source term and taking the coefficients  to be any general smoothly

varying functions of space. No restrictive form (such as  = (1 2)

with constant , as assumed in, for example, Ang [4], Ang et al. [5], Dineva

et al. [15] and Rangelov et al. [29]) is imposed on 11 12 and 22 here.

The coefficients 11 12 and 22 may be individually given by any smoothly
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varying functions as long as they satisfy the positive definiteness condition

(2) (for elliptic partial differential equations) in the solution domain.

Our solution approach here employs radial basis functions to approxi-

mate (1 2) and related functions in order to rewrite the governing partial

differential equation as a constant coefficient linear elliptic partial differen-

tial equation which has a standard boundary integral equation. Unlike the

dual-reciprocity boundary element approaches for nonhomogeneous media

as in, for example, Ang et al. [5], Fahmy [17] and Tanaka et al. [33], the

integral formulation here for the problem under consideration does not in-

volve any domain integral. The radial basis function approximations and the

discretization of the boundary integral equation together with the boundary

conditions give rise to a system of linear algebraic equations for the ap-

proximate solution of the boundary value problem under consideration here.

The numerical procedure does not require the entire solution domain to be

discretized into elements. Only the boundary of the solution domain is dis-

cretized into elements. To check the validity and accuracy of the numerical

procedure, specific problems with known solutions are solved numerically.

2 Boundary value problem

The boundary value problem of interest here is to solve the steady state

anisotropic diffusion equation with a linear source term, as given by

2X
=1

2X
=1




((1 2)




) + 1(1 2)+ 2(1 2) = 0 (3)

in a two-dimensional bounded region  on the 12 plane subject to

(1 2) = (1 2) for (1 2) ∈ 1
2X

=1

2X
=1

(1 2)(1 2)



= (1 2) for (1 2) ∈ 2 (4)

where  and  are suitably prescribed functions, 1 and2 are non-intersecting

curves such that  = 1 ∪ 2 is the curve bounding the region  and  is

the  component of the outward unit normal vector to the curve .
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The coefficients  and  in (3) are given by continuous functions of 1

and 2 in the solution domain. As mentioned earlier,  may be given by any

smoothly varying functions as long as the elliptic condition (2) is satisfied.

The special case of the boundary value problem for isotropic media (that

is, the case of the Helmholtz equation where 11 = 22 and 12 = 21 = 0) is

considered in AL-Jawary and Wrobel [1]. In [1], the partial differential equa-

tion is formulated in terms of boundary-domain integro-differential equations

and the resulting domain integral which has a weak singularity is approxi-

mated as boundary integral by using radial basis functions and the radial

integration method in Gao [24]. A different approach based on boundary

integral equation and radial basis function approximation, which does not

involve any domain integral in the solution formulation, is presented here in

Section 3 below for solving (3) numerically subject to the boundary condi-

tions in (4).

3 Solution approach

3.1 Reformulation of the partial differential equations

For solving the boundary value problem, we rewrite the elliptic partial dif-

ferential equation (3) as

2X
=1

2X
=1

(
(0)


2


+




(
(1)





)) = −1(1 2)− 2(1 2) (5)

where 
(0)
 are constants which may be obtained by averaging  uniformly

over the solution domain  and 
(1)
 =  − 

(0)
 are, in general, functions

that vary smoothly with 1 and 2 in the solution domain.

Motivated by the analysis in Ang [4] and Dobroskok and Linkov [16], we

introduce the substitution

(1 2) = (1 2) + (1 2) (6)
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where  is chosen to be related to  by

2X
=1

2X
=1

(
(0)


2


+




(
(1)





)) = −1(1 2)− 2(1 2) (7)

and  satisfies the constant coefficient linear partial differential equation

2X
=1

2X
=1


(0)


2


= 0 (8)

It is easy to show that (3) is satisfied by (6), (7) and (8).

Our solution approach is as follows. We employ a meshless technique

based on radial basis functions to approximate (7) in terms of a system of

linear algebraic equations. We discretize the boundary integral equation for

(8), as in Clements [12], into linear algebraic equations. For the numerical

solution of the boundary value problem in Section 2, we solve the resulting

linear algebraic equations by taking into account the boundary conditions in

(4).

3.2 Radial basis function approximation

For the meshless technique for approximating (7), we choose  well spaced

out collocation points in  ∪  denoting the chosen points by (
(1)
1  

(1)
2 )

(
(2)
1  

(2)
2 ) · · ·  ((−1)1  

(−1)
2 ) and (

( )
1  

( )
2 ) where 

()
 is the  coordinate

of the -th collocation point.

