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Abstract

The dual-reciprocity boundary element method is applied for
the numerical solution of a class of two-dimensional initial-boundary
value problems governed by a non-linear system of partial differen-
tial equations. The system, known as the reaction-diffusion Brus-
selator, arises in the modeling of certain chemical reaction-diffusion
processes. Numerical results are presented for some specific prob-
lems.
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1 Introduction

Of particular interest here is the task of solving numerically the non-linear
system of partial differential equations

∂u

∂t
= B + u2v − (A+ 1)u+ α

µ
∂2u

∂x2
+

∂2u

∂y2

¶
∂v

∂t
= Au− u2v + α

µ
∂2v

∂x2
+

∂2v

∂y2

¶
(1)

for u(x, y, t) and v(x, y, t) in a two-dimensional region R bounded by a
simple closed curve C subject to the initial-boundary conditions

(u(x, y, 0), v(x, y, 0)) = (f(x, y), g(x, y)) for (x, y) ∈ R, (2)

and

(u(x, y, t), v(x, y, t)) = (w(x, y, t), z(x, y, t)) for (x, y) ∈ C1 and t > 0, (3)
(
∂u

∂n
,
∂v

∂n
) = (p(x, y, t), q(x, y, t)) for (x, y) ∈ C2 and t > 0, (4)

where A, B and α are suitably given constants, f , g, w, z, p and q are
suitably prescribed functions, C1 and C2 are non-intersecting curves such
that C1∪C2 = C, ∂u/∂n = n ·∇u, ∂v/∂n = n ·∇v and n is the unit normal
outward vector to R at the point (x, y) on C. Refer to Figure 1.
The non-linear system (1) arises in the modeling of certain chemical

reaction-diffusion processes which involve a pair of variable intermediates
with input and output chemicals whose concentrations are controlled, see
e.g. Nicolis and Prigogine [8] and Prigogine and Lefever [10].
Adomian [2] and Wazwaz [13] showed how the Adomian decomposition

method can be applied to solve (1) for a solution which satisfies only the
initial condition (2). Twizell et al. [12] gave a finite-difference method for
solving (1)-(4) numerically in a rectangular domain subject to a particular
Neumann boundary condition (∂u/∂n = 0 and ∂v/∂n = 0 on C).
In the present paper, the boundary element method (DRBEM) is applied

for the numerical solution of (1)-(4). The partial derivatives of u and v with
respect to time t are approximated using a finite-difference formula. The
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Figure 1: A geometrical sketch of the problem.

DRBEM is then used in an iterative scheme in which the non-linear term u2v
is “linearised” by superceding it with u2v, where u is the approximation of u
from the “previous” iteration, to solve for u and v at each consecutive time
level. The proposed method is applicable for solution domains of arbitrary
shapes and mixed boundary conditions. It is applied to solve some specific
problems.
The DRBEM was originally proposed by Brebbia and Nardini [3] for the

numerical solution of dynamic problems in solid mechanics. The method has
now been successfully extended to a wide range of problems in engineering,
such as those involving diffusion processes, inhomogeneous media and non-
linearity. For some examples of these problems, refer to Zhu et al. [15],
Profit et al. [11], Harrouni et al. [7], Ang [1], and other references therein.
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2 Integral equations

From the differential equations in (1), we derive the integral equations

λ(ξ, η)u(ξ, η, t) =

ZZ
R

α−1[
∂

∂t
u(x, y, t)−B − u2v + (A+ 1)u]

× Φ(x, y, ξ, η)dxdy

+

I
C

[u(x, y, t)Γ(x, y, ξ, η)

− Φ(x, y, ξ, η)
∂

∂n
u(x, y, t)]ds(x, y), (5)

and

λ(ξ, η)v(ξ, η, t) =

ZZ
R

α−1[
∂

∂t
v(x, y, t)−Au+ u2v]Φ(x, y, ξ, η)dxdy

+

I
C

[v(x, y, t)Γ(x, y, ξ, η)

− Φ(x, y, ξ, η)
∂

∂n
v(x, y, t)]ds(x, y), (6)

where λ(ξ, η) = 0 if (ξ, η) /∈ R∪C, λ(ξ, η) = 1 if (ξ, η) ∈ R, 0 < λ(ξ, η) < 1

if (ξ, η) ∈ C and

Φ(x, y, ξ, η) =
1

4π
ln
£
(x− ξ)2 + (y − η)2

¤
,

Γ(x, y, ξ, η) =
n1(x, y)(x− ξ) + n2(x, y)(y − η)

2π [(x− ξ)2 + (y − η)2]
, (7)

where [n1(x, y), n2(x, y)] is the unit normal vector to the curve C at the
point (x, y) pointing away from R.