We make the approximation

2X
=1

(
(0)





+ 

(1)
 (1 2)




) '

X
=1


()
 ()(1 2) (9)

where 
()
 are constant coefficients and ()(1 2) is a radial basis function

centered about (
()
1  

()
2 ). One may refer to Dehghan and Mohammadi [14]

and Fasshauer [22] for details on radial basis functions.

Substituting (9) into (7), we obtain

X
=1

2X
=1


()





(()(1 2)) = −1(1 2)− 2(1 2) (10)
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If we make the approximations

(1 2) '
X
=1

()()(1 2)

(1 2) '
X
=1

()()(1 2) (11)

collocate (11) at (1 2) = (
()
1  

()
2 ) for  = 1 2 · · ·   and invert the

resulting linear equations for the constants () and () we obtain

(1 2) '
X
=1

X
=1

()()()(1 2)

(1 2) '
X
=1

X
=1

()()()(1 2) (12)

where () = (
()
1  

()
2 ), () = (

()
1  

()
2 ) and () are defined by

X
=1

()()(
()
1  

()
2 ) =

½
1 if  = 
0 if  6= 

(13)

If we substitute (12) into (9) and collocate at (1 2) = (
()
1  

()
2 ) for

 = 1 2 · · ·   we obtain
X
=1


()
 ()(

()
1  

()
2 ) =

X
=1

(
()
 () + 

()
 ()) for  = 1 2 · · ·   (14)

where


()
 =

2X
=1


(0)


X
=1

()



(()(1 2))

¯̄̄̄
(12)=(

()
1 

()
2 )




()
 =

2X
=1


(1)
 (

()
1  

()
2 )

X
=1

()



(()(1 2))

¯̄̄̄
(12)=(

()
1 

()
2 )



(15)
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Inversion of (14) gives


()
 =

X
=1

(
()
 () + 

()
 ()) (16)

where


()
 =

X
=1


()
 ()

() =
X

=1

() () (17)

If we substitute (16) into (10) and collocate the resulting equation at each

of the chosen collocation points, we obtain


()
1 () +

X
=1

(()() + ()()) = −()2 for  = 1 2 · · ·   (18)

where 
()
 = (

()
1  

()
2 ) and

() =
X
=1

2X
=1


()





(()(1 2))

¯̄̄̄
(12)=(

()
1 

()
2 )



() =
X
=1

2X
=1


()





(()(1 2))

¯̄̄̄
(12)=(

()
1 

()
2 )

 (19)

The linear algebraic equations in (18) with unknowns () and () ( =

1 2 · · ·   ) may be regarded as a radial basis function approximation of the
partial differential equation (7).

In the formulation above, the radial basis function ()(1 2) is required

to be partially differentiable once with respect to 1 or 2 We may take

()(1 2) to be the well known multiquadric radial basis function given by

(see Ferreira [23] and Sarra [32])

()(1 2) =

q
1 + (1 − 

()
1 )

2 + (2 − 
()
2 )

2 (20)

Alternatively, one may use the radial basis function proposed in Zhang and

Zhu [34], that is,

()(1 2) = 1+(1−()1 )2+(2−()2 )2+((1−()1 )2+(2−()2 )2)32 (21)
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3.3 Boundary integral approximation

The elliptic partial differential equation (8) can be recast into the boundary

integral equation (Clements [12])

(1 2)(1 2)

=

Z


(Γ(1 2 1 2)(1 2)

− Φ(1 2 1 2)
2X

=1

2X
=1


(0)
 (1 2)




((1 2)))(1 2) (22)

where (1 2) is such that (1 2) = 1 if (1 2) lies in the interior of the

solution domain  bounded by the curve  and (1 2) = 12 if (1 2) lies

on a smooth part of the curve  and

Φ(1 2 1 2) =
1

2

q

(0)
11 

(0)
22 − ((0)12 )2

Re{ln(1 − 1 +  [2 − 2])}

Γ(1 2 1 2) =
1

2

q

(0)
11 

(0)
22 − ((0)12 )2

Re

½
(1 2)

(1 − 1 +  [2 − 2])

¾


(1 2) = (
(0)
11 + 

(0)
12 )1(1 2) + (

(0)
21 + 

(0)
22 )2(1 2)