Notice that Φ as given in (7) is the well known fundamental solution of
the two-dimensional Laplace equation. For an idea on how (5) and (6) can
possibly be derived, one may refer to the monograph by Clements [4].

3 DRBEM

For the DRBEM, we discretize the boundary C into N straight line (bound-
ary) elements C(1), C(2), · · · , C(N−1) and C(N), where the i-th element C(i)
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has endpoints (x(i), y(i)) and (x(i+1), y(i+1)). [We take (x(1), y(1)), (x(2), y(2)),
· · · , (x(N−1), y(N−1)) and (x(N), y(N)) as N well-spaced out distinct points
arranged consecutively in a counter-clockwise direction on C and we define
(x(N+1), y(N+1)) = (x(1), y(1)).]
For a simple approximation, let

u(x, y, t) ' U (i)(t)
v(x, y, t) ' V (i)(t)

∂[u(x, y, t)]/∂n ' P (i)(t)
∂[v(x, y, t)/∂n ' Q(i)(t)

 for (x, y) ∈ C(i), (8)

where U (i)(t), V (i)(t), P (i)(t) and Q(i)(t) are unknown parameters to be
determined, i.e. the functions u and v and their normal derivatives are
assumed to be spatially invariant over a boundary element.
Using (8) together with C ' C(1)∪C(2)∪ · · ·∪C(N−1)∪C(N), we replace

(5) and (6) approximately by

λ(ξ, η)u(ξ, η, t) =

ZZ
R

α−1[
∂

∂t
u(x, y, t)−B − u2v + (A+ 1)u]

×Φ(x, y, ξ, η)dxdy

+
NX
j=1

U (j)(t)

Z
C(j)

Γ(x, y, ξ, η)ds(x, y)

−
NX
j=1

P (j)(t)

Z
C(j)

Φ(x, y, ξ, η)ds(x, y), (9)

and

λ(ξ, η)v(ξ, η, t) =

ZZ
R

α−1[
∂

∂t
v(x, y, t)−Au+ u2v]Φ(x, y, ξ, η)dxdy

+
NX
j=1

V (j)(t)

Z
C(j)

Γ(x, y, ξ, η)ds(x, y)

−
NX
j=1

Q(j)(t)

Z
C(j)

Φ(x, y, ξ, η)ds(x, y). (10)
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To deal with the domain integrals in (9) and (10), we apply the dual-
reciprocity method (DRM) introduced by Brebbia and Nardini [3] and Par-
tridge and Brebbia [9].
For the DRM, we choose N + L collocation points in the region R ∪

C (L is a positive integer and recall that N is the number of boundary
elements). The collocation points are denoted by (ξ(1), η(1)), (ξ(2), η(2)), · · · ,
(ξ(N+L−1), η(N+L−1)) and (ξ(N+L), η(N+L)). For convenience, we take the first
N collocation points to be the midpoints of the boundary elements, i.e.
(ξ(n), η(n)) is the midpoint of C(n) for n = 1, 2, · · · , N .
We then make the approximations:

α−1[
∂

∂t
u(x, y, t)− u2v + (A+ 1)u] '

N+LX
j=1

µ(j)(t)σ(j)(x, y),

α−1[
∂

∂t
v(x, y, t)−Au+ u2v] '

N+LX
j=1

φ(j)(t)σ(j)(x, y), (11)

where µ(j) and φ(j) are yet unknown parameters and

σ(j)(x, y) = 1 +
³
[x− ξ(j)]2 + [y − η(j)]2

´
+
³
[x− ξ(j)]2 + [y − η(j)]2

´3/2
for j = 1, 2, · · · , N + L.