 =
−(0)12 + 

q

(0)
11 

(0)
22 − ((0)12 )2


(0)
22

( =
√−1) (23)

where Re denotes the real part of a complex number. Note that 
(0)
11 

(0)
22 −

(
(0)
12 )

2  0

If we substitute (6) into (22), we obtain

(1 2)((1 2)− (1 2))

=

Z


(Γ(1 2 1 2)((1 2)− (1 2))

−Φ(1 2 1 2)((1 2)− (1 2)))(1 2) (24)
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where

(1 2) =
2X

=1

2X
=1


(0)
 (1 2)




((1 2))

(1 2) =
2X

=1

2X
=1


(0)
 (1 2)




((1 2)) (25)

To approximate (24), we discretize the boundary  into  straight line

elements denoted by (1) (2) · · ·  (−1) and (). The collocation point

(
()
1  

()
2 ) for the meshless technique in Subsection 3.2 is taken to be the

midpoint of () for  = 1 2 · · ·  , that is, the first  collocation points

are the midpoints of the  straight line elements. The remaining colloca-

tion points are in the interior of the solution domain of the boundary value

problem under consideration. If the number of interior collocation points is

 then the integer  in Subsection 3.2 is given by  +

We make the approximations

 ' (1) ∪ (2) ∪ · · · ∪ (−1) ∪ () (26)

and
(1 2) ' ()

(1 2) ' ()

(1 2) ' ()

(1 2) ' ()

⎫⎪⎪⎬⎪⎪⎭ for (1 2) ∈ () (27)

where () = (
()
1  

()
2 ) and () = (

()
1  

()
2 ) for  = 1 2 · · ·  Note

that () and () are respectively the values of (1 2) and (1 2) at the

-th collocation point as defined in Subsection 3.2.

If we substitute (26) and (27) into (24) and collocate the resulting equa-

tion at (1 2) = (
()
1  

()
2 ) for  = 1 2 · · ·  +  we obtain the linear
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algebraic equations

(
()
1  

()
2 )(

() − ())

=
X

=1

(() − ())

Z
()

Γ(1 2 
()
1  

()
2 )(1 2)

−
X

=1

(() − ())

Z
()

Φ(1 2 
()
1  

()
2 )(1 2)

for  = 1 2 · · ·  + (28)

Note that (
()
1  

()
2 ) = 12 for  = 1 2 · · ·  and (

()
1  

()
2 ) = 1 for

 = + 1 + 2 · · ·  +

An account on how the integrals over () in (28) may be evaluated

analytically or numerically is given in the Appendix. One may also refer to

Ang [3] and Clements [12] for details.

The system (28) contains  + linear algebraic equations in 4 + 2

unknowns. The unknowns are given by (), (), () and () for  =

1 2 · · ·  and  = 1 2 · · ·  +  We may regard (28) as a boundary

integral approximation of the partial differential equation in (8).

3.4 Numerical procedure

For the numerical solution of the boundary value problem in Section 2, we

approximate (7) and (8) by (18) (with  =+) and (28) respectively. The

total number of equations in (7) and (8) is given by 2+2 It is less than the

number of unknowns involved. The number of unknowns is 4 +2 Thus,

another 2 equations are required to complete the numerical formulation.

The boundary conditions in (4) can be expressed in terms of  linear

algebraic equations given by

() = (
()
1  

()
2 ) if  is specified on () (29)
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or

() +
+X
=1

()() = (
()
1  

()
2 )

if

2X
=1

2X
=1

(1 2)(1 2)



is specified on () (30)

with the constant coefficients () defined by

() =
2X

=1

2X
=1


(1)
 (

()
1  

()
2 )

()


+X
=1

()



(()(1 2))

¯̄̄̄
(12)=(

()
1 

()
2 )



(31)

where 
()
 is the  component of the unit vector that is normal to ()

and that points out of the solution domain. Note that (30) is derived from

the second line in (4) by taking  = 
(0)
 + 

(1)
 and using (12) and the first

equation in (25).

Another  linear algebraic equations may be derived by using (12) and

the second equation in (25). They are given by

() −
+X
=1

()() = 0 for  = 1 2 · · ·  (32)

where

() =
2X

=1

2X
=1


(0)
 

()


+X
=1

()



(()(1 2))

¯̄̄̄
(12)=(

()
1 

()
2 )

 (33)

For the numerical solution of the boundary value problem in Section 2,

we solve the system of 4 + 2 linear algebraic equations given by (18)

(with  =  + ), (28), (29) or (30), and (32). If one wishes to solve

a smaller system of linear algebraic equations, one may substitute (29) or

(30) together with (32) directly into (28). This will reduce the number of

unknowns and also the number of equations in the formulation to 2 +2

The computer coding of the smaller system of equations is, however, more

involved. Once the unknowns are determined, the required solution (1 2)

can be computed approximately in an explicit manner at any general point

(1 2) in the solution domain by using (12).
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4 Specific problems

The numerical procedure described above is applied to solve the following

specific problems. The radial basis function given in (21) is used in the

numerical computation.