(12)

The local interpolating functions σ(j)(x, y) are those proposed in Zhang and
Zhu [14].
With (11), we can express the domain integrals in (9) and (10) asZZ

R

α−1[
∂

∂t
u(x, y, t)−B − u2v + (A+ 1)u]Φ(x, y, ξ, η)dxdy

'
N+LX
j=1

µ(j)(t)Ψ(j)(ξ, η)− 1
2
α−1Bλ(ξ, η)ξ2

− α−1B
I
C

[xn1(x, y)Φ(x, y, ξ, η)

− 1
2
x2Γ(x, y, ξ, η)]ds(x, y), (13)
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and ZZ
R

α−1[
∂

∂t
v(x, y, t)−Au+ u2v]Φ(x, y, ξ, η)dxdy

'
N+LX
j=1

φ(j)(t)Ψ(j)(ξ, η), (14)

where

Ψ(j)(ξ, η) = λ(ξ, η)θ(j)(ξ, η) +

I
C

Φ(x, y, ξ, η)β(j)(x, y)ds(x, y)

−
I
C

Γ(x, y, ξ, η)θ(j)(x, y)ds(x, y),

θ(j)(x, y) =
1

4

³
[x− ξ(j)]2 + [y − η(j)]2

´
+
1

16

³
[x− ξ(j)]2 + [y − η(j)]2

´2
+
1

25

³
[x− ξ(j)]2 + [y − η(j)]2

´5/2
,

β(j)(x, y) = n1(x, y)
∂

∂x
[θ(j)(x, y)] + n2(x, y)

∂

∂y
[θ(j)(x, y)]. (15)

Equations (9), (10), (11), (13) and (14) may be used to obtain

λ(ξ(i), η(i))U (i)(t) = −1
2
α−1Bλ(ξ(i), η(i))[ξ(i)]2

+ α−1
N+LX
n=1

{ d
dt
[U (n)(t)] + (A+ 1)U (n)(t)

− [U (n)(t)]2V (n)(t)}
N+LX
j=1

bjnΨ
(j)(ξ(i), η(i))

+
NX
j=1

[U (j)(t) +
1

2
α−1B(ξ(j))2]

×
Z
C(j)

Γ(x, y, ξ(i), η(i))ds(x, y)

−
NX
j=1

[P (j)(t) + α−1Bξ(j)n(j)1 ]

×
Z
C(j)

Φ(x, y, ξ(i), η(i))ds(x, y)

for i = 1, 2, · · · , N + L, (16)
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and

λ(ξ(i), η(i))V (i)(t) = α−1
N+LX
n=1

{ d
dt
V (n)(t)−AU (n)(t)

+ [U (n)(t)]2V (n)(t)}
N+LX
j=1

bjnΨ
(j)(ξ(i), η(i))

+
NX
j=1

V (j)(t)

Z
C(j)

Γ(x, y, ξ(i), η(i))ds(x, y)

−
NX
j=1

Q(j)(t)

Z
C(j)

Φ(x, y, ξ(i), η(i))ds(x, y)

for i = 1, 2, · · · , N + L, (17)

where [n(j)1 , n
(j)
2 ] is the unit normal vector to the boundary element C

(j)

pointing away from R, U (n)(t) = u(ξ(n), η(n), t) and V (n)(t) = v(ξ(n), η(n), t)
(for n = 1, 2, · · · , N + L),and [bij] is the inverse of [aij] with aij =
σ(j)(ξ(i), η(i)).
Notice that in deriving (16) and (17) we collocate (11) by letting (x, y)

be given by (ξ(n), η(n)) for n = 1, 2, · · · , N + L and invert the resulting
linear equations to obtain µ(j)(t) and φ(j)(t) (for j = 1, 2, · · · , N + L).
Now, (16) and (17) constitute a system of 2(N+L) non-linear differential

equations in 2(N + L) unknown functions of t. The unknown functions are
given by (U (n)(t), V (n)(t)) for n = N + 1, N + 2, · · · , N + L, and either
(U (j)(t), V (j)(t)) or (P (j)(t), Q(j)(t)) for j = 1, 2, · · · , N.
The non-linear system is solved approximately using an iterative scheme

as described below.
For n = 1, 2, · · · , N + L, we make the approximation

U (n)(t) ' 1

2
[U (n)(t+

1

2
∆t) + U (n)(t− 1

2
∆t)],

V (n)(t) ' 1

2
[V (n)(t+

1

2
∆t) + V (n)(t− 1

2
∆t)],

d

dt
[U (n)(t)] ' U (n)(t+ 1

2
∆t)− U (n)(t− 1

2
∆t)

∆t
,

d

dt
[V (n)(t)] ' V (n)(t+ 1

2
∆t)− V (n)(t− 1

2
∆t)

∆t
. (18)
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The non-linear term [U (n)(t)]2V (n)(t) in (16) and (17) is approximately
“linearised” using

[U (n)(t)]2V (n)(t) ' 1

2
[U

(n)
(t)]2[V (n)(t+

1

2
∆t) + V (n)(t− 1

2
∆t)], (19)

where U
(n)
(t) is given either by a known approximation of U (n)(t) or the

boundary condition (3) (if it is applicable).
With (18) and (19), we find that (16) and (17) give rise to:

1

2
λ(ξ(i), η(i))[U (i)(t+

1

2
∆t) + U (i)(t− 1

2
∆t)]

= −1
2
α−1Bλ(ξ(i), η(i))[ξ(i)]2

+ α−1
N+LX
n=1

{U
(n)(t+ 1

2
∆t)− U (n)(t− 1

2
∆t)

∆t

+
1

2
(A+ 1)[U (n)(t+

1

2
∆t) + U (n)(t− 1

2
∆t)]

− 1
2
[U

(n)
(t)]2[V (n)(t+

1

2
∆t) + V (n)(t− 1

2
∆t)]}

×
N+LX
j=1

bjnΨ
(j)(ξ(i), η(i))

+
NX
j=1

1

2
[U (j)(t+

1

2
∆t) + U (j)(t− 1

2
∆t) + α−1B(ξ(j))2]

×
Z
C(j)

Γ(x, y, ξ(i), η(i))ds(x, y)

−
NX
j=1

[P (j)(t) + α−1Bξ(j)n(j)1 ]
Z
C(j)

Φ(x, y, ξ(i), η(i))ds(x, y)

for i = 1, 2, · · · , N + L, (20)
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and
1

2
λ(ξ(i), η(i))

1

2
[V (i)(t+

1

2
∆t) + V (i)(t− 1

2
∆t)]

= α−1
N+LX
n=1

{V
(n)(t+ 1

2
∆t)− V (n)(t− 1

2
∆t)

∆t

− 1
2
A[U (n)(t+

1

2
∆t) + U (n)(t− 1

2
∆t)]

+
1

2
[U

(n)
(t)]2[V (n)(t+

1

2
∆t) + V (n)(t− 1

2
∆t)]}

N+LX
j=1

bjnΨ
(j)(ξ(i), η(i))

+
NX
j=1

1

2
[V (j)(t+

1

2
∆t) + V (j)(t− 1

2
∆t)]

Z
C(j)

Γ(x, y, ξ(i), η(i))ds(x, y)

−
NX
j=1

Q(j)(t)

Z
C(j)

Φ(x, y, ξ(i), η(i))ds(x, y)

for i = 1, 2, · · · , N + L. (21)

Now if we assume (U (n)(t− 1
2
∆t), V (n)(t− 1

2
∆t)) (n = 1, 2, · · · , N+L) are

known, then (20) and (21) constitute a system of 2(N +L) linear algebraic
equations containing 2(N +L) unknowns given by (U (m)(t+ 1

2
∆t), V (m)(t+

1
2
∆t)) for m = N +1, N +2, · · · , N +L, and either (U (i)(t+ 1

2
∆t), V (i)(t+

1
2
∆t)) or (P (i)(t), Q(i)(t)) [not both] for i = 1, 2, · · · , N . Note the presence
of U

(n)
(t) which is given by either a known approximation of U (n)(t) or by

the boundary condition (3).We can apply (20) and (21) to find the unknowns
at time t = (2k − 1)∆t/2 for k = 1, 2, · · · , as follows.
Begin a given time level t = (2k − 1)∆t/2 by calculating U (n)(t) =

U (n)(t − 1
2
∆t). With this, we can solve (20) and (21) as a system of linear

algebraic equations for (U (m)(t+ 1
2
∆t), V (m)(t+ 1

2
∆t)) form = N+1, N+2,

· · · , N +L, and for either (U (i)(t+ 1
2
∆t), V (i)(t+ 1

2
∆t)) or (P (i)(t), Q(i)(t))