Problem 1. Take the coefficients  and  to be given by

1 = 2 = 0,
1

2
11 = 22 = 12 = 21 = (

2
1 − 212 + 2)2 (34)

The problem is to solve the partial differential equation given by (3) together

with (34) in the solution domain 0  1  1 0  2  1, subject to the

boundary conditions

(1 0) =
1 + 1
21 + 2

(1 1) =
1

21 − 21 + 2

⎫⎪⎬⎪⎭ for 0  1  1

(0 2) =
1− 2
2

(1 2) =
2− 2
3− 22

⎫⎪⎬⎪⎭ for 0  2  1 (35)

It may be verified by direct substitution that the analytical solution of

the problem is given by

(1 2) =
1 + 1 − 2

21 − 212 + 2
 (36)

For the numerical solution of the problem, each sides of the square so-

lution domain is discretized into 0 equal length elements and the inte-

rior collocation points are chosen to be well spaced out points given by

((0 + 1) (0 + 1)) for   = 1 2 · · ·  0 (so that  = 40 and

 = 2
0 ) We take 

(0)
 to be the average value of  over all the interior

collocation points, that is,


(0)
 =

1

2
0

0X
=1

0X
=1

(


0 + 1




0 + 1
) (37)
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Table 1. Comparison of numerical and analytical values of  at selected

interior collocation points. The average absolute error (AAE) is given for

each set of the numerical values.

Point

(1 2)
0 = 10
0 = 4

0 = 40
0 = 19

Analytical

(02 02) 05096 05102 05102
(02 04) 04242 04254 04255
(02 06) 03300 03329 03333
(02 08) 02292 02325 02326
(04 02) 06003 05999 06000
(04 04) 05462 05434 05435
(04 06) 04770 04761 04762
(04 08) 03985 03946 03947
(06 02) 06598 06603 06604
(06 04) 06387 06382 06383
(06 06) 06076 06097 06098
(06 08) 05697 05712 05714
(08 02) 06910 06896 06897
(08 04) 07039 06999 07000
(08 06) 07188 07142 07143
(08 08) 07414 07352 07353
AAE 23× 10−3 12× 10−4 −

In Table 1, the numerical values of  obtained using (0 0) = (10 4)

and (0 0) = (40 19) are compared with the analytical solution  in (36)

at selected interior collocation points. There is an obvious improvement in

the accuracy of the numerical solution when the calculation is refined by

increasing the number of boundary elements and interior collocation points.

For the calculation of the flux, the approximate formula for  in (12) may

be partially differentiated with respect to  to compute the first order partial

derivatives of  with respect to 1 and 2 denoted by 1 and 2 repectively.

The numerical values of  from the calculation using (00) = (40 19) are

used in (12) to compute the approximate values of 1 and 2 at selected

interior points. In Table 2, the approximate values obtained are compared
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with the values calculated from the analytical solution in (36). As may be

expected, for the same set of boundary elements and interior collocation

points, the accuracy of the numerical values of 1 and 2 is less than that

of , since 1 and 2 are secondary quantities obtained by post-processing

the numerical values of  at the collocation points. Specifically, the average

absolute errors of the numerical values of 1 and 2 in Table 2 are about

15 times larger than that of the numerical values of  in the third column of

Table 1.

Table 2. Comparison of numerical and analytical values of 1 and 2 at

selected interior points. The average absolute error (AAE) is given for each

set of the numerical values.

Point

(1 2)
Numerical

1

Analytical

1

Numerical

2

Analytical

2
(025 025) 05164 05161 −03830 −03829
(025 050) 06656 06659 −04374 −04376
(025 075) 07683 0768 2 −05049 −05048
(050 025) 03437 03438 −01877 −01875
(050 050) 05714 05714 −02448 −02449
(050 075) 08336 08333 −03337 −03333
(075 025) 01435 01437 001314 001306
(075 050) 03617 03615 001912 001902
(075 075) 06954 06956 002987 003025
AAE 20× 10−3 − 21× 10−3 −

The numerical procedure is executed on a desktop personal computer

with an entry level Intel Core i3-4150 processor (3M cache, 3.5 GHz). For

(00) = (10 4) which involves 192 unknowns, the CPU time used to set

up and solve the equations is around 001 seconds. For (0 0) = (40 19)

with the number of unknowns increased to 1362 the CPU time used increases

to about 4 seconds.