[whichever is not known] for i = 1, 2, · · · , N, assuming that (U (n)(t −
1
2
∆t), V (n)(t− 1

2
∆t)) are known. Re-compute U

(n)
(t) using

U
(n)
(t) =

1

2
[U (n)(t+

1

2
∆t) + U (n)(t− 1

2
∆t)], (22)

where U (n)(t + 1
2
∆t) is either just obtained recently from solving (20) and

(21) or from the boundary condition (3). Solve (20) and (21) with the
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re-computed value of U
(n)
(t). We can iterate to and fro calculating U

(n)
(t)

using (22) and solving (20)-(21), until all the unknown quantities converge
to within a prescribed number of significant figures, i.e. a predictor-corrector
approach is adopted here. Once the prescribed convergence is achieved, we
can move on to the following time level.
For the setting up of the system of linear algebraic equations, the line

integrals over C(j) in (20)-(21) have to be evaluated. Details on the com-
putation of these integrals may be found in Clements and Crowe [5] and
Clements and Haselgrove [6].

4 Specific problems

Problem 1. For a specific test problem, consider solving the system

∂u

∂t
= u2v − 2u+ 1

4

µ
∂2u

∂x2
+

∂2u

∂y2

¶
∂v

∂t
= u− u2v + 1

4

µ
∂2v

∂x2
+

∂2v

∂y2

¶
(23)

in the region R = {(x, y) : x2 + y2 < 1, x > 0, y > 0} subject to the
initial-boundary conditions

(u(x, y, 0), v(x, y, 0)) = (exp[−x− y], exp[x+ y]) for (x, y) ∈ R,
(u(0, y, t), v(0, y, t)) = (exp[− t

2
− y], exp[ t

2
+ y]) for 0 < y < 1, t > 0,

(u(x, 0, t), v(x, 0, t)) = (exp[− t
2
− x], exp[ t

2
+ x]) for 0 < x < 1, t > 0,

(
∂u

∂n
,
∂v

∂n
) = [x+ y](− exp[− t

2
− x− y], exp[ t

2
+ x+ y])

for x2 + y2 = 1, t > 0, (24)

It is an easy matter to verify by direct substitution that (23) and (24)
are satisfied by

(u, v) = (exp[− t
2
− x− y], exp[ t

2
+ x+ y]). (25)
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For the purpose of obtaining some numerical results for this particu-
lar problem, the interior collocation points, the endpoints of the boundary
elements and the time-step for the DRBEM are chosen as follows. For
m, n = 1, 2, · · · , M − 1 (where M is a positive integer greater than 1),
form the points (m`1, n`1) with `1 = 1/M, and take all those points that
lie inside the domain solution (inside the quarter circle) as interior collo-
cation points. The endpoints of the boundary elements are selected to be
given by (x(k+1), y(k+1)) = (0, 1−k`2, ), (x(k+1+2M), y(k+1+2M)) = (k`2, 0) and
(x(k+1+4M), y(k+1+4M)) = (cos[πk`2/2], sin[πk`2/2]) for k = 0, 1, · · · ,2M −1,
where `2 = 1/(2M). (Thus, N = 6M, i.e. there are 6M boundary ele-
ments.) The time-step ∆t is chosen to be given by ∆t = 3`1.

The numerical values of (u, v) at the point (0.40, 0.60) and at various
time levels, as obtained using M = 10 and M = 20, are compared with the
exact values from (25) in Table 1. [The given numerical values are those
obtained after 6 iterations between calculating U

(n)
(t) using (22) and solving

(20)-(21).] The numerical values of (u, v) show an overall improvement in
accuracy when M is doubled (i.e. when the number of boundary elements
and collocation points is increased and the time-step is halved).