15



Problem 2. Take the coefficients  and  as

1 = −21+2 − 6−1 − 2−2 − 4 2 = 1,
11 = 1 + −1 22 = −2 , 12 = 21 = 0 (38)

and solve (3) in the solution domain 0  1  1 0  2  1 subject to the

boundary conditions

2X
=1

2




¯̄̄̄
2=0

= −−21

2X
=1

2




¯̄̄̄
2=1

= −−2(1+1)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ for 0  1  1

2X
=1

1




¯̄̄̄
1=0

= −4−2

(1 2) = −2−2

⎫⎪⎬⎪⎭ for 0  2  1 (39)

As in Problem 1, the boundary of the square solution domain is discretized

into 40 equal length elements and
2
0 interior collocation points are selected

for the numerical calculation. Also, the values of 
(0)
 are computed using the

formula in (37).

It is easy to check that the analytical solution of the problem here is given

by

(1 2) = −21−2  (40)

Once the numerical values of  at all the collocation points, that is, the values

of () ( = 1 2 · · ·  40+2
0 ) are known, the formula for  in (12) can be

used to compute approximately the solution at any point of interest in the

solution domain. In Table 3, approximate values of  thus computed using

(00) = (10 5) and (0 0) = (20 10) are compared with the analytical

solution at various points on the line 2 = 050 in the solution domain. The

numerical values agree well with the values from the analytical solution and

convergence in the numerical solution is observed when the values of0 and

0 are doubled.
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Table 3. Comparison of numerical and analytical values of (1 050) for

various values of 1. The average absolute error (AAE) is given for each set

of the numerical values.

1
0 = 10
0 = 5

0 = 20
0 = 10

Analytical

01 04944 04967 04966
02 04045 04050 04066
03 03384 03330 03329
04 02695 02718 02725
05 02229 02230 02231
06 01817 01826 01827
07 01475 01485 01496
08 01219 01226 01225
09 01016 009826 01003
AAE 20× 10−3 66× 10−4 −

Problem 3. Solve (3) together with

1 = 2 = 0, 11 =
1

2
22 = (

2
1+

2
2) 12 = 21 = 0 (41)

in the quarter circular domain 21 + 22  1 1  0 2  0 subject to the

boundary conditions

(1 0) = 0 for 0  1  1

111


1
+ 222



2
= 1 on 21 + 22 = 1 1  0 2  0

(0 2) = 0 for 0  2  1 (42)

Note that  in (41) is a real constant.

For the numerical solution of the boundary value problem, each of the

the three parts of the boundary, namely where 1 = 0 2 = 0 and 21+ 22 =

1 is discretized into 0 boundary elements (so that  = 30) and 2
0

collocation points in the interior solution domain are taken to be given by

(1 2) =


0 + 1
(cos



2(0 + 1)
 sin



2(0 + 1)
) for  = 1 2 · · ·  0

(43)
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Figure 1. Plots of  on 21 + 22 = 1 1  0 2  0, against

 = arctan(21)

For (0 0) = (40 6) the numerically obtained values of the  on 21 +

22 = 1 1  0 2  0 (where 1111 + 2222 is specified) are

plotted against  = arctan(21) for selected values of  in Figure 1. The

plots in the figure are very close to those given in Ang et al. [5] where the

same problem in the context of a functionally graded material undergoing

an antiplane deformation was solved numerically using a different boundary

element procedure.
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5 Summary and final remarks

A numerical method based on boundary integral equation and radial basis

function approximation is derived and successfully implemented in the com-

puter for solving a two-dimensional steady state anisotropic heat or mass

diffusion equation with a linear source term and general variable coefficients.

The numerical procedure requires only the boundary of the solution domain

to be discretized into elements. However, the formulation does not involve

only unknowns at boundary collocation points but also at well distributed

collocation points in the interior of the solution domain. The validity and

accuracy of the boundary element procedure is verified by applying it to

solve some specific problems with known solutions. The numerical solutions

obtained show convergence and agree well with the known solutions.

In the current paper, the boundary integral equation in the formulation

is discretized using only constant elements. With constant elements, the

accuracy of the numerical solution is expected to be () (where  is the

length of a typical element). This is reflected in the reduction in the errors

of the numerical solutions of the specific test problems when the computa-

tion is refined by increasing the number of boundary elements and interior

collocation points. In spite of the constant elements, we have managed to

obtain reasonably accurate numerical solutions for the test problems even

with a relatively low number of boundary elements and interior collocation

points. Higher order elements such as the discontinuous linear elements may

be employed in the boundary integral equation if a more accurate numerical

solution is desired such as in the post-processing computation of the flux.

The implementation of higher order elements is, however, algebraically more

tedious.

The proposed solution approach based on boundary integral and radial

basis function approximations provides an interesting and viable alterna-

tive to existing numerical methods for analyzing heat and mass transfer in

anisotropic media with spatially varying material properties. It may be ex-

plored further and extended to solve more complicated problems involving
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anisotropic media such as those considered in Aksoy and Şenocak [2], Baron

[7], Li et al. [26], Marin and Lesnic [27] and Fahmy [20, 21].
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Appendix

If the points (1 2) on 
() are expressed using the parametric equations

1 =
1

2
((+1)1 + ()1 ) +

1

2
((+1)1 − ()1 )

2 =
1

2
(
(+1)
2 + 

()
2 ) +

1

2
(
(+1)
2 − 

()
2 )

⎫⎪⎪⎪⎬⎪⎪⎪⎭ for − 1 ≤  ≤ 1

where (
()
1  

()
2 ) and (

(+1)
1  

(+1)
2 ) are the endpoints of the element ()

the integrals over () in (28) can be rewritten asZ
()

Φ(1 2 
()
1  

()
2 )(1 2)

=
()

2

q

(0)
11 

(0)
22 − ((0)12 )2

1Z
−1
ln(()2 +()+ ()) (A1)
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and Z
()

Γ(1 2 
()
1  

()
2 )(1 2)

=
()

4

q

(0)
11 

(0)
22 − ((0)12 )2

1Z
−1

(()+())

()2 +()+ ()
 (A2)

where () =

q
(
(+1)
1 − 

()
1 )2 + (

(+1)
2 − 

()
2 )2 and () () (),

() and () are real parameters defined by

() =
1

4
(
(+1)
1 − 

()
1 +Re{}((+1)2 − 

()
2 ))2

+
1

4
(Im{})2((+1)2 − 

()
2 )2

() =
1

2
(
(+1)
1 − 

()
1 +Re{}((+1)2 − 

()
2 ))

×((+1)1 + 
()
1 − 2()1 +Re{}((+1)2 + 

()
2 − 2()2 ))

+
1

2
(Im{})2((+1)2 − 

()
2 )(

(+1)
2 + 

()
2 − 2()2 )

() =
1

4
(
(+1)
1 + 

()
1 − 2()1 +Re{}((+1)2 + 

()
2 − 2()2 ))2

+
1

2
(Im{})2((+1)2 − 

()
2 )(

(+1)
2 + 

()
2 − 2()2 )2

() = Re{()((+1)1 − 
()
1 +Re{}((+1)2 − 

()
2 )

− Im{}((+1)2 − 
()
2 ))}

() = Re{()((+1)1 + 
()
1 − 2()1 +Re{}((+1)2 + 

()
2 − 2()2 )

− Im{}((+1)2 + 
()
2 − 2()2 ))}

() = (
(0)
11 + 

(0)
12 )

()
1 + (

(0)
21 + 

(0)
22 )

()
2 

Note that 
()
 is the  component of the unit vector that is normal to 

()

and that points out of the solution domain.

For  6= , the expression 4()() − (())2 is strictly greater than

zero, and hence the integrals in (A1) and (A2) are proper. The proper inte-

grals may be evaluated either approximately by using a numerical integration
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formula or by using the analytical formulaeZ
ln(2 + + ) = (ln()− 2) + (+ 

2
) ln(2 +




+




)

+
1



√
4− 2 arctan(

2+ √
4− 2

)Z
(+ )

2 + + 
=



2
ln(2 + + )

+ +
(2− )


√
4− 2

arctan(
2+ √
4− 2

)

which are valid for 4− 2  0

For  =  the integrals on the right hand side of (A1) and (A2) are

improper to be interpreted in the Cauchy principal sense (with an integrable

singularity at  = 0), since () = 0, () = 0 and () = 0 The

resulting Cauchy principal integrals are, however, straightforward to evaluate

analytically since their integrands are in considerably simple forms.
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