Table 1. A comparison of the numerical and the exact values of (u, v) at
various time t at the point (0.40, 0.60).

t M = 10 M = 20 Exact
0.30 (0.3168, 3.153) (0.3166, 3.157) (0.3166, 3.158)
0.60 (0.2724, 3.660) (0.2725, 3.667) (0.2725, 3.669)
0.90 (0.2345, 4.250) (0.2345, 4.260) (0.2346, 4.263)
1.20 (0.2016, 4.939) (0.2018, 4.950) (0.2019, 4.953)
1.50 (0.1739, 5.735) (0.1737, 5.751) (0.1738, 5.755)
1.80 (0.1489, 6.670) (0.1495, 6.681) (0.1496, 6.686)

Problem 2. Solve

∂u

∂t
= 1 + u2v − 3

2
u+

1

500

µ
∂2u

∂x2
+

∂2u

∂y2

¶
∂v

∂t
=
1

2
u− u2v + 1

500

µ
∂2v

∂x2
+

∂2v

∂y2

¶
(26)
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in the region R = {(x, y) : 0 < x < 1, 0 < y < 1} subject to

(u(x, y, 0), v(x, y, 0)) = (
1

2
x2 − 1

3
x3,
1

2
y2 − 1

3
y3) for (x, y) ∈ R,

(27)

(
∂u

∂x
,
∂v

∂x
) = (0, 0) at the points (0, y) and (1, y) for 0 < y < 1 and t > 0,

(28)

(
∂u

∂y
,
∂v

∂y
) = (0, 0) at the points (x, 0) and (x, 1) for 0 < x < 1 and t > 0.

(29)

For m, n = 1, 2, · · · , M − 1 (where M is a positive integer greater than
1), form the points (m`1, n`1) with `1 = 1/M, and take them as collocation
points for the DRBEM. The endpoints of the boundary elements are se-
lected to be given by (x(k+1), y(k+1)) = (0, 1−k`2, ), (x(k+1+2M), y(k+1+2M)) =
(k`2, 0), (x(k+1+4M), y(k+1+4M)) = (1, k`2) and (x(k+1), y(k+1)) = (1 − k`2, 1)
for k = 0, 1, · · · ,2M − 1, where `2 = 1/(2M). (Thus, N = 8M , i.e. there
are 8M boundary elements and 8M + (M − 1)2 collocation points.) As in
the test problem above, the time-step ∆t is chosen to be given by ∆t = 3`1.
We observe that the numerical values of u and v at all the collocation

points seem to approach 1 and 1/2 respectively as time t increases. This is
consistent with the observation of Twizell et al. [12], i.e. if (∂u/∂n, ∂v/∂n) =
(0, 0) on the boundary of the solution domain and if the diffusion coefficient
α in (1) is small, we may expect the solution (u, v) to approach (B,A/B)
as t increases. [In (26), A = 1/2, B = 1 and α = 1/500.]
For some typical numerical results, in Figures 2 and 3, we plot the nu-

merical values of u(0.50, 0.50, t) and v(0.50, 0.50, t) obtained using M = 8

and M = 16 against time t (t ∈ [0, 5.250]). The iteration between cal-
culating U

(n)
(t) using (22) and solving (20)-(21) is stopped when all the

numerical values of u and v at various selected points converge to at least 4
significant figures. At each time level, the number of iterations used is less
than 6.
The numerical results obtained using M = 8 agree to at least 2 sig-

nificant figures with those calculated using M = 16, i.e. convergence is
observed when the number of collocation points and boundary elements is
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Figure 2: Graphs of u(0.50, 0.50, t) against time t for Problem 2.
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Figure 3: Graphs of v(0.50, 0.50, t) against time t for Problem 2.
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increased. In Figures 2 and 3, the difference between the two sets of nu-
merical values (obtained using M = 8 and M = 16) is graphically almost
indistinguishable. From the graphs, it is apparent that (u, v)→ (1, 1/2) as
t→∞.

5 Conclusion

A time-stepping DRBEM is described and successfully implemented on the
computer for the numerical solution of two-dimensional initial-boundary
value problems governed by the non-linear Brusselator system which arises
in the modeling of chemical reaction-diffusion processes. At each time level,
a rather efficient iterative scheme is introduced to deal with the non-linear
terms in the Brusselator system.
Two specific problems are solved using the method. In the first problem,

the numerical results obtained show good agreement with the exact solution.
There is no known analytical solution for the second problem. However, the
numerical solution exhibits the expected behaviour at large time t. In both
problems, convergence is observed in the numerical results as the number of
collocation points and boundary elements is increased and as the time-step
is reduced correspondingly.
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